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Abstract. Occluded person Re-identification (Occluded ReID) aims to
verify the identity of a pedestrian with occlusion across non-overlapping
cameras. Previous works for this task often rely on external tasks, e.g.,
pose estimation, or semantic segmentation, to extract local features over
fixed given regions. However, these external models may perform poorly
on Occluded ReID, since they are still open problems with no reliable
performance guarantee and are not oriented towards ReID tasks to pro-
vide discriminative local features. In this paper, we propose an Atten-
tional Occlusion-aware Network (AONet) for Occluded ReID that does
not rely on any external tasks. AONet adaptively learns discriminative lo-
cal features over latent landmark regions by the trainable pattern vectors,
and softly weights the summation of landmark-wise similarities based on
the occlusion awareness. Also, as there are no ground truth occlusion
annotations, we measure the occlusion of landmarks by the awareness
scores, when referring to a memorized dictionary storing average land-
mark features. These awareness scores are then used as a soft weight for
training and inferring. Meanwhile, the memorized dictionary is momenta
updated according to the landmark features and the awareness scores of
each input image. The AONet achieves 53.1% mAP and 66.5% Rank1 on
the Occluded-DukeMTMC, significantly outperforming state-of-the-arts
without any bells and whistles, and also shows obvious improvements
on the holistic datasets Market-1501 and DukeMTMC-reID, as well as
the partial datasets Partial-REID and Partial-iLIDS. The code and pre-
trained models will be released online soon.
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1 Introduction

Most Person Re-identification (ReID) [12, 2, 31] approaches focus more on holis-
tic pedestrian images, and tend to fail in real-world scenarios where a pedestrian
is partially visible, e.g., occluded by other objects. The Occluded person Re-
identification (Occluded ReID) is then investigated which aims to handle the
occlusion distractions. Some previous Occluded ReID methods perform part-to-
part matching based on fine-grained external local features [13, 25], e.g., with
body parts assigned larger weights and occlusion parts smaller weights.
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Fig. 1. Illustration of local feature responses. (a) Holistic and occluded images. (b)
Local features by partitioning over segmentation mask. (c) Local features based on
pose estimation. (d) Landmark features by our AONet.

The key to solving Occluded ReID is to locate landmark regions and then
extract well-aligned features from non-occluded landmark regions, while reason-
ably reducing or prohibiting the use of features from occluded landmark regions.
Some Occluded ReID works use body parts attained from pose estimation for
local feature extraction [25, 3, 4], and suppress or exclude the local features of
some occluded body parts with low pose confidence. However, the reliability of
pose estimation is not guaranteed (e.g., failure on the knees and waist in Fig. 1
(c)). Moreover, pose features are often not necessarily adapted to ReID tasks due
to cross-task variance. Another group of methods [23, 13, 21, 33] extracts local
features directly on uniformly partitioned grids on pedestrian images, and mea-
sures the occlusion of each grid guided by the semantic segmentation task, as
shown in Fig. 1 (b). However, due to the different poses and non-rigid deforma-
tion of the human body, these models cannot accurately perform part alignment
and thus often fail. In addition, there are some methods that achieve Occluded
ReID by locating occluded parts or measuring the occlusion degree using the
pose estimation [28, 4] or semantic segmentation tasks [33, 3].

However, the aforementioned methods rely on external tasks, such as pose
estimation or semantic segmentation, to extract local features on fixed given
regions of the human body. On one hand, the results of these external tasks
may be imprecise; on the other hand, the obtained local features are usually
not discriminative enough for Occluded ReID. [10] presented the Matching on
Sets (MoS), positioning Occluded ReID as a set matching task without using ex-
ternal models. Compared to this work, we go further to adaptively extract more
discriminative local features as well as more accurately sense and measure the
occlusions. We then propose an Attentional Occlusion-aware Network (AONet)
with the Landmark Activation Layer and the Occlusion Awareness (OA) com-
ponent. The latent landmark features refer to features of ReID oriented local
parts (i.e., latent landmarks), and are resistant to landmark occlusion. The oc-
clusion awareness score measures the visibility of each landmark according to
the average landmark features in the memorized dictionary. Besides, to prevent
the model collapse problem that multiple landmarks focus on the same region,
we involve the orthogonality constraints among landmarks features.

1607



Title Suppressed Due to Excessive Length 3

Momenta Updating

Orthogonal Loss

Self-Attention Block

Backbone

Memorized Dictionary

Binarize

Detach

Sum

� × � × �

Feature Maps

Landmark Activation Layer 

Conv 

Conv 

1 × 1

Conv 

C

C

C

… …

…

…

Norm

K

…

Cross Entropy Loss

Multi-head 
Classifier

Multi-head 
Classifier

�

�

Occlusion 
Awareness 

Score     �

�

�

�

��

��

��

1
2

Norm

Norm

(� × �) × �

(� × � + 1) × �

1 × 1

1 × 1

: Landmark Patterns

: Concatenate

: Matrix Multiply

: Augmented Response

: Referenced Response

: Binarized Response

�
�
�

C

(� × �) × �

(over each � × � pixels)

…

Fig. 2. The framework of AONet, including a Landmark Activation (LA) layer to
extract the landmark features, and the Occlusion Awareness (OA) score to measure the
occlusion. The responses of occluded pixels will be lower than the corresponding average
response passing through the LA layer. Then, the normalization over all pixels and the
average responses will further scale down these occluded responses (the green branch).
Finally, the normalized pixel responses are summed up as the occlusion awareness score,
and used to update the memorized dictionary.

Our main contributions can be summarized as follows:

– Instead of relying on any external tasks, we only use a learnable parameter
matrix (i.e., the landmark patterns) and a memorized dictionary storing the
average landmark features, to guide the extraction of landmark features that
are more discriminative and resistant to occlusion.

– Furthermore, we define the occlusion awareness score to sense and measure
the occlusion of each landmark explicitly, especially by referring to the av-
erage landmark features in the memorized dictionary.

– Our AONet achieves excellent performance on not only the occluded dataset
Occluded-DukeMTMC, but also the holistic and partial datasets, i.e., Duke-
MTMC-reID, Market-1501, Partial-REID, and Partial iLIDS, significantly
outperforming state-of-the-art.

2 Related Works

Person ReID has been studied in terms of both feature representation learn-
ing [34, 23, 30] and distance metric learning [24, 1, 8]. However, most ReID meth-
ods focus on matching the holistic pedestrian images, and do not perform well on
occlusion images [13, 25], which limits their applicability in real-world scenarios.

Occluded ReID [25, 10] is aimed at matching occluded person images to holis-
tic ones across dis-joint cameras, which is challenging due to distracting factors
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like cluttered scenes or dense crowd. To solve it, [7] proposed an occlusion-robust
alignment-free model, using an occlusion-sensitive foreground probability gener-
ator with guidance from a semantic segmentation model. [13] refined the setup of
the Occluded ReID problem to be more realistic, i.e., both probe and gallery im-
ages containing occlusion. They introduced a PGFA method that exploits pose
landmarks to disentangle useful information from the occlusion noise. Here, we
tackle an Occluded ReID problem as defined in [13].

Later, [4] proposed a PVPM method to jointly learn the pose-guided local
features and the self-mined part visibility. [25] proposed an HOReID method
to learn high-order relations for discriminative features and topology informa-
tion for robust alignment, by an external human key-points prediction model.
In [33], a Semantic-aware Occlusion-Robust Network (SORN) was proposed that
exploits the intrinsic relationship between person ReID and semantic segmenta-
tion. Also, [14] proposed a Semantic Guided Shared Feature Alignment (SGSFA)
method to extract features focusing on the non-occluded parts, using guidance
from external human parsing and pose estimation models. The above works re-
quire guidance information from external tasks (e.g., semantic segmentation,
pose estimation) either for local feature extraction or occlusion measurement.
Recently, [10] presented the Matching on Sets (MoS) method, viewing Occluded
ReID as a set matching task without requiring spatial alignment.

3 Attentional Occlusion-aware Network

The Attentional Occlusion-aware Network (AONet) mainly includes the extrac-
tion of the attentional landmark features, and the calculation of the Occlusion
Awareness (OA) score, as shown in Fig. 2. Meanwhile, a learnable matrix is used
to explicitly represent the landmark patterns for the more discriminative fea-
tures. A memorized dictionary is defined as a strong reference, which stores the
average landmark features and is dynamically updated in a momentum way. The
discriminative local features, i.e., the landmark features, are extracted adaptively
according to both the memorized dictionary and the landmark patterns.

3.1 Landmark Patterns & Memorized Dictionary

Landmark Patterns. We define the landmark patterns I ∈ RC×K as trainable
parameters to attend to specific discriminative landmarks, i.e., the attentional
latent landmarks. We expect the learned landmark patterns to encode local pat-
terns, which help explain the inputs (feature maps F ).

Memorized Dictionary. We also define the memorized dictionary M ∈ RC×K

to store the average features of the K latent landmarks. M is zero-initialized but
momentum updated under the guidance of landmark patterns batch by batch.
Moreover, the updating considers the occlusion of each landmark, i.e., using the
referenced response maps in the calculation of the occlusion awareness scores (see
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Fig. 3. Visualization of the effect with or without the reference of average response on
the example pattern ’head-neck’. The use of average response has no particular impact
on the holistic image in (a), but is effective in suppressing false alarms on the occluded
image in (b). In (b), facing the occlusion of ’head-neck’, the response map has false
alarms on ‘knees’ without referring to average response (the 2nd image), but this gets
obviously alleviated with the reference (the 3rd image).

details in Sec. 3.4). Namely, given the referenced response map R̂k ∈ RW×H

for the kth landmark, we binarize R̂k as R̃k ∈ RW×H by setting all pixels
corresponding to the maximum value to 1 and the rest to 0. Then, given a
batch of B images, we use momentum updating to get the updated memorized
dictionary M t+1

k with a balance weight (α) as:

M t+1
k = αM t

k + (1− α)
1

B

∑B

b=1
FbR̃k. (1)

3.2 Attentional Latent Landmarks

The learnable landmark patterns I = {ik}Kk=1, ik ∈ RC should be trained to-
gether with other parameters of the network. The 1x1 convolution can be seen
as an operation where a 1 × 1 × C sized filter is applied over the input and
then weighted to generate several activation maps. That is, the 1×1 filter can be
thought of as some type of pattern matching to create a linear projection of a
stack of feature maps. Therefore, we realize the landmark patterns by the 1× 1
filters, as shown in the Landmark Activation layer of Fig. 2.

In details, the 1x1 convolution layer appended after the CNN backbone net-
work takes F ∈ RC×H×W (feature maps of an input image) as input, and outputs
K landmark-specific response maps R = {Rk} ∈ RK×W×H . We normalize these
response maps among all pixels to form the basic normalized response maps
Ř ∈ RK×W×H , then the value of pixel (w, h) in the kth map is calculated as,

Řk(w, h) =
ϕ(ik,F (w, h))∑(W,H)

(i,j)=(1,1) ϕ(ik,F (i, j))
, (2)

and ϕ(ik,F (i, j)) = exp(iTkF (i, j)) is the similarity based response.
After that, without considering occlusion awareness, we easily obtain the

Standard Landmark-specific (SL) features of f̄k ∈ RC for the kth landmark by
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Algorithm 1 The Main Flowchart of the AONet.
Input: Batch of feature maps F = {F b ∈ RW×H×C}Bb=1; landmark patterns I =
{ik} ∈ RC×K ; where B, C and K are the size of batch, channel and the number of
landmarks.
Output: The awareness scores β = {βk} and updated memorized dictionary
M ;
1: Initialize the memorized dictionary Mt = {mk} ∈ RC×K ;

(noting: superscript b is omitted until step 11 for convenience.)
2: for t = 1 to T do
3: Response maps R=ϕ(I,F ) ∈ RK×W×H , where Rk ∈ RW×H is the kth land-

mark’s response on F ;
4: Average responses a = {ak}, where ak = ϕ(ik,mk).
5: Each augmented response map Rk = {Rk; ak} ∈ RW×H+1.
6: Normalizing Rk with Eqn. 3.
7: Referenced response map R̂k = {R̂k(w, h)} ∈ RW×H , i.e., detaching the value

corresponding to sk.
8: Calculating the awareness scores (e.g., βb

k) based on Eqn. 4;
9: The kth OA feature fk = FR̂k.

10: Binarization over R̂k to get binarized response map R̃k.
11: Updating the K memorized landmark features:

M t+1
k = αM t

k + (1− α) 1
B

∑B
b=1 FbR̃;

12: end for
13: return β and M respectively;

f̄k = FŘk. However, the SL features cannot accurately reflect the response of
landmarks in the occluded image. As shown in Fig. 3 (b), when the example
landmark (seems to be the ’head-neck’ parts) is occluded, this landmark still
has large activated regions (i.e., the false alarm on the parts of ‘knees’). Thus,
we adopt the landmark features that characterize the occlusion awareness, i.e.,
the OA features (see Sec. 3.4) instead of the SL features finally.

3.3 Referenced Response Map

Meanwhile, a special feature map, i.e., the referenced response map, is defined
to measure the occlusion awareness and represent the discriminative feature. We
first calculate the similarity-based response between each landmark pattern (e.g.,
ik ∈ I) and its corresponding memorized average feature (e.g., mk ∈ M), which
is named as the average response (e.g., ak = ϕ(xk,mk)). While the memorized
average features are the statistical representation of each landmark, the average
responses can be used as some real and strong reference values to suppress false
alarms, e.g., scaling down responses of false alarms through uniform normaliza-
tion, as shown in Fig. 3. More details can be seen in Alg. 1.

Then, for an input image, given a landmark-specific response map Rk =
ϕ(ik,F ), if all responses in Rk are significantly lower than the average response
ak, it means that this landmark is not present in this image, and the area cor-
responding to this landmark is occluded. Thus, we concatenate each ak to the
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corresponding Rk to form the augmented response map Rk, which is then nor-
malized in a similar way as Eqn. (2) (but on W × H + 1 elements). That is,
the normalized response of the kth landmark pattern on the nth pixel by the
similarity function ϕ is calculated by

R̂k(w, h) =
ϕ(ik,F (w, h))

ak +
∑(W,H)

(i,j)=(1,1) ϕ(ik,F (i, j))
. (3)

Given a landmark pattern ik, pixel responses ϕ(ik, xn) that are far below the
average response ak are normalized to small values or even 0. Consequently, the
responses of the occluded pixels, and pixels unrelated to the landmark patterns ik
are greatly suppressed, as shown in Fig. 3. Finally, we detach out the normalized
response value of the average features, and rename the remained part as the
referenced response map, i.e., R̂k = {R̂k(w, h)} ∈ RW×H .

3.4 Occlusion Awareness

Although we do not have true annotations about the occlusion of each landmark,
we can utilize the memorized dictionary M that stores the average feature of
each landmark, as a special strong reference to measure the occlusion, as shown in
Alg. 1. Namely, the pixels that refer to a particular landmark should have a large
response to this landmark’s pattern. Namely, the feature of pixels referring to a
particular landmark should be similar to the memorized average feature of that
landmark, and also, both of them have comparable similarity based responses to
the corresponding landmark pattern.

Occlusion Awareness Score. Ideally, if the regions referring to a landmark
are occluded, there should be no responses to this landmark, and all pixels should
not be used for learning any learnable landmark pattern. However, the network
itself is not aware of the occlusion, and the responses of this landmark (e.g.,
’head-neck’) will transfer to other unoccluded but wrong regions (e.g., ’knees’)
to extract features (see Fig. 3). An intuitive idea for addressing this problem is
to accurately measure the degree of occlusion by some metric (i.e., awareness
score), and then use it to suppress the impact of occluded regions in training
and inference. Therefore, we further explicitly define an occlusion awareness
score to measure the degree of occlusion based on the referenced response map
R̂. Specifically, we define the awareness score of the kth landmark as,

βk =

(W,H)∑
(1,1)

R̂k(w, h). (4)

Then, βk is used to reduce the weight of the occluded landmarks not only in
training but also in inference.

Occlusion Awareness Feature. We need not only to sense the awareness
score of each landmark but also involve such occlusion awareness in feature
representation. Thus, the referenced response maps are also used as very crucial
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guidance to generate the more discriminative landmark features, i.e., Occlusion
Awareness (OA) features. Specifically, we replace Řk to the referenced response
map R̂k, and get the kth OA feature as fk = FR̂k.

3.5 Training and Inference

Training Losses. We use the cross-entropy loss weighted by the occlusion
awareness to constrain each landmark. Specifically, we perform the classifica-
tion loss on both the OA features before and after the self-attention block, i.e.,

Lcls = − 1

K
(

K∑
k=1

βk log p
1
k +

K∑
k=1

βk log p
2
k), (5)

where βk is the kth landmark’s awareness score, and p1k and p2k are the predicted
probability of the kth landmark features before and after the self-attention block.

Without any other constraints but only the classification loss, different land-
marks are easy to collapse to focus on the same part. Thus, we propose the
orthogonal loss to ensure spatial diversity between landmark features. In detail,
when the cosine similarity is calculated between two landmark features (fi and
fj), the orthogonal loss is defined as

Lot = − 1

K2

k∑
i=1

K∑
j=i+1

log(1− |cosine(fi,fj)|+). (6)

where | · |+ means the ramp function, i.e., max(0, ·).
Finally, the overall objective function is formulated by

LAONet = Lcls + λotLot, (7)

where Lcls is the cross-entropy based classification loss, and Lot refers to the
orthogonal loss among landmark features before the self-attention block, and
λot is the balance weight.

Inference. For inference, given a pair of images (im1 and im2) and their
feature maps (F 1 and F 2), as well as their landmark features (e.g., f1

k and f2
k ),

their similarity is calculated based on the cosine similarity cosine(·) by

sim(im1, im2) =
1

K

∑K

k=1
β1
kβ

2
kcosine(f1

k ,f
2
k ), (8)

where β1
k and β2

k are the occlusion awareness scores of the kth landmark.

4 Experiments

4.1 Datasets and Implementations

We mainly evaluate AONet on the most popular occluded ReID dataset, i.e.,
Occluded-DukeMTMC [13], where both the probe and gallery images have occlu-
sion. In addition, we also experiment on holistic person ReID datasets: Market-
1501 [35] and DukeMTMC-reID [15], as well as the partial ReID datasets:
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Table 1. Comparison of performance on metrics of Ranks and mAP on the Occluded-
DukeMTMC dataset.

Methods Rank1 Rank5 Rank10 mAP

PGFA[ICCV19] 51.4 68.6 74.9 37.3
HOReID[cvpr20] 55.1 - - 43.8
SORN[TCSVT20] 57.6 73.7 79.0 46.3
SGSFA[ACML20] 62.3 77.3 82.7 47.4

DIM[arXiv17] 21.5 36.1 42.8 14.4
PartAligned[ICCV17] 28.8 44.6 51.0 20.2
RandErasing[AAAI20] 40.5 59.6 66.8 30.0
HACNN[CVPR18] 34.4 51.9 59.4 26.0
AOS[CVPR18] 44.5 - - 32.2
PCB[ECCV18] 42.6 57.1 62.9 33.7
PartBilinear[ECCV18] 36.9 - - -
FD-GAN[NeurIPS18] 40.8 - - -
DSR[CVPR18] 40.8 58.2 65.2 30.4

MoS[AAAI21] 61.0 - - 49.2
AONet 66.5 79.4 83.8 53.1

MoSw/ibn[AAAI21] 66.6 - - 55.1
AONetw/ibn 68.8 81.4 85.8 57.3

Partial-REID [36] and Partial-iLIDS [6]. All experiments are performed based
on a single query image and without re-ranking [37].

We use ResNet50 [5] pre-trained on ImageNet as the backbone network. For a
fair comparison, we also incorporate the instance batch normalization (ibn) into
ResNet50 (i.e., AONetw/ibn) as in [10]. To acquire high-resolution feature maps,
the stride of conv4_1 is set to 1. We resize original images into 256× 128, with
a half probability of flipping them horizontally. Then, the images are padded by
10 pixels and randomly cropped back to 256 × 128, and then randomly erased
with a half probability. We use the Adam optimizer [11] with a learning rate of
3.5e− 4, warm up the training in the first 20 epochs and decay the learning rate
with 0.1 in the 50th and 90th epoch. The batch size is 64, 4 images per person,
and a total of 120 epochs are trained end-to-end. The weight of orthogonal loss,
i.e., λot, is set to 0.01 and the momentum α for memorized dictionary updating
is set to 0.9. If not specified, the number of landmarks is set as 6.

4.2 Comparisons to State-of-the-arts

Results on Occluded ReID Dataset. Table 1 shows the performance of
AONet and several competing methods, including methods without external mod-
els: DIM [32], PartAligned [34], RandErasing [38], HACNN [12], AOS [9], PCB [23],
PartBilinear [19], FD-GAN [18], DSR [6], MoS [10], methods with external mod-
els: PGFA [13], SORN [33], SGSFA [14], HOReID [25], and the most related set
matching based method [10], on the Occluded-DukeMTMC dataset.
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Table 2. Performance comparison on Holistic Person ReID datasets of the Market-
1501 and DukeMTMC-reID.

Methods Market-1501 DukeMTMC-reID
Rank1 mAP Rank1 mAP

PCB+RPP[ECCV18] 93.8 81.6 83.3 69.2
MGN[MM18] 95.7 86.9 88.7 78.4
VPM[CVPR19] 93.0 80.8 83.6 72.6
SORN [TCSVT20] 94.8 84.5 86.9 74.1

PDC[ICCV17] 84.2 63.4 - -
PSE[CVPR18] 87.7 69.0 27.3 30.2
PGFA[ICCV19] 91.2 76.8 82.6 65.5
HOReID[CVPR20] 94.2 84.9 86.9 75.6

PartAligned[ICCV17] 81.0 63.4 - -
HACNN[CVPR18] 91.2 75.6 80.5 63.8
CAMA[CVPR19] 94.7 84.5 85.8 72.9
MoS[AAAI21] 94.7 86.8 88.7 77.0
AONet 95.2 86.6 88.7 77.4

Our AONet shows a significant advantage over other methods. Note that
our AONet uses no external models as in most of the previous works. More-
over, on Rank1 and mAP, AONet improves 4.2% and 5.7% over the SOTA
method SGSFA (with external models). AONet also improves 5.5% and 3.9%
over MoS (without external models). In MoS, a pre-trained backbone network
IBN is used to achieve better results, so we also propose the AONetw/ibn uti-
lizing IBN, which also achieves better results.

Results on Holistic ReID Datasets. Many related methods achieved
good performance on Occluded ReID datasets, but they perform unsatisfacto-
rily on holistic person ReID datasets and cannot be applied widely [13]. The
AONet is also evaluated on the holistic person ReID datasets (i.e., Market-
1501 and DukeMTMC-reID) and compared with three groups of competing
methods: uniform-partition based (PCB [23], VPM [22], MGN [26], pose-guided
based (PDC [17], PSE [16], PGFA [13], HOReID [25]) and attention-guided based
methods (PartAligned [34], HACNN [12], CAMA [29]). As shown in Table 2, the
AONet produces satisfactory results in holistic cases even using an occluded ori-
ented network. Meanwhile, the methods of different groups all perform well on
holistic datasets and without large performance gaps. The reason could be, that
almost all body parts are visible in holistic datasets, offering a greater possibil-
ity to locate all parts and thus obtain discriminative features easily. Meanwhile,
AONet not only achieves SOTA performance on the occluded dataset, but also
achieves competitive results on holistic datasets.

Results on Patial ReID Datasets. To fully validate the effectiveness of
the AONet, we also conduct experiments on the partial person ReID datasets of
Partial-REID and Partial-iLIDS. Since these two datasets are always only used as
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Table 3. Performance comparison on Partial ReID datasets of Partial-REID and
Partial-iLIDS.

Methods Partial-REID Partial-iLIDS
Rank1 Rank3 Rank1 Rank3

DSR[CVPR18] 50.7 70.0 58.8 67.2
VPM[CVPR19] 67.7 81.9 65.5 84.7
HOReID[CVPR20] 85.3 91.0 72.6 86.4
AONet (crop) 85.0 92.7 68.1 84.9

PGFA[ICCV19] 68.0 80.0 69.1 80.9
SGSFA[ACML20] 68.2 - - -
SORN [TCSVT20] 76.7 84.3 79.8 86.6
AONet (whole) 75.3 86.3 80.7 86.6

the test dataset, existing works are trained on other ReID dataset (e.g., Market-
1501). Not only that, but existing works also use the partial ReID dataset in two
different ways (the two groups in Table 3), the main difference being whether the
visible pedestrian area is cropped out separately as a new image. For example, the
SOTA methods of HOReID [25] and SORN [33] are evaluated on partial datasets
with images of the whole pedestrian or the cropped visible parts, respectively.
We use AONet(whole) and AONet(crop) to refer to the performance of AONet
on partial datasets in these two ways. As shown in Table 3, our AONet(whole)
and AONet(crop) achieve the best performance on datasets of Patial-REID and
Partial-iLIDS respectively, which proved the efficiency of our approach.

4.3 Ablation Studies

We test the effect of components in AONet with the below variants on Occluded-
DukeMTMC: i) SLFea (Standard Landmark-specific features), extracting land-
mark features without occlusion awareness (Eqn. (??)). ii) SAtt (Self-Attention),
enabling information interaction between landmark features. iii) OAFea (Occlu-
sion Awareness Features), being similar to SLFea, but referring to the memorized
features (Eqn. (??)). iv) OAScore (Occlusion Awareness Score), measuring the
occlusion degree of each landmark. v) OLoss (orthogonal loss), constraining over
different pairs of landmark features.

With or without each component. We define a basic baseline Base_GAP,
which includes the backbone of ResNet, a Global Average Pooling (GAP) layer,
and a softmax layer. As shown in Table 4, compared to Base_GAP, utilizing
SLFea achieves significantly better performance, reflecting the advantage of set
matching over global feature matching. Utilizing SAtt gains an extra improve-
ment of 1.3% on Rank1 and 1.4% on mAP. Besides, with the simple combination
of SLFea and SAtt, Rank1 of 58.6% is achieved, better than most previous meth-
ods as shown in Table 1. We argue that our attentional landmarks would facili-
tate reconstructing the information of the occluded landmark using other land-
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Table 4. The ablation study of the components in AONet.

Method SLFea SAtt OAFea OAScore OLoss Rank1 mAP

Base_GAP 49.4 40.0
Base_SLFea ✓ 57.3 43.9
Base_SAtt ✓ ✓ 58.6 45.3

AONet† ✓ ✓ 62.6 51.3
AONet‡ ✓ ✓ ✓ 65.6 52.5
AONet ✓ ✓ ✓ ✓ 66.5 53.1

Table 5. Ablation study of the components compared to baselines on the Occluded-
DukeMTMC dataset.

Methods Rank1 Rank5 Rank10 mAP

Base_GAP 49.4 63.7 68.9 40.0
Base_Pose 52.1 66.2 71.1 42.3

Base_OAFea (AONet†) 62.6 77.1 81.6 51.3

AONet† 62.6 77.1 81.6 51.3
+Base_Max 63.4 77.3 82.1 51.7

+OAScore (AONet‡) 65.6 79.1 83.6 52.5

AONet‡ 65.6 79.1 83.6 52.5
+Base_RegL 65.9 78.8 83.7 52.7

+OLoss (AONet) 66.5 79.4 83.8 53.1

marks. When we replace SLFea with OAFea that incorporates occlusion aware-
ness, we obtain an improvement on Rank1 (4%) and mAP (6%) (Base_SLFea vs
AONet†). Meanwhile, the involving of OAScore achieves an extra improvement
on Rank1 (3%) and mAP (1.2%) (AONet† vs AONet‡), which means both OAS-
core and OAFea effectively mitigate feature mislocalization caused by occlusion.
Furthermore, utilizing OLoss does work very effectively with an improvement of
0.9% and 0.6% on Rank1 and mAP respectively.

Comparisons to various baselines. Firstly, we construct three compara-
ble baselines: i) Base_Pose refers to method using external pose features [20] as
the pedestrian representation. ii) Base_Max means directly choosing the maxi-
mum value in normalized responses without referring to memory. iii) Base_RegL
is the method of position regularization loss [27].

As shown in Table 5, the method utilizing landmark features of OAFea ob-
viously gains better performance. Thus, it is indeed crucial to involve occlusion
awareness in landmark representation. Meanwhile, the performance improves
obviously by comprehensively weakening the occluded landmark features, no
matter the method with OAScore or Base_Max. That is, a reasonable aware-
ness of occlusion indeed brings better performance. However, simply taking the
maximum value cannot accurately sense occlusion, but the OAScore referring
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Table 6. The performance of AONet with different numbers of landmarks on Occluded
Person ReID.

Methods Rank1 Rank5 Rank10 mAP

AONet (K=2) 64.3 79.7 84.5 52.3
AONet (K=4) 65.2 79.0 84.3 53.4
AONet (K=6) 66.5 79.4 83.8 53.1
AONet (K=8) 66.2 79.6 83.9 53.0
AONet (K=10) 65.7 79.8 84.3 52.7

Fig. 4. (a) Visualization of retrieval results. The 1st image in each row is the query,
and the next five images are returned images with descending ranking. Green and
red rectangles indicate correct and error results. (b) Visualization of landmarks in the
original pedestrian image. Each column of images refers to the visualization of a specific
landmark by its corresponding response map.

to memorized features can effectively handle this problem with 2.2% and 0.8%
improvements on both Rank1 and mAP.

Besides, we evaluate the comparable efficiency of OLoss by the orthogonal
loss and RegL with the position regularization loss [27]. As shown in Table 5,
the OLoss does show obvious improvements on performance. The reason may
be that, the position regularization loss, while enabling different landmarks to
indicate different regions, does not guarantee attention to select discriminative
landmark features, which is however what our orthogonal constraint is good at.

Influence of Number of Landmarks. As shown in Table 6, the perfor-
mance improves at first as the number of landmarks increases, possibly because
more local features provide more robustness to occlusion. However, too many
landmarks lead the network to focus on more fine-grained local features, or even
background noise, which lacks sufficient discrimination for identification.

Visualization Analysis. We visualize the image retrieval results of the
AONet approach in Fig. 4 (a). We get the correct image by AONet for both
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Table 7. Comparison of costs with the state-of-the-arts.

Methods FLOPs(G) #Params(M)

PGFA[ICCV19] 29.51 57.51
HOReID[CVPR20] 35.80 109.23
SORN[TCSVT20] 24.73 41.96
SGSFA[ACML20] 16.13 47.71
MoS[AAAI21] 12.57 24.22
AONet 6.22 30.22

horizontal and vertical occlusion, as well as to object and pedestrian occlusion.
However, when the effective region is too small, the retrieval easily makes mis-
takes. We also visualize the landmark response map. As shown in Fig. 4 (b),
each landmark focuses on a different unique semantic pattern.

Cost Evaluation. To more clearly quantify the advantages of our model
over other state-of-the-art models. As shown in Table 7, we compare the number
of model parameters "Param" and floating-point operations "FLOPs", where
FLOPs are calculated at an input size of 256 × 128. Since the AONet does
not use any additional models, such as models of pose estimation and semantic
segmentation, it has a smaller time and space overhead. Besides, our AONet has
good parallel computing properties while not relying on any additional model,
so it is computed at the fastest speed.

5 Conclusion

Previous works for occluded person ReID often rely on external tasks, e.g., pose
estimation or semantic segmentation, to extract local features over fixed given
regions. In this paper, we propose an end-to-end Attentional Occlusion-aware
Network (AONet), including a Landmark Activation layer to extract the land-
mark features, and an Occlusion Awareness (OA) score to explicitly measure the
occlusion. Without any external information by extra tasks, we adaptively ex-
tract discriminate anti-occlusion local features with the landmark patterns. The
OA is the focus of this paper, on the one hand, providing occlusion reference in-
formation to prevent landmark patterns from focusing on the wrong region, and
on the other hand, to generate occlusion awareness scores to reduce the weight
of the occluded landmark features in classification loss and image matching.
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