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Abstract. Knowledge distillation (KD) is an effective and widely used
technique of model compression which enables the deployment of deep
networks in low-memory or fast-execution scenarios. Feature-based knowl-
edge distillation is an important component of KD which leverages in-
termediate layers to supervise the training procedure of a student net-
work. Nevertheless, the potential mismatch of intermediate layers may
be counterproductive in the training procedure. In this paper, we pro-
pose a novel distillation framework, termed Decoupled Spatial Pyramid
Pooling Knowledge Distillation, to distinguish the importance of regions
in feature maps. Specifically, we reveal that (1) spatial pyramid pooling
is an outstanding method to define the knowledge and (2) the lower ac-
tivation regions in feature maps play a more important role in KD. Our
experiments on CIFAR-100 and Tiny-ImageNet achieve state-of-the-art
results.

Keywords: knowledge distillation · Spatial pyramid pooling.

1 Introduction

In the last few years, deep neural networks have been the basis of many suc-
cesses in both industry and academia, especially for computer vision [16,12] and
natural language processing [11] tasks. Nevertheless, the large depth or width
and numbers of parameters account for the drawback that they may demand
high-speed computing power and large memory to store, limiting their avail-
ability in applications or platforms with low memory or real-time requirements,
e.g., mobile phones and embedded devices. This led to a rapidly increasing in-
terest in research on exploring smaller and faster models. Therefore, a variety of
ways including explicit prudent network design [19], model binarization [10,33],
network pruning [25], model compression [14] and most attractively knowledge
distillation [18].

Previous works [3,5] have revealed that small networks usually have compara-
ble representation capacity to large networks; but compared with large networks
they are hard to train and find proper parameters to realise the objective func-
tion. The limitation of small networks appears to be caused by the difficulty of
optimization rather than the size of networks. To better train a small network
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,the distillation approach starts with a powerful teacher network or network en-
semble, and then designs learning rules, i.e., elaborate loss function, to train a
smaller student network mimicking the teacher. In the vanilla KD framework,
the knowledge is defined as the prediction of the final layer of the teacher,i.e.,
response-based KD, which is an intuitive understanding of how a model general-
izes [18]. However, the high abstraction of knowledge transferring from teacher
to student ignores the valuable information contained in the intermediate layers.

Benefit from the techniques of representation learning [4], networks are good
at acquiring multiple levels of feature representation with increasing abstrac-
tion [13], arousing an increasing interest in the research of feature-based KD.
Feature-based KD exploits both the output of the last layer and the output
of intermediate layers, i.e., feature maps, to supervise the training of student
network. Fitnets [34] first introduced intermediate representations in KD, pro-
viding hints 1 to alleviate the difficulty of training a fast yet accuracy student
network. Inspired by this work, a variety of feature-based KD methods have been
proposed to match the features between teacher and student network indirectly
[42,1,39,22,21,7]. Nevertheless, existing efforts mainly rely on handcrafted layer
assignments, i.e., random selection or one-to-one association and may cause se-
mantic mismatch or negative regularization effect in student’s training. Cheng
et al. [9] conduct a series of experiments to illustrate why KD works and reveal
that the position differences of visual concepts (VCs) that reflect the larger ac-
tivation regions from the teacher and the student are marginal. Therefore, we
infer that non-VCs reflecting the lower activation regions play a more important
role in the process of KD. Back to the feature map itself, we should further dig
more information to improve the performance of KD.

In this paper, we propose Decoupled Spatial Pyramid Pooling Knowledge Dis-
tillation (DSPP) to exploit intermediate knowledge by exploring a novel method
to define knowledge and decoupling feature map to optimize KD training pro-
cedure. A spatial pyramid pooling architecture [15] is applied in our approach
for automatically perceiving knowledge, which effectively captures informative
knowledge at various scales of feature map. Then a decoupling module is designed
to analyze region-level semantic loss between student and teacher network based
on the observation that the lower activation regions in feature map plays a more
important role in KD, i.e., lower activation regions contain more informative
knowledge cues. To align the spatial dimension of teacher and student layer
pair, feature map of the student layer is projected to the same dimension of the
teacher layer. By taking advantage of spatial pyramid pooling and decoupled
region-level loss assignment, the student network can be effectively optimized
with more sophisticated supervision. Our main contributions are as follows:

• A new method of defining knowledge named Spatial Pyramid Pooling is
proposed to perceive knowledge in the last feature map at various scales.

1 Hints mean the output of a teacher’s hidden layers that supervise the student’s
training.
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• Decoupled semantic loss assignment is applied to improve the weights of
lower activation regions which play a more important role in KD, aiming at
alleviating the difficulty of training the student network.

• Extensive experiments on CIFAR-100 and Tiny-ImageNet with a variety of
settings based on popular network architectures reveal that DSPP outper-
forms than most of state-of-the-art approaches.

The source code is available at https://github.com/luilui97/DSPP.

2 Related Work

2.1 Knowledge Distillation

Knowledge distillation for model compression is similar to the way in which hu-
man beings perceive and learn knowledge. The distillation-based approach of
model compression is first proposed by [5] and is re-popularised by [18], where
soft targets from a pretrained teacher model are exploited to improve the per-
formance of a given student model. Furthermore, recent knowledge distillation
methods have extended to mutual learning [44], assistant teaching [27] and self-
learning [41]. As pointed out in [41,32,28], soft targets predicted by the teacher
model serve as an effective regularization to prevent the student model from
making over-confident prediction. Moreover, some online KD variants have been
proposed to reduce the expense of pre-training [2,6].

2.2 Response-based Knowledge Distillation

Response-based knowledge often refers to the logits or predictions of the teacher
model. The main idea of response-based KD is to mimic the final prediction
of the teacher model. The response-based KD is simple yet effective for model
compression, and has been widely applied in various tasks. For example, the re-
sponse in object detection task may contains classification logits with offsets of
bounding boxes [8]. The most fashionable response-based knowledge for image
classification is proposed by [18] named soft targets, which contains the informa-
tive dark knowledge from the teacher model. Besides dark knowledge, another
interpretation for the effectiveness of response-based KD is the similarity between
soft targets and label smoothing [8] or regularizers [28]. However, the compact
reliability of the output of last layer lead to the absence of intermediate-level su-
pervision from the teacher model, limiting the student’s supervised learning. Our
proposed approach incorporates more informative guidance from the teacher’s
last hint layer via spatial pyramid pooling.

2.3 Feature-based Knowledge Distillation

With the techniques of representation learning [4], both the output of last layer
and the intermediate layers, i.e., feature maps, can offer informative knowledge
guidance to the student model. Feature-based KD is first proposed in Fitnet
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[34], in which hints are leveraged to improve the training of the student model.
Inspired by Fitnet, various feature-based KD methods have been proposed to
match the hint layers indirectly. Specifically, Zagoruyko et al. [42] derive an at-
tention map from the teacher model to express knowledge and transferred it to
the student model. To simplify the transfer of knowledge, Kim et al. [22] intro-
duce factors to provide a more interpretive form of intermediate representations.
Furthermore, Jin et al. [21] design a route constrained optimization to overcome
the challenge of performance gap between teacher and student. Heo et al. [17]
utilize activation boundary formed by hidden neurons rather than activation val-
ues to transfer knowledge. Recently, Chen et al. [7] suggest an adaptive semantic
attention allocation mechanism, which matches teacher layers and student layers
properly. SAKD [37] creatively proposes that distillation spots should be adap-
tive to training samples and distillation epochs.These feature-based KD methods
pay more attention to fixing multiple potential mismatched intermediate layers,
while our proposed method focuses on the last hint layer and leverages spa-
tial pyramid pooling and decoupled semantic loss assignment to supervise the
student, which relieves us from the exhausting layer matching process.

3 Method

We describe our proposed Decoupled Spatial Pyramid Pooling Knowledge Dis-
tillation (DSPP) method in this section. Firstly, we briefly recap the basic classic
KD and illustrate it through additional necessary notations. Then, we provide
an overview of our proposed DSPP architecture as well as the details of DSPP,
e.g., loss function.

3.1 Preliminary

Firstly, we recap the procedure of classic knowledge distillations. Given a dataset
D = {(xi, yi)}Ni=1 consisting of N samples from K categories, and a powerful
teacher network ΘT pretrained on dataset D, the goal of KD is training a student
network ΘS on D with less computational demand and shorter inference time
under the supervision of ΘT . Specifically, in response-based KD, the student ΘS

learns the knowledge from the last layer of the teacher ΘT , while the student ΘS

learns knowledge from the hint layers of the teacher ΘT in feature-based KD.
As is known to all, the probability of class k given by a network Θ is computed

as
p (zi) =

exp (zi)∑K
j=1 exp (zj)

(1)

where the logit zi is the output of the softmax layer in Θ for the i-th class. In
response-based KD, a hyperparameter T is introduced to control the importance
of each soft target. Accordingly, the soft targets can be estimated by a softmax
function as:

p (zi, T ) =
exp (zi/T )∑K
j=1 exp (zj/T )

(2)
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Fig. 1. The overview of Decoupled Spatial Pyramid Pooling Knowledge Distillation
architecture. The last hint layer of the teacher is utilized to supervise the training of
the student model via decoupled spatial pyramid pooling.

The distillation loss for response-based KD can be expressed as:

LKD (p (zt, T ) , p (zs, T )) = DKL (p (zt, T ) , p (zs, T ))

= p (zs, T ) log
p (zs, T )

p (zt, T )

(3)

where DKL denotes Kullback Leibler (KL) Divergence. Obviously, the optimiza-
tion of Equ. (3) can match logits zs of student model and zt of teacher model.

For feature-based KD, the target is mimicking the teacher model’s interme-
diate layers, the distillation loss can be formulated as:

LFD (ft (x) , fs (x)) = LF (Φ (ft (x)) , Φ (fs (x))) (4)

where ft (x) and fs (x) denotes the feature maps, i.e., hint layers of teacher and
student models respectively. Φ (·) is transformation function, which is applied
when the feature maps of student and teacher model are in different shape. LF

indicates the similarity measurement function which is applied to match the
feature maps of student and teacher model. Specifically, LF (·) can be l1-norm
distance, l2-norm distance, cross-entropy loss and maximum mean discrepancy
loss in different feature-based KD methods.

3.2 Network Architecture

Fig. 1 illustrates our proposed DSPP architecture, which contains two sub-
networks, i.e., student and teacher network, interacting with each other through
decoupled spatial pyramid pooling. As mentioned earlier, the soft logits are ac-
tually the class probability distribution which is too abstract for the student to

1113



6 L Gao and H Gao

get informative knowledge. Furthermore, it’s hard to find an appropriate match
of hint layers of the teacher and student model. Therefore, we suggest leverag-
ing the last hint layer to resolve the high abstraction of soft logits and avoid
exhausting efforts on matching the hint layers. To align the last hint layers from
the teacher and student model, a transformation operation is applied in the ar-
chitecture. Inspired by [15], we introduce a new method to define knowledge in
the hint layer, in which a spatial pyramid pooling is applied to capture informa-
tive knowledge in the hint layer at different scales. Besides, a decouple module
is proposed to improve the importance of lower activation regions in the spatial
pooling pyramid. The total loss consists of SPP loss from the Decouple module
and class loss from the student network itself. Vanilla KD loss, i.e., response-
based KD loss, is optional for our architecture. More details are introduced in
the next part, Section 3.3.

3.3 Decoupled Spatial Pyramid Pooling

Spatial Pyramid Pooling. How to acquire informative knowledge from the
last hint layer is a key issue for DSPP knowledge distillation. Spatial pyramid
pooling is first proposed by He et al. [15] in visual recognition task, which liber-
ates convolutional neural network from the limit of fixed input size. Considering
the different architecture of the teacher and student network, we utilize spa-
tial pyramid pooling to resolve the inconsistence issue that the student’s last
hint layer is of different shape from the teacher model. Moreover, contributed
by hierarchical structure of spatial pyramid pooling, we can have a multi-scale
receptive filed size of the last hint layer, which enables our model to perceive
both global and local knowledge cue from the last hint layer. The procedure of
spatial pyramid pooling can be formulated as follows:

fpyramid =
{
Pooling (L,W (L) /k) , k = 1, 2, · · · , n, L ∈ Rb×c×h×w

}
(5)

where L denotes the input hint layer, and W (·) is adopted to get the width of
L. Parameter k is the serial number of pyramid layer and starts from 1 to n.
The function Pooling (·) takes 2 parameters: input feature map and the size of
pooling kernel.

Why choose the last hint layer. As we know, the logits of the student model
come from the fully-connected layer and are highly similar to the teacher model,
i.e., their predictions are same on one dataset. However, for image classification
task, the fully-connected layer is absence of spatial information of the input
image which is two-dimensional or three-dimensional. As mentioned earlier, it’s
hard to find an appropriate match of hint layers of the teacher and student model
and may reduce the interpretability of KD. These are the motivations why we
choose the last hint layer. Moreover, the fully-connect layer is directly computed
from the last hint layer which is theoretically and physically closest to the logits
among all hint layers.
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Fig. 2. An illustration of decouple module for SPP feature.

Decouple Module. To pay more attention to the lower activation regions, we
propose a decouple module to handle the flattened feature from spatial pyramid
pooling. In decouple module, the flattened feature is decoupled into two com-
ponents according to value of each element in the feature. As shown in Fig. 2,
the student feature Vs is element-wise matched to the teacher feature Vt by a
two-way arrow. The red arrows point to the top-n largest element in Vt, whose
the other ends point to the corresponding position in Vs. On the contrary, the
blue arrows point to the last tail-(N − n) element in Vt, where N denotes the
length of Vs or Vt. The loss of SPP can be calculated as:

top (n) =argmax (Vt) [0 : n] , n = 0, 1, · · · , N ;

tail (m) =argmin (Vt) [0 : m] , m = N − n;

LSPP =θL2 (Vt [top (n)] , Vs [top (n)])+

µL2 (Vt [tail (m)] , Vs [tail (m)]) , Vt, Vs ∈ RN

(6)

where top(·) denotes the indices of top-(·) elements in Vt and tail(·) denotes
the indices of tail-(·) elements in Vt. Function L2 (·) indicates l2-norm distance.
θ and µ are hyperparameters to control the weight of decoupled components.
To improve the importance of lower activation regions, we let µ greater than
θ. The reason why we pay more attention to the lower activation regions is
that the powerful teacher models with numerous parameters may have a more
sophisticated mechanism to find more details of the input which reflect on the
lower activation regions. The lower activation regions contribute to improve the
accuracy and generalization of the student model.

3.4 Loss and Optimization

As mentioned earlier, the loss of our proposed consist of three parts: classifi-
cation loss Lcls, SPP loss LSPP , and KD loss LKD (optional). For multi-class
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Algorithm 1 DSPP Knowledge Distillation
Input:
Training dataset D = {(xi, yi)}Ni=1;
A pre-trained teacher model with parameter Θt;
A randomly initialized student model with parameter Θs

Output: A well-trained model;
1: while Θs is not converged do
2: Sample a mini-batch B from D.
3: Input B into Θt and Θs to obtain last hint layers F t

1 and F s
1 .

4: Align F t
1 and F s

1 then get F t
2 and F s

2 .
5: Perform Spatial Pyramid Pooling on F t

2 and F s
2 .

6: Backward propagate the gradients of loss by Equ. (8) and update Θs.
end while

classification, the objective function Lcls is defined as the cross entropy error
between the predictions ŷ and the correct labels y:

Lcls = − [y log ŷ + (1− y) log (1− ŷ)] . (7)

In the end, Ltotal is calculated as follows:

Ltotal = γLcls + αLKD + βLSPP (8)

where hyperparameters γ, α and β are adopted to balance the weight of Lcls,
LKD, and LSPP respectively. The training procedure of our proposed DSPP is
summarized in Algorithm 1.

4 Experiment

To demonstrate the effectiveness of our proposed DSPP knowledge distillation,
we conduct a series of experiments with a variety of teacher-student combina-
tions on popular network architectures, including VGG [36], MobileNet [19,35]
, ResNet [16] and ShuffleNet [43,26]. The CIFAR-100 [23] dataset is used in our
experiments, which contains 50K training color images (32 × 32) with 0.5K im-
ages per class and 10K test images, 100 classes in total. Students and teachers of
the same and different architecture style are both evaluated and compared with
representative distillation approaches. Furthermore, ablation studies on the de-
couple module and the weights of lower activation regions are also conducted. We
add our DSPP module in the KD collection established by [38] and follow their
experiment settings. To evaluate the generalization of our method, we further
conduct a series of experiments on Tiny-ImageNet [24].

4.1 Results

Table 1 gives the Top-1 test accuracy on CIFAR-100 based on five homogeneous
network combinations and thirteen KD methods are compared with our proposed
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Table 1. Test Top-1 accuracy (%) of homogeneous teacher-student networks on
CIFAR-100 dataset of a variety of KD approaches.

Teacher resnet56 resnet110 resnet110 resnet32x4 vgg13
Student resnet20 resnet20 resnet32 resnet8x4 vgg8

Teacher 72.34 74.31 74.31 79.42 74.64
Student 69.06 69.06 71.14 72.50 70.36

KD[18] 70.66 70.67 73.08 73.33 72.98
FitNet[34] 69.21 68.99 71.06 73.50 71.02
AT[42] 70.55 70.22 72.31 73.44 71.43
SP[39] 69.67 70.04 72.69 72.94 72.68
CC[31] 69.63 69.48 71.48 72.97 70.71
VID[1] 70.38 70.16 72.61 73.09 71.23
PKD[29] 69.61 69.25 71.82 71.90 71.48
PKT[30] 70.34 70.25 72.61 73.64 72.88
AB[17] 69.47 69.53 70.98 73.17 70.94
FT[22] 69.84 70.22 72.37 72.86 70.58
FSP[40] 69.95 70.11 71.89 72.62 70.23
NST[20] 69.60 69.53 71.96 73.30 71.53
CRD[38] 71.16 71.46 73.48 75.51 73.94
DSPP(OURS) 71.45 71.19 73.56 75.31 73.59

DSPP+KD 71.51 71.88 73.74 75.63 73.99
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Table 2. Test Top-1 accuracy (%) of heterogeneous teacher-student networks on
CIFAR-100 dataset of a variety of KD approaches.

Teacher vgg13 ResNet50 ResNet50 resnet32x4 resnet32x4
Student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2

Teacher 74.64 79.34 79.34 79.42 79.42
Student 64.60 64.60 70.36 70.50 71.82

KD 67.37 67.35 73.81 74.07 74.45
FitNet 64.14 63.16 70.69 73.59 73.54
AT 59.40 58.58 71.84 71.73 72.73
SP 66.30 68.08 73.34 73.48 74.56
CC 64.86 65.43 70.25 71.14 71.29
VID 65.56 67.57 70.30 73.38 73.40
PKD 64.52 64.43 71.50 72.28 73.21
PKT 67.13 66.52 73.01 74.10 74.69
AB 66.06 67.20 70.65 73.55 74.31
FT 61.78 60.99 70.29 71.75 72.50
NST 58.16 64.96 71.28 74.12 74.68
CRD 69.73 69.11 74.3 75.11 75.65
DSPP(OURS) 67.87 68.18 73.70 74.61 75.71

DSPP+KD 68.95 69.21 74.13 75.25 76.33

DSPP. The results of other approaches are partially cited from [38], as well as
Table 2. According to Table 1, it is shown that DSPP consistently achieves higher
accuracy than state-of-the-art distillation approaches with the participation of
vanilla KD. Surprisingly, we found that our DSPP works well and none of the
other methods except CRD consistently outperforms than vanilla KD.

The results of five heterogeneous network combinations are shown in Table 2.
Obviously, while switching the teacher-student combinations from homogeneous
to heterogeneous styles, methods that constructed on multiple intermediate lay-
ers tend to perform worse than methods that distill last few layers or logits. Even
worse, some methods may play a opposed negative role in the training procedure
of student network. For instance, the AT and FitNet even preform worse than the
vanilla student. As mentioned earlier, the mismatch of hint layers may account
for this phenomenon. Tian et al. [38] gives another explanation that networks
of different style have their unique hyperspace and paths mapping from the in-
put to the output and the forced mimics of intermediate layers then conflicts
with these kind of misleading. This why we have a almost equal performance
compared with CRD which utilizes a family of contrastive objectives.

To evaluate the generalization of our method, we conduct a series of experi-
ments on Tiny-ImageNet on three classical teacher-student architecture as shown
in Table 3. The results show that DSPP outperforms other methods including a
combination of CRD and SAKD [37] and further demonstrate the effectiveness
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Table 3. Test Top-1 accuracy (%) of a variety of KD approaches on Tiny-ImageNet
dataset.

T→S ResNet56→ResNet20 ResNet110→ResNet20 Vgg13→Vgg8
Teacher 58.34 58.46 60.09
Student 51.89 51.89 56.03

KD 53.04 53.40 57.33
FitNet 54.43 54.04 58.33

AT 54.39 54.57 58.85
FT 53.90 54.46 58.87

PKT 54.29 54.70 58.87
SP 54.23 54.38 58.78
VID 53.89 53.94 58.55
CC 54.22 54.26 58.18

RKD 53.95 53.88 58.58
NST 53.66 53.82 58.85
CRD 55.04 54.69 58.88

SAKD [37]+CRD 55.06 55.28 59.38
DSPP(OURS) 55.23 55.56 59.69

Table 4. Distillation (ResNet110→ResNet32) accuracy at different µ on CIFAR-100.

µ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
acc 70.78 71.14 71.26 71.35 71.32 71.62 71.90 71.82 71.90 72.12
µ 1.5 2 3 4 5 6 7 8 9 10

acc 72.17 72.61 72.65 73.21 73.42 73.5 73.52 73.59 73.50 73.49

of DSPP. Images in Tiny-ImageNet are two times larger than CIFAR-100, so
the feature map is two times larger which can provide more information. Conse-
quently, the performance of DSPP on Tiny-ImageNet is better than CIFAR-100.

4.2 Ablation Study

Firstly, we conduct a series of experiments on ResNet110→ResNet32 architecture
to demonstrate that regions of lower activation values play a more important role
in KD. We set µ from 0.1 to 10 to verify whether we should pay more attention
to regions of lower activation values. As shown in Table 4, the performances of
DSPP are better when µ > 1 compared with µ ≤ 1. The cases µ > 1 denote that
the model concentrate more on lower activation regions.

To evaluate the performance of decouple module, we conduct a series exper-
iments on how much improvement the decouple module brings. The results in
Table 5 demonstrate the effectiveness of decouple module. Obviously, the decou-
ple module contributes a lot to the improvement of DSPP, where the largest im-
provement is 1.59 percent in (vgg13-MobileNetV2) teacher-student architecture.
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Table 5. Test Top-1 accuracy (%) of ten teacher-student networks with/without
decouple module. "w" denotes with decouple module, while "w/o" denotes without
decouple module.

teacher resnet56 resnet110 resnet110 resnet32x4 vgg13
student resnet20 resnet20 resnet32 resnet8x4 vgg8

w 71.45 71.19 73.56 75.31 73.59
w/o 71.44 70.34 72.56 74.21 72.24
improvement 0.01 0.85 1.00 1.10 1.35

teacher vgg13 ResNet50 ResNet50 resnet32x4 resnet32x4
student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2

w 67.87 68.18 73.70 74.61 75.56
w/o 66.28 66.67 72.47 73.22 74.84
improvement 1.59 1.51 1.23 1.39 0.72

Another interesting observation is that teacher-student architectures of hetero-
geneous style benefit more from the decouple module than those of homogeneous
style.

5 Conclusion

Intermediate layers of a powerful teacher model contain various informative se-
mantic knowledge, but mismatch of hint layers may lead to a counterproductive
result. An urgent challenge for knowledge distillation is to establish a mechanism
of correctly leveraging logits and intermediate layers. To reduce dependence on
multiple intermediate layers and improve the interpretability of KD, we propose
feature decoupled knowledge distillation via spatial pyramid pooling. Decoupled
spatial pyramid pooling operation is applied on aligned last hint layer of both
teacher and student model to acquire multi-scale knowledge cues. Experimental
results show that distillation via DSPP outperforms the compared approaches.
Additional ablation studies also demonstrate the effectiveness of our decouple
module. For the future work, the proposed method can be combined with other
KD methods and the way to select KD spot can be also explored further.
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