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Abstract. Contrastive learning achieves a remarkable performance for represen-
tation learning by constructing the InfoNCE loss function. It enables learned rep-
resentations to describe the invariance in data transformation without labels. Con-
trastive learning also been employed in self-supervised learning of action recog-
nition. However, this kind of method fails to introduce assumptions according to
human knowledge about the prior distribution of representations in the training
process. For solving this problem, this paper proposes a self-supervised learn-
ing framework, which can achieve different self-supervised learning methods by
choosing different assumptions about the prior distribution of representations,
while still learning the description of invariance in data transformation as con-
trastive learning. This framework minimizes the CCMI (Constrained Conditional
Mutual Information) loss function, which represents the conditional mutual in-
formation between input augmented samples of the same sample and the output
representations of the encoder while the prior distribution of representations is
constrained. By theoretical analysis of the framework, it is proved that traditional
contrastive learning by InfoNCE is a special case without human knowledge con-
straint of this framework. The Gaussian Mixture Model on Unit Hyper-sphere
is chosen as the representation prior distribution to achieve the self-supervised
method called CoMInG. Compared with the existing methods, the performance
of the learned representation by this method in the downstream task of action
recognition is significantly improved.

1 Introduction

Action recognition is widely used in video surveillance, human-computer interac-
tion, and video understanding. The methods of action recognition include RGB image-
based, depth image-based and skeleton-based methods. Recently, skeleton-based meth-
ods have attracted increasing attention due to their lower computation consumption and
higher robustness against viewpoint variations and noisy backgrounds than the methods
using RGB images and depth images [22]. Various skeleton-based works were proposed
and achieved significant performance in recent years [6] [29] [32]. However, most of
them utilize the supervised learning paradigm to learn action representations, which re-
quire massive labeled samples for training. This leads to some problems, including the
high cost of labeling and the risk of mislabeling due to the high inter-class similarity
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of the actions. In addition, massive valuable information for learning implied in unla-
beled data is not utilized in the training. Therefore, self-supervised learning of action
representation attracted increasing attention.

Self-supervised learning is a type of unsupervised representation learning that cre-
ates learning target without human annotation to train the encoder network to obtain ef-
fective representation for downstream tasks. Only a few works focus on self-supervised
learning of action recognition [21] [25] [33]. The best performer [21] of them used con-
trastive learning for action representing, constructing the InfoNCE loss function to en-
able learned representations to describe the invariance in data transformation. However,
such contrastive learning methods fail to introduce assumptions according to human
knowledge about the prior distribution of representations in the training process.

For solving this problem, this paper proposes a self-supervised learning frame-
work, which can achieve different self-supervised learning methods by choosing dif-
ferent assumptions about the prior distribution of representations, while still learning
the description of invariance in data transformation as contrastive learning. This frame-
work minimizes the CCMI (Constrained Conditional Mutual Information) loss func-
tion, which represents the conditional mutual information between input augmented
samples of the same sample and the output representations of the encoder while the
prior distribution of representations is constrained. By theoretical analysis of the frame-
work, it is proved that traditional contrastive learning by InfoNCE is a special case
without human knowledge constraint of this framework. In this paper, the Gaussian
Mixture Model on Unit Hyper-sphere is chosen as the representation prior distribu-
tion to introduce a self-supervised method named CoMInG (Constrained Conditional
Mutual Information Minimizing with Gaussian Mixture Model on Unit Hyper-sphere
as Representation Prior), and employ it for action representing of skeleton-based action
recognition.

Our contributions can be summarized as follows.

– This paper proposes a self-supervised learning framework by minimizing CCMI,
which can achieve different self-supervised learning methods by choosing different
assumptions about the prior distribution of representations, while still learning the
description of invariance in data transformation as contrastive learning.

– By theoretical analysis of the framework, it is proved that traditional contrastive
learning by InfoNCE is a special case without human knowledge constraint of this
framework. This conclusion enhances the theoretical credibility of the proposed
framework.

– This paper proposes a self-supervised learning method CoMInG, by assuming the
prior of representations as a Gaussian Mixture Model on Unit Hyper-sphere, and
comprehensively evaluates the effectiveness of CoMInG on three public datasets:
NTU RGB+D 60, NTU RGB+D 120 and SBU datasets. Under the linear evaluation
protocol, the proposed CoMInG achieves the best performance than existing self-
supervised learning methods.

The rest of this paper is organized as follows: Section 2 introduces the previous
works related to the proposed work. Section 3 introduces the details of CCMI loss
and CoMInG method. Section 4 proves the relationship between InfoNCE and CCMI.
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Section 5 compares CoMInG with existing baselines. Ablation studies are also provided
in section 6. The conclusion of the proposed work is shown in Section 6.

2 Related Work

2.1 Self-Supervised Learning

Self-supervised learning aims to learn an effective representation from unlabeled
data by using a self-supervised proxy task to train an encoder network. The learned
representation can be transferred and beneficial to the downstream tasks [12].

Self-supervised learning methods include generative-based methods, contrastive-
based methods, and clustering-based methods [18]. Generative-based methods employ
an encoder-decoder structure or generative adversarial network to learn the representa-
tion. For example, [14] proposed a method to use an autoencoder as a generator with a
discriminator for the automatic colorization of images. For the clustering-based meth-
ods, [2] presented DeepCluster, which iteratively groups the features with a standard
clustering algorithm, K-means, and uses the subsequent assignments as supervision to
update the weights of the encoder network. [1] proposed a method obtained by max-
imizing the information between labels and input data indices, using a fast variant of
the Sinkhorn-Knopp algorithm. [3] proposed a framework both using the contrastive-
based and clustering-based method, SwAV, which employs the Sinkhorn-Knopp algo-
rithm to cluster the data and uses the cluster codeID of the other augmentations fromof
the same image to guide the representations. PCL combined MoCo with an off-line k-
means clustering process to propose the ProtoNCE loss [15]. Most of the state-of-the-art
self-supervised learning methods are contrastive-based methods. Contrastive multiview
coding (CMC) enforced the different views of the same image close to each other [26].
Momentum contrastive (MoCo) improved contrastive learning by introducing a mo-
mentum encoder and a queue-based memory bank [10]. Chen et al. proposed SimCLR,
which adds a projector network behind the encoder and redesigns a stronger augmen-
tation strategy for contrastive learning [4]. [8] introduced BYOL, which relies on two
neural networks, referred to as online network and target network. It trains the online
network to predict the target network representation of the same image under a different
augmented view and updates the target network with a slow-moving average of the on-
line network. Barlow Twins maximized the similarity between the correlation matrix of
the output representations and the identity matrix, avoiding the complete collapse that
is likely to appear in contrastive learning [31].

2.2 Action Recognition

Traditional skeleton-based methods recognized the pattern of action by designing
hand-crafted descriptors, such as the method proposed by Oreifej et al. which learns fea-
tures by a modified histogram of oriented gradients (HOG) algorithm [20]. Due to the
significant development of deep learning, numerous methods for supervised skeleton-
based action recognition by the deep neural network were proposed, such as Directed
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Graph Neural Network (DGNN) proposed by Shi et al [24], DeCoupling Graph Convo-
lutional Networks (DC-GCN) proposed by Cheng et al [5] and Spatial-temporal Graph
Convolutional Networks (STGCN) proposed by Yan et al [29].

Only a few self-supervised methods were proposed in recent years. [33] proposed a
method by both using an encoder-decoder structure and a generative adversarial struc-
ture to reconstruct a masked input sequence. [25] forced the encoder to learn the ac-
tion representation by using an autoencoder to re-generate the skeleton sequence, and
additionally proposed a decoder-weakening mechanism by fixing the decoder weights
or decoder states. [16] proposed to integrate multiple self-supervised tasks, that are
motion prediction, jigsaw puzzle recognition, and contrastive learning, to learn more
general representations. [21] maximized the similarity between augmented instances
of the same input skeleton sequence by a queue-based memory bank and momentum
encoder. [28] proposed a self-supervised framework, which not only reconstructs se-
quence by an autoencoder but also regards the K-means clustering results of action
representations as pseudo labels to train the encoder. Contrastive learning by InfoNCE
has best performance in self-supervised action recoginition [21], but it cannot introduce
assumptions according to human knowledge about the prior distribution of representa-
tions in the training process.

3 Methodology

3.1 Traditional Contrastive Learning by Minimizing InfoNCE

InfoNCE is a widely used loss function in self-supervised learning, which enables
learned representations to describe the invariance in data transformation, that is:

LNCE = −1

I

I∑
i=1

log
exp (sim(z(i,1), z(i,2)))∑I
j=1 exp (sim(z(i,1), z(j,2)))

(1)

I is the size of the dataset. z(i,1) and z(i,2) are respectively the representations of
two randomly augmented version of ith sample extracted by the encoder network [4].
sim(a, b) measures the similarity between two variables. The self-supervised methods
using InfoNCE are called contrastive learning methods. Although contrastive learning
achieves a remarkable performance for representation learning in multiple applications,
it fails to introduce assumptions according to human knowledge about the prior dis-
tribution of representations in the training process. Therefore, this paper proposes the
CCMI loss to solve this problem, and we will prove InfoNCE is a special case of CCMI
in section 4.

3.2 A Learning Framework by Minimizing CCMI

This subsection proposes a simple framework for self-supervised learning by mini-
mizing loss function called CCMI (Constrained Conditional Mutual Information). This
framework can introduce various different self-supervised learning methods by differ-
ent choices of representation prior according to human knowledge, while still learning
the description of invariance in data transformation as contrastive learning.
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Let us consider one dataset X = {xi}Ii=1 consisting of I i.i.d. samples of some
continuous variable x, which is a skeleton sequence in our task. We assume that each
sample is generated by a random process including an unobserved continuous random
variable z. In addition, a variable v denotes the augmented sample for the sample x
after some random data augmentation. Specifically, the generating process of x and v
can be divided into three steps: (1) a value zi is sampled from distribution pθ∗(z); (2)
a value xi is sampled from distribution pθ∗(x|z); (3) a value vi is sampled from dis-
tribution pθ∗(v|x, z). We assume that the pθ∗(z), pθ∗(x|z) and pθ∗(v|x, z) come from
parametric families of distributions pθ(z), pθ(x|z) and pθ(v|x, z). Based on the used
data augmentation strategy, we can reasonably assume that for any xi and xj (i ̸= j),
vi = vj will never happen if vi and vj are respectively sampled from pθ∗(v|xi) and
pθ∗(v|xj). Therefore, if g(v) is a function that can find the only sample x correspond-
ing to the augmented sample v, the conditional distribution pθ∗(x|v) is pθ∗(x|v) =
1 if x = g(v) else 0. Then we can obtain that pθ∗(z|v) =

∫
pθ∗(x|v)pθ∗(z|x, v)dx =

pθ∗(z|x, v).
Because we wish that the information of the representation vector z is only af-

fected by the semantic information in the sample x that does not change with the data
augmentation, the learning target is that when x is known, v and z have conditional
independence, that is, pθ(v|x, z) = pθ(v|x). Therefore, the learning target we set is:

θ∗ = argmin
θ

KL(pθ(v|x, z)∥pθ(v|x))

= argmin
θ

E
pθ(z,x,v)

[log
pθ(v|x, z)
pθ(v|x)

]

= argmin
θ

E
pθ(z,x,v)

[log
pθ(v|x, z)pθ(z, x)
pθ(v|x)pθ(z, x)

]

= argmin
θ

E
pθ(z,x,v)

[log
pθ(z|x, v)pθ(v|x)pθ(x)
pθ(v|x)pθ(z|x)p(x)

]

= argmin
θ

E
pθ(z,x,v)

[log
pθ(z|v)pθ(v|x)
pθ(v|x)pθ(z|x)

]

= argmin
θ

∫
pθ(x)[

∫∫
pθ(z, v|x) log

pθ(z, v|x)
pθ(v|x)pθ(z|x)

dzdv]dx

= argmin
θ

I(Z;V |X)

(2)

where I(Z;V |X) is the conditional mutual information between z and v, while x is
known. When I(Z;V |X) reaches its minimum value 0, pθ(v|x, z) = pθ(v|x).

However, only minimizing I(Z, V |X) can easily achieve the trivial solution, that
is, whatever the value of v and x are, pθ(z|v, x) is the same. A simple way to solve
this problem is to inject our human knowledge into the hypothesis of prior distribution
pθ(z). We can choose a distribution qϕ(z) based on the human knowledge, and then set
the optimization problem as:

θ∗, ϕ∗ = argmin
θ,ϕ

I(Z;V |X) s.t. KL(pθ(z)∥qϕ(z)) = 0 (3)
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Thanks to the constraint KL(pθ(z)∥qϕ(z)) = 0, the trivial solution is avoided. For
transform the optimization problem to a loss function for encoder training, we need to
reform it. The Monte-Carlo Estimate [9] shows that:

E
p(x)

[f(x)] =

∫
p(x)f(x)dx ≈ 1

N

N∑
i=1

f(xi) (4)

where, xi is sampled from p(x).
Based on the Lagrangian multiplier method and Monte-Carlo Estimate, the above

optimization problem is equal to:

θ∗, ϕ∗, λ∗ = argmin
θ,ϕ,λ

I(Z;V |X) + λ E
pθ(x,v|z)

[KL(pθ(z)∥qϕ(z))]

= argmin
θ,ϕ,λ

∫∫∫
pθ(x)pθ(v|x)pθ(z|v)[log

pθ(z|v)
pθ(z|x)

+ λ log
pθ(z)

qϕ(z)
]dzdvdx

= argmin
θ,ϕ,λ

∫∫∫
pθ(x)pθ(v|x)pθ(z|v)[log pθ(z|v)− log pθ(z|x)

+ λ log pθ(z)− λ log qϕ(z)]

= argmin
θ,ϕ,λ

∫∫∫
pθ(x)pθ(v|x)pθ(z|v)[log pθ(z|v)− log (

∫
pθ(v|x)pθ(z|v)dv)

+ λ log (

∫∫
pθ(x)pθ(v|x)pθ(z|v)dvdx)− λ log qϕ(z)]dzdvdx

= argmin
θ,ϕ,λ

1

IML

I∑
i=1

M∑
m=1

L∑
l=1

[− log

N∑
n=1

pθ(z
(i,m,l)|v(i,n))

+ λ log

I∑
j=1

N∑
n=1

pθ(z
(i,m,l)|v(j,n))− λ log qϕ(z

(i,m,l)) +
1

L
H(pθ(z|v(i,m)))− logN ]

(5)

This loss function is called as CCMI (Constrained Conditional Mutual Information),
where the x(i), v(i,m) and z(i,m,l) are sampled from pθ(x), pθ(v|x(i)) and pθ(z|v(i,m))
respectively. I denotes the size of the dataset. Both M and N denote the number of
times that sample v. L denotes the number of times that sample z. H(pθ(z|v)) denotes
the entropy of pθ(z|v). The illustration of the framework by minimizing CCMI loss is
shown in Figure 1.

3.3 A Self-Supervised Method: CoMInG

In this subsection, we choose the Gaussian Mixture Model on Unit Hyper-sphere as
the representation prior of CCMI to introduce a novel self-supervised method named
CoMInG (Constrained Conditional Mutual Information Minimizing with Gaussian
Mixture Model on Unit Hyper-sphere as Representation Prior).

For the training of encoder, the distribution pθ(z|v) and qϕ(z) need to be deter-
mined. Following the paper of Variational Auto-Encoder [13], the pθ(z|v) is set as:

pθ(z|v) = N(fη(v), I) (6)
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Fig. 1. Illustration of the proposed method.

where the fη denotes our encoder network with the parameter η. The N(µ, S) denotes
a multivariate Gaussian distribution with µ as the mean vector and S as the covariance
matrix. In addition, we set the covariance matrix of the Gaussian distribution as identity
matrix I . The reason of this setting is, in CCMI loss, the fourth part, the entropy of
pθ(z|v), needs to be minimized, which means the variance of Gaussian distribution
needs to be minimized. For this target, we can primarily set the variance of Gaussian
distribution as a small constant and we don’t need to optimize this part in the training
process.

The qϕ(z) is determined as a GMM (Gaussian Mixture Model) on Unit Hyper-
sphere, due to the category information included in representation. We assume that
each category match one Gaussian distribution in the GMM. We regard z as a sampling
from one of the categories c, that is:

qϕ(z) =
∑
c∈C

q(c)q(z|c) = 1

K

K∑
k=1

N(wk, I)

=
1

K

K∑
k=1

1

2π
D
2

exp (− (z − wk)T(z − wk)

2
) (7)

We assume that for any k, q(ck) = 1/K. I denotes the identity matrix, and D
denotes the dimension of z. W = {wk}Kk=1 are K vectors that denote the mean vectors
of the K Gaussian distributions. These mean vectors need to be optimized, which are
same as the parameter η of the encoder network.

However, previous works prove that for contrastive learning, employing cosine sim-
ilarity is better than using Euclidean distance in experiments [4], so we replace Eu-
clidean distance in qϕ(z) with cosine similarity, that is:

qϕ(z) =
∑
c∈C

q(c)q(z|c) = 1

K

K∑
k=1

1

2π
D
2

exp (
sim(z, wk)

2
) (8)

where sim(z, wk) = zTwk

∥z∥∥wk∥ .
However, due to the replacement,

∫
q(z|c)dc = 1 is no longer available. Therefore,

q(z|c) need to be normalized, that is:

qϕ(z) =
∑
c∈C

q(c)q(z|c) = 1

K

K∑
k=1

1

2π
D
2 S

exp (
sim(z, wk)

2
) (9)
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where S =
∫

1

2π
D
2
exp ( sim(z,wk)

2 )dz. This makes
∫
q(z|c)dc = 1 available again.

Here Gaussian Mixture Model is transformed to the Gaussian Mixture Model on Unit
Hyper-sphere. Other distributions can be chosen as qϕ(z) based on human knowledge,
such as uniform distribution, exponential distribution, etc. According to the conclusion
in f-gan [19], variational inference can be utilized to introduce all kinds of distribution
as the target of prior.

According to the choice of pθ(z|v) and qϕ(z), the loss function is:

LCCMI =
1

IML

I∑
i=1

M∑
m=1

L∑
l=1

[− log

N∑
n=1

pθ(z
(i,m,l)|v(i,n))

+ λ log

I∑
j=1

N∑
n=1

pθ(z
(i,m,l)|v(j,n))

− λ log qϕ(z
(i,m,l)) +

1

L
H(pθ(z|v(i,m)))− logN ]

=
1

IML

I∑
i=1

M∑
m=1

L∑
l=1

[− log

N∑
n=1

exp (sim(z(i,m,l), fη(v
(i,n))))

+ λ log

I∑
j=1

N∑
n=1

exp (sim(z(i,m,l), fη(v
(j,n))))

− λ log

K∑
k=1

1

S
exp (sim(z(i,m,l), w(k))) + constant] (10)

where D is the dimension of representations.

3.4 Details of Training Process

Following previous contrastive learning works [4] [10] and for fair comparison, in
our experiments, we set M = N = 1. According to the result in the paper of Variational
Auto-Encoder [13], we set L = 1. In addition, according to the ablation study, we set
λ = 1. Based on this setting, when the constant term is omitted, the CCMI loss function
becomes:

LCCMI =
1

I

I∑
i=1

[−sim(z(i,1), z(i,2)) + log

I∑
j=1

exp (sim(z(i,1), z(j,2)))

− log

K∑
k=1

exp (sim(z(i,1), w(k)))] (11)

where z(i,1) is the representation vector of the augmented sample obtained by x after
the first random data augmentation through the encoder, and z(i,2) is the representation
vector of the augmented sample obtained by x after the second random data augmen-
tation. Then the first and second parts of CCMI can be optimized directly by gradient
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descent, but the third part of CCMI loss cannot. Thus we minimize the third part by EM
algorithm.

The optimization problem of the third part of CCMI loss is:

η∗, ϕ∗ = argmin
η,ϕ

log qϕ(z) = argmin
η,ϕ

log qϕ(fη(v)) (12)

It is hard to optimize this function directly, so we use a surrogate function to higher-
bound it:

log qϕ(fη(v)) = log
∑
c∈C

qϕ(fη(v), c) = log
∑
c∈C

qϕ(c|fη(v))
qϕ(fη(v), c)

qϕ(c|fη(v))

≤
∑
c∈C

qϕ(c|fη(v)) log
qϕ(fη(v), c)

qϕ(c|fη(v))
(13)

Then the E-step and M-step can be obtained:

– E-Step

qϕ(t)(c|fη(t)(v)) = qϕ(t)(c, fη(t)(v))/qϕ(t)(fη(t)(v)) (14)

– M-Step

η(t+1), ϕ(t+1) = argmin
η,ϕ

∑
c∈C

qϕ(t)(c|fη(t)(v)) log (qϕ(fη(v)|c)) (15)

The pseudo-code of complete training process is shown in Algorithm 1. The param-
eter τ denotes a temperature parameter, which is widely used in previous contrastive
learning methods to adjust the loss function [4]. The E-step is the calculation of γik in
the training process, and the M-step is the gradient descent in the training process.

4 Relationship between CCMI Loss and InfoNCE Loss

InfoNCE is a widely used loss function in previous self-supervised methods such as
CPC, SimCLR and MoCo. This section proves that InfoNCE is a special case of CCMI.

In CoMInG, we set pθ(z|v) as Gaussian distribution and set λ = 1, M = N = 1 and
L = 1 for CCMI. If we change the choice of qϕ(z), and set that qϕ(z) = pθ(z|v), which
means we have no human knowledge about prior distribution and set no limitation for
it, then the CCMI loss function is:

LCCMI =
1

IML

I∑
i=1

M∑
m=1

L∑
l=1

[− log

N∑
n=1

Pθ(z
(i,m,l)|v(i,n))

+ λ log

I∑
j=1

N∑
n=1

Pθ(z
(i,m,l)|v(j,n))− λ log qϕ(z

(i,m,l))

+
1

L
H(pθ(z|v(i,m)))− logN ]
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Algorithm 1 CoMInG
Input: initialized encoder parameters η, initialized mean vectors for Gaussian Mixture Model
W = {wk}Kk=1, batch size B, learning rate α, temperature parameter τ , augmentation strategy
T , similarity measurement sim(a, b)

1: for all minibatch in one epoch do
2: Sample augmentation t1 and t2 from T
3: for sampled minibatch {xi}Bi=1 do
4: for sampled minibatch {xj}Bj=1 do
5: v(i,1) = t1(x(i)),v(i,2) = t2(x(i)), v(j,2) = t2(x(j))
6: z(i,1) = fη(v

(i,1)),z(i,2) = fη(v
(i,2)),z(j,2) = fη(v

(j,2))
7: for k = 1 : K do
8: γik = exp (sim(z(i,1),w(k)))∑K

l=1
exp (sim(z(i,2),w(l)))

9: end for
10: end for
11: end for
12: Lccmi = − 1

B
[
∑B

i=1 sim(z(i,1), z(i,2))/τ

13: + log
∑B

j=1 exp (sim(z(i,1), z(j,2))/τ)]

14: − log
∑K

k=1 γ
ik exp (sim(z(i,1), w(k))/τ)]

15: W = W − α ∂Lccmi
∂W

, η = η − α ∂Lccmi
∂η

16: end for
17: return encoder parameterss η

=
1

IML

I∑
i=1

M∑
m=1

L∑
l=1

[− log

N∑
n=1

Pθ(z
(i,m,l)|v(i,n))

+ log

I∑
j=1

N∑
n=1

Pθ(z
(i,m,l)|v(j,n))− 1

L

∫
pθ(z|v(i,m)) log pθ(z|v(i,m))dz

+
1

L
H(pθ(z|v(i,m)))− logN ]

=
1

IML

I∑
i=1

M∑
m=1

L∑
l=1

[− log

N∑
n=1

Pθ(z
(i,m,l)|v(i,n))

+ log

I∑
j=1

N∑
n=1

Pθ(z
(i,m,l)|v(j,n)) + constant]

=
1

IML

I∑
i=1

M∑
m=1

L∑
l=1

[− log

N∑
n=1

exp (sim(z(i,m,l), fη(v
(i,n))))

+ log

I∑
j=1

N∑
n=1

exp (sim(z(i,m,l), fη(v
(j,n)))) + constant]

= −1

I

I∑
i=1

log
exp (sim(z(i,1), z(i,2)))∑I
j=1 exp (sim(z(i,1), z(j,2)))

+ constant (16)
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This loss function equals to InfoNCE, so that InfoNCE is a special case of CCMI
when we set λ = 1, M = N = 1, L = 1, pθ(z|v) = N(fη(v), I) and qϕ(z) =
pθ(z|v). This conclusion reveals that the essence of minimizing InfoNCE is to minimize
the constrained conditional mutual information without injecting human knowledge to
constrain the representation prior distribution.

5 Experiments

5.1 The setting of experiments

For evaluation, we conduct our experiments on commonly used three datasets:
NTU60 dataset [23] (56578 samples, 60 categories), NTU120 dataset [17] (113945
samples, 120 categories) and SBU dataset [30] (282 samples, 8 categories).

In the experiments, the sequence length is set to 150, 150, and 40 for NTU60,
NTU120, and SBU, respectively. The coordinate of the middle spine joint is subtracted
by the coordinates of all joints for normalizing the skeleton sequences. Our encoder
network adopts the LSTM with 512 hidden units.

In self-supervised pre-training, the encoder is trained by CoMInG. The batch size is
32, 32, and 128 for NTU60, NTU120, and SBU respectively. The network is trained by
the SGD optimizer. The weight decay and momentum are set to 1e-4 and 0.9, respec-
tively. We run the pre-training process for 60 epochs and the learning rate is multiplied
by 0.1 per 30 epochs with 0.01 as the initialization. According to the results of ablation
studies, we set the temperature τ as 0.06. The number of Gaussian of representation
prior to 120, 150, and 30 for NTU60, NTU120, and SBU datasets respectively. The
random data augmentations used in pre-training are ’Axis2Zero’ and ’Shear’. For each
joint in each sample, ’Axis2Zero’ randomly chooses one of the axes of the 3D coor-
dinates of the joint and changes it to zero, and the ’Shear’ augmentation replaces each
joint in a fixed direction [21].

After self-supervised pre-training, we use the linear evaluation to test our method.
Specifically, the pre-trained encoder network by self-supervised learning is attached to
a linear classifier, and we train the linear classifier for 90 epochs using skeleton se-
quences and labels in the training set while the parameter of the encoder is frozen. No
augmentation is adopted in the training of the linear classifier. Then the Top-1 accuracy
on the testing set is used to evaluate the effectiveness of the representations. The opti-
mizer for training is stochastic gradient descent with a Nesterov momentum set as 0.9.
The initialization of the learning rate is 1, and the learning rate decays at 15, 35, 60, and
75 epochs by 0.5.

5.2 Comparison with Existing Methods

Table 1, Table 2 and Table 3 compare the results of our approach with supervised
approaches (using RNN as the backbone) and previous self-supervised approaches on
SBU, NTU60 and NTU120 datasets in the linear evaluation setting respectively. The
compared self-supervised approaches include all state-of-the-art approaches in this do-
main. "*" represents that we use the code shared by authors of original papers to obtain
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ID Method Fold
1 2 3 4 5 Avg

Supervised

1 RNN 40.0 42.3 26.8 27.8 35.4 34.5
2 GRU 40.0 40.4 28.6 33.3 40.0 36.5
3 LSTM 49.1 53.2 37.5 42.0 53.8 47.1

Self-supervised

4 *P&C FW [25] 16.4 15.4 21.4 27.8 15.6 19.3
5 *PCRP [28] 16.4 36.5 21.4 24.1 29.7 25.6
6 ASCAL [21] 52.7 46.2 41.1 31.5 41.5 42.6
7 ⋆InfoNCE 61.8 53.8 46.4 50.0 53.1 53.0
8 Ours 65.5 63.5 51.8 61.1 53.1 59.0

Table 1. Comparison with supervised, and self-supervised methods on SBU dataset. Bold num-
bers refer to the best performers.

these results, because in the original papers authors don’t show the performance of the
methods on these datasets. "⋆" represents that this method is coded by us, using the
setting of our method. The results in Table 1 show that our method achieves significant
improvement over previous self-supervised approaches and supervised baselines on all
testing folds on SBU datasets. The results in Table 2 and Table 3 show that our method
outperforms all self-supervised approaches and supervised approaches with RNN back-
bone on both cross-view and cross-subject settings of NTU60 and both cross-set and
cross-subject settings of NTU120. It is worth noting that our method outperforms the
traditional contrastive learning with InfoNCE on both SBU (ID=7) and NTU60 (ID=10)
datasets.

5.3 Ablations

Hyperparameters. Table 4 shows the performance with different λ on three datasets. λ
measures the weight of the constraint of pθ(z) in the loss function. The training process
will pay more attention on the KL(pθ(z)∥qϕ(z)) and less attention on I(Z;V |X) when
λ becomes larger. The results show that it performs best when λ = 1, CoMInG achieves
the best result. In Table 5, the results show that when τ set as 0.06, the best performance
is obtained.

In Table 6, we show the performance with different batch size on three datasets.
The best batch size of NTU60 and SBU is 32 and 128 respectively. An interesting
phenomenon is, for specific training epochs (here is 60), for large-scale dataset NTU60,
smaller batch size has a significant advantage over the larger ones, and for small-scale
datasets SBU, larger batch size has a significant advantage over the smaller ones. This
phenomenon was also shown in previous paper [21].

The setting of prior distribution. In CoMInG, the GMM (Gaussian Mixture Model)
on unit hyper-sphere is chosen as qϕ(z). Here we try different numbers of Gaussian
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ID Method CView CSub
Acc(%) Acc(%)

Supervised

1 Lie Group [27] 52.8 50.1
2 HBRNN [7] 64.0 59.0
3 Deep RNN [17] 64.1 56.3

Self-Supervised

4 *PCL [28] 53.7 \
5 LongT GAN [33] 48.1 39.1
6 P&C FW [25] 44.3 50.8
7 MS2L [16] \ 52.6
8 PCRP [28] 63.5 53.9
9 ASCAL [21] 63.6 58.0
10 ⋆InfoNCE 61.0 56.9
11 Ours 69.4 59.8
Table 2. Comparison with supervised, and self-
supervised methods on NTU60 dataset. Bold
numbers refer to the best performers.

ID Method CSet CSub
Acc(%) Acc(%)

Supervised

1 Soft RNN [11] 44.9 36.3
2 PA LSTM [23] 26.3 25.5

Self-Supervised

3 P&C FW [25] 42.7 41.7
4 PCRP [28] 45.1 41.7
5 ASCAL [21] 49.2 48.3
6 Ours 50.7 49.4
Table 3. Comparison with supervised, and self-
supervised methods on NTU120 dataset. Bold
numbers refer to the best performers.

Dataset λ
Acc(%) 1 2 3 4

NTU60 69.4 65.6 57.1 42.8
Table 4. Performances for using different λ on
two datasets for training 60 epochs. For SBU
and NTU60, the results are for fold1 and cross-
view setting respectively.

Dataset τ
Acc(%) 0.03 0.06 0.1 0.3

SBU 60.0 65.5 61.8 56.4
NTU60 67.3 69.4 63.6 55.8
Table 5. Performances for using different τ on
two datasets for training 60 epochs. For SBU
and NTU60, the results are for fold1 and cross-
view setting respectively.
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for our mixture model as the prior distribution. The choices of best performances are
shown in Table 7.

Dataset batch
size

Acc(%) 32 64 128 256

SBU 23.6 56.4 65.5 58.2
NTU60 69.4 67.2 65.1 62.8
Table 6. Performances for using different batch
size on two datasets for training 60 epochs. For
SBU and NTU60, the results are for fold1 and
cross-view setting respectively.

SBU Num of Gauss
Acc(%) 10 20 30 40 50

Top1 61.8 61.8 65.5 60.0 60.0

NTU60 Num of Gauss
Acc(%) 30 60 90 120 150

Top1 65.4 67.4 68.2 69.4 67.9

NTU120 Num of Gauss
Acc(%) 90 120 150 180 210

Top1 48.8 50.2 50.7 49.8 49.6
Table 7. Performances for using different num-
ber of Gaussian on three datasets for training 60
epochs. For SBU, NTU60 and NTU120, the re-
sults are for fold1, cross-view setting and cross-
set setting respectively.

6 Conclusion

We propose a framework for self-supervised learning by minimizing the constrained
conditional mutual information between input augmented samples of the same sam-
ple and the output representations of the encode, which can achieve different self-
supervised learning methods by choosing different assumptions about the prior distribu-
tion of representations, while still learning the description of invariance in data transfor-
mation as contrastive learning. Theoretical analysis shows that contrastive learning by
InfoNCE is a special case of the proposed framework without human knowledge con-
straint. Based on this framework, we introduce a self-supervised method by choosing
the Gaussian Mixture Model on Unit Hyper-sphere as the prior distribution of repre-
sentations, and employ it for unsupervised action representing of skeleton-based action
recognition. Experimental results of the proposed method show significant improve-
ment on various commonly used datasets for action recognition.
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