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Abstract. We investigate the process of neural network training us-
ing gradient descent-based optimizers from a dynamic system point of
view. To this end, we model the iterative parameter updates as a time-
discrete switched linear system and analyze its stability behavior over
the course of training. Accordingly, we develop a regularization scheme
to encourage stable training dynamics by penalizing divergent parameter
updates. Our experiments show promising stabilization and convergence
effects on regression tasks, density-based crowd counting, and generative
adversarial networks (GAN). Our results indicate that stable network
training minimizes the variance of performance across different param-
eter initializations, and increases robustness to the choice of learning
rate. Particularly in the GAN setup, the stability regularization enables
faster convergence and lower FID with more consistency across runs. Our
source code is available at: https://github.com/fangzl123/stableTrain.git

1 Introduction

Ever since Augustin-Louis Cauchy first described the method of gradient de-
scent in 1847 [1], its efficiency and flexibility has inspired countless solvers and
optimization algorithms until this day [2–9]. Gradient descent is, in fact, the
backbone of the recent advancements in deep learning, in conjunction with the
error back-propagation technique [10]. In particular, auto-differentiation offers
gradient computation with negligible overhead on the function evaluation, mak-
ing possible the optimization of large-scale non-linear functions with millions of
parameters – such as deep neural networks – using gradient descent [11, 12].

Gradient descent (GD) and its derivatives have been extensively studied with
regards to their convergence properties on various problems [13, 14]. For instance,
the choice of the learning rate is crucial for (fast) convergence, and depends
on the curvature around a local optimum. Choosing a high learning rate may
cause oscillating and divergent behavior, whereas a low learning rate may cause
the optimizer to never reach a good solution. Moreover, when using stochastic
gradients in the case of typical neural network training, gradient noise can cause
undesired updates. Other sources of noise can be multi-task training [15–17],
data augmentation [18–20], or re-sampling operations [21–23].
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Fig. 1: Trajectories with and without stabiliza-
tion. The loss function randomly switches between 4
quadratic attractors, and the convergence to the equi-
librium at origin is desired. Switching causes SGD to
oscillate, which is dampened by stabilization.

To this end, nu-
merous GD-based op-
timization algorithms
have been proposed to
deal with the aforemen-
tioned issues. It has
shown to be beneficial
to modify the gradi-
ents before the update
step to enforce a de-
sired behavior [24, 25].
For instance, gradient
clipping [24] offers an
intuitive solution to the
problem of diverging
gradients. Introducing
momentum can reduce
noise and accelerate convergence in the presence of high curvature regions and
is used by many modern optimizers [26, 8]. Furthermore, adaptive learning rates
for each parameter (e.g. RMSprop, Adam) often offer robust learning behavior.
With AdaDelta [27] there is even a hyperparameter-free optimizer with adaptive
learning rates.

In general, the behavior of GD optimization can be understood from the
viewpoint of a corresponding dynamic system [14]. The system intuitively models
the evolution of the parameters (as the state variable) under the update given by
the optimizer. For instance, in the case of a quadratic cost function, the dynamic
system is given by a linear system (as discussed in Section 2.1). Based on the
spectrum of the update matrix with respect to the learning rate, convergence
criteria can be developed [13, 14]. In particular, we are interested in the stability
of the weight updates, while stability analysis has been previously applied to the
input-output dynamics of neural networks [28, 29].

In the general case of neural networks, however, mini-batch training, non-
linearities, and non-convex loss functions complicate such analysis. In this paper,
we attempt a stability analysis of network training with the tools of switched
linear systems (SLS) [30–34]. The key assumption is that evolution of parame-
ters in a specific layer follows a time-variant linear dynamic over the course of
iterations. This is motivated by two observations. First, each mini-batch contains
different random samples. Second, the input activation to the layer change after
each update iteration. In both cases, the update dynamics change accordingly,
which we model by switching between corresponding linear systems.

The paper is structured as follows. We begin by presenting the theoretical
concept of SLS in the context of gradient descent training in Section 2. Based on
this model, we analyse the stability of the optimization procedure in Section 3
and develop a mechanism to control the parameter updates, such that the update
dynamics remain stable. For our experiments, we approximate this mechanism by
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introducing a stability regularizer to be jointly optimized with the loss function.
In Section 4, we empirically demonstrate the effect of stabilization in terms
of variability and performance on various computer vision problems, including
generative adversarial networks [35, 36] and crowd counting [37, 38].
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Fig. 2: Stability regularization pipeline. For training, the features of the last
linear/convolutional layer or the weights and bias themselves are taken out to
construct a time-variant state matrix which represents the parameters updating
process at the current step. After left multiplying with the accumulated history
matrix, singular value decomposition will be applied to obtain the matrix norm.
By scaling with a hyper-parameter α and adding to the original loss, the training
loss now is a combination of the task-specific loss and the regularization loss.

2 Neural Network Training Dynamics

We introduce the theoretical part by analyzing the update process of mini-batch
gradient descent in 2.1, and by formulating a dynamic system to model the corre-
sponding dynamics. Then we discuss how several aspects of GD can be modeled
using linear systems in 2.2. Finally, we present a model for generic updates, and
formulate the joint dynamic system evolving over training iterations. The joint
dynamics will be analysed with regards to stability in Section 3.

2.1 Mini-Batch Training as a Dynamic System

Let us consider one update iteration for a parameter vector θ⊆Θ of one layer
during training of a network fΘ using stochastic gradient descent with mini-
batches. At iteration k, the update for batch (xk,yk) is

θk+1 = θk − η
∂

∂θ
L(fΘ,xk,yk)︸ ︷︷ ︸

:=Lk

, (1)

with learning rate η and loss functional L.
We start with the example of a linear last layer with ℓ2 regression loss,

L(a(x), y) = (θT a(x) + b− y)2, (2)
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where a is the input activation, and y the label. Since the gradient ∂
∂θL is a

linear function of the parameters θ, the update (1) can be formulated as an
affine system (Ak, bk),

θk+1 = Akθk + bk. (3)

For each iteration k, the parameter update is given by a corresponding system
(Ak, bk). The training process can therefore be interpreted as an affine time-
discrete switched linear system [34]. If Ak is stable, the system (3) tends to a
different equilibrium θek for each mini-batch k,

θek = (I−Ak)
−1bk. (4)

The set of attainable equilibrium points during network training is denoted as,

ϑe = {θek ∈ Rm : θek = (I−Aµ)
−1bµ}, (5)

formed by convex combinations of stable linear systems

Aµ =
∑

i=0...k

µiAi, bµ =
∑

i=0...k

µibi,

µ ∈ {µ ∈ Rk :
∑
i

µi = 1, µi ≥ 0 ∀i}.
(6)

Any solution θ∗ of the neural network training is therefore found in θ∗ ∈ ϑe.
However, not only can any number of systems in Σ = {(Ai, bi)} be unstable,

but even switching between stable systems can create instability. This leads to
oscillating behavior, especially with high learning rates η. On the other hand,
clever switching of systems can stabilize the overall dynamic. In this paper, we
are interested in studying the stability of deep learning optimization problems
and finding ways for stabilising the network training.

2.2 Dynamics of Gradient Descent Optimizers

We can model the update dynamics of GD-based optimizers with learning rate
η using a first order system as follows:[

θk+1

∆θk+1

]
=

[
Dk −ηHk

Lk Mk

] [
θk
∆θk

]
+Bkuk, (7)

with time-variant subsystems Dk, Hk, Lk, and Mk. Dk performs parameter
updates proportional to the parameters θ, and can be used to represent ℓ2 weight
decay for Dk = I − ητ , with regularization strength τ . The additive update is
performed with subsystem Hk, and is typically chosen as Hk = I, in case the
learning rate is the same for all parameters. System Lk handles linear gradients,
such as in the case of (3). The choice of Mk allows for introduction of gradient
momentum, e.g. with Mk = βI. The affine bias terms uk act on the update
through the control matrix Bk.
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For many optimizers and loss functions, the linear assumption as in (3) does
not apply. In this case, we omit the linear dynamics Lk = 0 and introduce the
additive update through the affine term as,[

θk+1

∆θk+1

]
=

[
D −ηI
0 0

] [
θk
∆θk

]
+

[
0
I

]
O(

∂

∂θ
Lk), (8)

whereO( ∂
∂θL

k) is the update from the optimizer (e.g. Adam [8]). SinceO already
includes momentum terms, we set M = 0. To simplify further analysis, we
rewrite (8) into a homogeneous form with state θ̃k and state transition matrix
Ak as,

θ̃k+1=

[
θk+1

1

]
=

[
D −ηO( ∂

∂θL
k)

0 I

] [
θk
1

]
=Akθ̃k. (9)

The state of this affine switched linear system is therefore directly adapted by
the optimizer algorithm. We can write the finite matrix left-multiplication chain
up to iteration k as,

θ̃k+1 = Ak . . .A0x0 =

k∏
i=0

Aix0

=

[
Dk −η

∑k
i=1 D

k−iO( ∂
∂θL

i)
0 I

]
︸ ︷︷ ︸

Ck

θ̃0.
(10)

Ck represents the joint dynamic evolving over iterations.

3 Stable Network Optimization

Motivated by stabilization through switching, in the following, we develop a
stability criterion for the system at the next time step in order to stabilize the
update dynamic. With the tools of Liapunov functions, we derive a constraint
on the joint dynamic Ck, to avoid unstable updates in 3.1. In practice, we relax
this constraint in to ways: by introducing temporary anchors in 3.3, and by
approximation through regularization in 3.4, to obtain an efficient algorithm.

3.1 Liapunov Stability

To analyse the stability of the system (10), we define a Liapunov energy function,

V (ξ) = ξTPξ − 1, (11)

with ξ =
[
(θ−θ0)T 1

]T
around the intial parameter θ0. For time-discrete sys-

tems, we consider the energy difference between two steps,

∆V = V (ξk+1)− V (ξk). (12)
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According to Liapunov’s theorem, for V (0) = 0, and ∆V (x) ≤ 0, the system is
stable around the origin [39]. Note that we do no desire asymptomatic stability,
since we do not know the solution of the learning problem beforehand. Thus, we
merely aim for stable behavior in the vicinity of the inital parameter θ0. For our
dynamic (10) we obtain,

∆V = V (Ckξ)− V (ξ)

= ξT (CT
kPCk −P)ξ.

(13)

Therefore, we achieve ∆V ≤ 0 for,

CT
kPCk −P = −Q. (14)

with positive definite matrices P,Q ⪰ 0. Choosing P = I3x3, we obtain Q ⪰ 0,
if

I−CT
kCk ⪰ 0

⇒ max
i

λi(C
T
kCk) ≤ min

i
λi(I)

⇒ σ1(Ck) ≤ 1,

(15)

where σ1(Ck) is the largest singular value of Ck.

3.2 Stable Network Training

To facilitate stable training, the goal is to find network parameters Θ, that
minimize the loss L under the stability constraints given by (15). At iteration k,
we therefore wish to control the network parameters Θk by solving,

Θk = argmin
Θ

L(fΘ,xk,yk)

s.t. Ck(Θ) = Ak(Θ)Ck−1,

σ1(Ck) ≤ 1.

(16)

This can be seen as a model predictive controller with a single step time horizon.
Here we predict how θk would be updated according to L, as represented by
Ak(Θk) (9). The actual update of θk ⊆ Θk however is given by the solution Θk

of (16), taking the constraints (15) into consideration.

In practice, we approximate the constrained problem of (16) by introducing
a regularizer to the original loss as,

Lstable = Lk + α [σ1(Ck)− 1]+ (17)

where Lk is the task-specific mini-batch loss, [•]+ is a rectifier, and σ1(Ck) is
the stability-based regularizer with strength α.
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Algorithm 1: Stability-regularized training process

#theta: layer weights
#eta: learning rate
#alpha: regularizer strength
def train_epoch(batch_data , theta , eta , alpha):

# reset history (optional)
C = eye(len(theta)+1)

for (x,y) in batch_data:

#predict update O( ∂
∂θL), e.g. with GD:

update = -eta * compute_grad(theta , x, y)

#construct joint system Eq.(9) and Eq.(10)
A_tilde = affine_system(update)
C_tilde = A.matmul(C_tilde)

#compute total loss Eq.(17)
loss = L(x,y)+alpha*relu(svd(C_tilde)[0]-1)

#backprop and parameter update
loss.backwards ()
update_final = optimizer.step()

#update history
A = affine_system(update_final)
C = A.matmul(C_tilde)

3.3 Anchoring

When encouraging Liapunov stability according to (17), we effectively search
only in the vicinity of the initial solution. This is too restrictive in some cases.
We therefore introduce a series of anchors, where the history gets re-initialized
as Ck ← I. In our experiments, we investigate epoch-wise resetting, trading
of stability and exploration. Figure 1 shows the behavior of stabilization with
anchors, in a 2D toy example. In every iteration, one of 4 noisy attractors is
randomly chosen to compute the gradient (mimicking mini-batch noise), and we
desire to reach the equilibrium point at the origin. Stabilization (15) can mitigate
the oscillations, while moving the anchor enables asymptotic convergence.

3.4 Training Algorithm

To optimize (17) using SGD, we first perform a forward pass to construct the
current Ak(Θ) and update the history matrix Ck−1. Note that Ck−1 contains
updates from preceding mini-batches and is treated as a constant, while the
updated Ck involves taking the derivative of L w.r.t. the parameters Θ. Since
the gradients of (17) are a function of the update O, we express the update
analytically as a function of θ, if possible. For complex optimizers and loss func-
tions, we assuming a locally constant gradient, and approximate the affine part
as O(θ)≈θ+O( ∂

∂θL)−θk−1. We summarize the training process in Algorithm 1.
An illustration of the loss computation is given in Figure 2.
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(a) (b)

(c) (d)

Input Baseline Regularized

(e)

η0=2·10−4 η1=3η0 η1, Regularized

(f)

Fig. 3: Effect of Stabilizing Regularizer. (a) Average iterations needed to
reach 90% accuracy on MNIST, with maximal and minimal iterations. Reg-
ularization reduces fluctuation across runs and can speed up convergence.(b)
MAE (mean absolute error) for MCNN crowd counting network. Better and
more stable results are obtained by regularizing. (c) SNGAN training with dif-
ferent regularizing techniques. (d) FID statistics of SNGAN achieved at different
learning rates. Regularization reduces variance and can achieve better results.
(e) Predicted crowd density maps from MCNN. Stabilization yields more dis-
tinct results for crowds (1st row) and sparser dots for negative samples (2nd
row).(f) Generated images from fixed noise by BigGAN trained on CIFAR-100.
The results of the base (2nd column) and regularized (3rd column) models are
obtained with higher learning rates and half of the iterations. See Table 2 for
more details. Besides, our method compares favourably also in terms of the ef-
fective training time.
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4 Experiments

We now are going to empirically investigate our theoretical considerations. In
particular, we evaluate Algorithm 1 on different tasks, network architectures, and
datasets. The following presentation of our experiments is focused on regression-
type problems, since we do not observe any significant beneficial nor detrimental
effects of stability-aware training in the case of classification. Possible reasons are
discussed in Section 5. Additionally, we experiment on the notoriously unstable
training of GANs to show the potential of our approach in such highly dynamic
environments. Our guiding hypothesis is that stability regularization can improve
performance, and achieves higher consistency across multiple independent trials
with random initialization. We start by providing an overview of the datasets
and the tasks investigated for stability-aware training.

MNIST Digit Classification. We start with the popular MNIST [40]
dataset which is designed for 10 digit classification. We convert the task into
a scalar regression problem, and add a linear layer with one output unit to the
end of the LeNet-5 [40] network. For evaluation, we bin the continuous output
back into 10 classes. In particular, we are interested in the convergence with and
without the regularizer, as measured by crossing the 90% accuracy threshold.

NWPU Crowd Counting. Next, we evaluate our regularizer on crowd
counting. The task involves counting the number of people in an image of large
crowds. NWPU-Crowd dataset [41] contains 5,109 images with various illumina-
tion and density range. With 351 negative samples and large appearance varia-
tions within the data, it is a challenging dataset. State-of-the-art methods typi-
cally approach crowd counting through regression of a pixel-wise density map [37,
38, 42]. The final count is obtained by summing over the density map.

CIFAR10/100 Image Generation. Furthermore, we evaluate stability
regularization in the GAN setup, where gradients are naturally unstable, making
it hard to train. This is due to the dynamics of the two-player game between the
discriminator network (judging an image to be real or fake), and a generator,
trying to fool the discriminator by generating realistic images. As training of a
GAN aims to find the balance (i.e. the Nash equilibrium), unstable gradients
will cause problems or even failure in training the model. We focus on CIFAR-
10 [43] first to demonstrate the ability of our regularizer and compare to several
other regularization methods. Test on CIFAR-100 [43] is to study the stability
behavior further since there are fewer samples per class, which implicitly means
the model suffers mode collapse easier.

Implementation Details. In all experiments, we stabilize the last layer
only. As optimizers, we use SGD and Adam. As discussed in Section 3.4 and
Algorithm 1, the generic training procedure includes two backpropagation steps.
Because of the stateful nature of Adam, we copy weights and optimizer state
for the last layer. Then the forward pass is performed, and we back-propagate
to obtain the dynamics for the task-specific loss Lk. Next, Ak is constructed by
subtracting the old parameters from the updated ones. Finally, we update the
original weights based on the gradients with respect to the complete loss Lstable.
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Fig. 4: High Learning Rate behavior. Accuracy curve across iterations for
MNIST and CIFAR-10 when the learning rate is higher than the optimum set-
ting. Top is the result for MNIST (LR = 0.12) and bottom is the result for
CIFAR-10 (LR = 0.2). In both cases, the regularize improves convergence and
reduces variance across runs.

4.1 Results

We summarize our main results for all tasks in Figure 3. To indicate the spread
in some figures, we either plot the min/max bar, or one standard deviation as
a shaded area. As a general trend, we observe that across tasks, the variance
in the evaluation metric is significantly reduced when training with stabiliza-
tion. In many cases, we can further see an accuracy improvement on average.
The MNIST experiments in (a) show that the regularizer enables a significantly
quicker convergence on average. In figure (b), we observe that a lower MAE
with less variance is achieved in the case of crowd counting. The bottom row (c,
d) summarizes our GAN experiments with the SNGAN [44] architecture, also
exhibiting reduced variance across runs, as well as a signficiant improvement in
FID across a range of learning rates. In the following, we present each of the
experiments in more detail.
MNIST. We train the networks with different values for the learning rate η and
the hyper-parameter α, that is, η ∈ {0.03, 0.05, 0.08, 0.1} and α ∈ {1, 3, 10, 30, 100}.
Figure 3 (a) compares the iteration numbers needed for the base and the best
regularized model to reach the benchmark for the first time under three different
learning rate settings. The bar indicates the average speed over ten independent
tests. The two models are comparable when the learning rate is below 0.1, and
the best learning rate for the base model is around 0.08. As the learning rate
increases, the base model takes more time to achieve the same accuracy, and the
training process is more unstable, as indicated by the min-max distance in the
figure. In contrast, our regularized model behaves better when using higher learn-
ing rates, resulting in both less average iterations and smaller variation range.
From this experiment we can conclude that the regularization is orthogonal to
a reduction in learning rate.

To further demonstrate the effectiveness of stabilization in the high learn-
ing rate regime, we experimented on both MNIST (η = 0.12) and CIFAR-10
(η = 0.2). The accuracy curves for the base and regularized models with error
regions defined by one standard deviation in Figure 4. The optimal regulariza-

4285



Training Dynamics Aware Neural Network Optimization with Stabilization 11

tion strength α are found to be α = 30 for MNIST and α = 10 for CIFAR-10.
As it can be seen, a high learning rate leads to performance degradation and
model instability, and the base model can’t reach the benchmark (0.9 and 0.4,
respectively). However, if we use the stability constraint within the training, a
stable behavior over multiple runs is maintained.

Crowd Counting. Next we evaluate our regularizer in the natural regression
problem of crowd counting. After predicting the density map for an image, the
the pixel-wise difference between the density map and group-truth map is mea-
sured with ℓ2 loss. We follow MCNN [41] in setting up the original training hyper-
parameters, including the optimizer (Adam) and the learning rate (η = 1 ·10−4).
The results for MCNN architecture are posted in Figure 3 (b). While the Mean
Absolute Error (MAE) of the base model fluctuates around 350 and finally goes
down to 320, the regularized model leads to a better counting performance, as
well as reduced variance. It reaches MAE 265 on average within 100 epochs with
fewer fluctuations and has a minimum MAE of around 236 over ten experiments.
We also compare it with gradient clipping, whose MAE curve is quite similar to
the base model, with larger variance at some epochs. Our proposed regularizer
is still the best among them, as can be seen in Table 1.

Method mean MAE best MAE

Base 328.386 284.518
Grad-clipping 301.421 281.763

Ours 265.477 236.446

Table 1: Crowd Counting using
MCNN. Accuracy (in MAE) after 10
independent runs, for 100 epochs each.

The evaluation results for the
more complex CSRNet [38], trained
following the original protocol, can be
seen in Figure 5. Both models behave
similarly in terms of average MAE,
but the regularized network shows
a smaller error region over multiple
runs. After epoch 60, the MAE of the
base model largly fluctuates, while the
regularized model generally decreases
with few fluctuations. A similar be-
havior is observed on two other met-
rics: Mean Squared Error (MSE) and
mean Normalized Absolute Error (NAE) in Figure 5. This may indicate that our
approach is indeed helpful for the stability of the training process in the sense
of stochastic dataset sampling and random initialization.

Generative Adversarial Network. We now investigate our regularizer ap-
plied to the naturally unstable GAN training. We choose SNGAN and Big-
GAN [45] for our experiments. We use hinge loss in both models which is the
default loss function in BigGAN. We test SNGAN with SGD optimizer and Big-
GAN with Adam. At every epoch, we reset the history matrix, as explained in
Section 3.3. For evaluation, we mainly compare the FID metric (less is better),
which measures the diversity and quality of the generated images [46].

Motivated by the previous results, we start with a learning rate slightly
higher than that of the best base model, and show the results for SNGAN in
Figure 3 (c). Around 100 epochs, there is a four-unit FID gap between them,
and the blue shaded area (base model) is much larger over the whole process. We
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Fig. 5:Crowd Counting using CSRNet. From left to right: measured in MAE
(mean absolute error), MSE (mean squared error), and NAE (MAE normalized
by ground truth). Regularization significantly reduces the variance across runs.

Fig. 6: Regularization Impact on FID using SNGAN. Left: Comparison
between the best base model, our best regularized model and model trained by
AdaDelta optimizer. Right: Lowest FID achieved within 100 epochs with and
without regularizer.

also compare to the commonly used regularization methods weight decay and
gradient clipping, to further demonstrate that our proposed regularizer is not
equivalent to them in the GAN setup. To be similar to our stabilizing regularizer,
we constrain the maximal matrix norm equal to one in gradient clipping. For the
coefficient of weight decay, we alter among 0.1, 0.01, and 0.001. Since there is no
significant difference in the results, we finally choose 0.01 for the comparison. As
can be seen in the same figure, gradient clipping fails to improve the performance
of SNGAN together with an even larger standard deviation. Weight decay is
better than the other two models but still not as good as our regularized one.
Note that even though we observe a large error region at epoch 10 or 20, it
doesn’t mean we can actually reach FID 30 here. This is merely due to the
distortion of high-FID outliers on the symmetric standard deviation measure.

We also test our regularizer at different learning rates, and the quantitative
results are reported in Figure 3 (d). Similar to the conclusion from the regression
task, there is a negligible difference if we set the learning rate as the best for the
base model. As the learning rate increases, the FID increases with a significantly
larger variance, while the regularizer can maintain stable results, and even im-
prove FID. Again, we see that the regularizer does not have the same effect on
training as learning rate tuning, and offers new and better operating points.
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Figure 6 left compares the best-regularized model with a learning-rate-setting-
free optimizer, AdaDelta [27]. While the regularized model has an average FID
below 30, the other two models converge around or over 32. We can conclude
from here that a moderately higher learning rate with a regularizer will ben-
efit the training for SNGAN, and it is necessary to find such an appropriate
learning rate. To summarize the results for SNGAN, we provide the lowest FID
every model can reach after 100 epochs in Figure 6 right. The best FID ap-
pears earlier if we increase the learning rate for the base model, indicating that
the model is usually under-fitting. Adding the regularizer allows for using even
higher learning rates, and the resulting FID exceeds the base model.

η0 = 2 · 10−4

Iters 55k 60k 65k 70k 75k 80k 85k

Base 9.641 9.363 9.078 8.850 8.900 8.972 8.865

Reg. 10.097 9.896 9.710 9.553 9.479 9.5470 9.508

η1 = 6 · 10−4

Iters 40k 45k 50k 55k 60k 65k 70k

Base 10.280 9.516 9.629 10.708 14.114 53.463 91.141

Reg. 9.396 9.062 8.605 9.048 10.802 27.608 82.379

Table 2: BigGAN Training. FID for CIFAR-100 when the learning rate is the
default setting (top), and increased by a factor of 3 (bottom). With the higher
learning rate, the regularized model can reach the lowest FID at 50k iterations.

We now test with the BigGAN architecture on the CIFAR-100 dataset. Ta-
ble 2 shows the FID for two learning rates: default η0 = 2 ·10−4, and three times
higher at η1 = 6 · 10−4. The behavior for default η0 similar to previous tasks,
which reveals that the regularizer malfunctions in this case, yielding a slightly
higher FID than the base model. Increasing to η1, the training process becomes
fragile, and both models collapse after 65k iterations. Despite this, our regular-
ized model can still reach an FID of 8.605, while the base model reaches only
9.516. Compared to the default setting, the lowest FID is achieved already at
50k iterations with the regularizer at η1, as opposed to 70k iterations with the
base model at η0 . This observation indicates that the proposed regularizer can
help with the stability of the network in some cases.

5 Discussion

While our formulation in Section 2 makes no assumption on the loss functions,
we do not observe any significant impact of our regularizer on classification
tasks such as CIFAR-100. We conjecture that regression, GAN training, and
classification (using cross-entropy) losses introduce different types of dynamics,
and only a subset can be stabilized with the proposed method.
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Fig. 7: Loss profiles. From left to right: Cross-
entropy (CE), ℓ1, ℓ2, and GAN discriminator
training (CE with balanced adversarial samples)
and their corresponding gradients. Updates with
big steps cause gradient inversion and/or an in-
crease in gradient magnitude for ℓ1, ℓ2 and GAN
losses. This is not the case for CE, where the
gradient decreases without zero crossing.

One possible explanation
for this phenomenon could lie
in the zero crossing of the
loss gradient around the op-
timum: for ℓ1 and ℓ2 loss
functions, too big an update
step close to the correct an-
swer causes the gradient to
invert and symmetrically re-
gain its magnitude, as shown
in Figure 7. This behavior
may be a source of oscilla-
tion, that our method can
compensate well. Such sym-
metry is not present in the
one-sided cross-entropy loss,
where the gradient (magni-
tude) monotonously decreases
until the predicted score sat-
urates. Even a big update
step never causes a gradi-
ent to invert. In the case of
GANs, even though techni-
cally a real/fake classification
task, this symmetry might get introduced by the gradient reversal of the adver-
sarial training.

6 Conclusion

In this work, we formulated the training of neural networks as a dynamic system
and analyzed the stability behavior from the control theory point of view. Based
on this theory, we develop a regularizer to stabilize the training process. The
regularization strategy is based on the accumulated gradient information of the
task-specific loss. Experimental results on different tasks, network architectures,
and datasets show that our method stabilizes the training process across multi-
ple independent runs and improves the task performance in conjunction with an
appropriate slightly higher learning rate. That being said, we further found that
the effect of the stabilization is orthogonal to a reduction of the learning rate.
In many cases, we observe higher consistency and better results can be achieved
with the appropriate parameters. For future work, it would be interesting to
investigate why the stabilization has little effect on classification problems. Fur-
thermore, we aim to analyse the effect of stabilization on other layers of the
network, and see if it is beneficial to stabilize more than one layer.
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