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Abstract. Despite great progress achieved by transformer in various vi-
sion tasks, it is still underexplored for skeleton-based action recognition
with only a few attempts. Besides, these methods directly calculate the
pair-wise global self-attention equally for all the joints in both the spatial
and temporal dimensions, undervaluing the effect of discriminative local
joints and the short-range temporal dynamics. In this work, we propose
a novel Focal and Global Spatial-Temporal Transformer network (FG-
STFormer), that is equipped with two key components: (1) FG-SFormer:
focal joints and global parts coupling spatial transformer. It forces the
network to focus on modelling correlations for both the learned discrim-
inative spatial joints and human body parts respectively. The selective
focal joints eliminate the negative effect of non-informative ones during
accumulating the correlations. Meanwhile, the interactions between the
focal joints and body parts are incorporated to enhance the spatial de-
pendencies via mutual cross-attention. (2) FG-TFormer: focal and global
temporal transformer. Dilated temporal convolution is integrated into
the global self-attention mechanism to explicitly capture the local tem-
poral motion patterns of joints or body parts, which is found to be vital
important to make temporal transformer work. Extensive experimental
results on three benchmarks, namely NTU-60, NTU-120 and NW-UCLA,
show our FG-STFormer surpasses all existing transformer-based meth-
ods, and compares favourably with state-of-the-art GCN-based methods.

Keywords: Action recognition · Skeleton · Spatial-temporal transformer
· Focal joints · Motion patterns.

1 Introduction

Human action recognition has long been a crucial and active research field in
video understanding since it has a broad range of applications, such as human-
computer interaction, intelligent video surveillance and robotics [34, 4, 44]. In
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recent years, skeleton-based action recognition has gained increasing attention
with advent of cost-effective depth cameras like Microsoft Kinect [52] and ad-
vanced pose estimation techniques [2], which make skeleton data more accurate
and accessible. By representing the action as a sequence of joint coordinates
of human body, the highly abstracted skeleton data is compact and robust to
illumination, human appearance changes and background noises.

Effectively modelling the spatial-temporal correlations and dynamics of joints
is crucial for recognizing actions from skeleton sequences. The dominant solu-
tions to it in recent years are the graph convolutional networks (GCNs) [46],
as they can model the irregular topology of the human skeleton. Via design-
ing advanced graph topology or traversal rules, the recognition performance is
greatly improved by GCN-based methods [30, 40]. Meanwhile, the recent suc-
cess of Transformer [41] has gained significant interest and performance boost
in various computer vision tasks [9, 29, 3, 32]. For skeleton-based action recogni-
tion, one would expect that the self-attention mechanism in transformer shall
naturally capture effective correlations of joints in both spatial and temporal di-
mensions for action categorization, without enforcing the articulating constrains
of human body like GCN. However, there are only a few transformer-based at-
tempts [38, 33, 51], and they devise hybrid model of GCN and transformer [33]
or multi-task learning framework [51]. How to utilize self-attention to learn ef-
fective spatial-temporal relations of joints and representative motion features
is still a thorny problem. Moreover, most of these Transformer based methods
directly calculate the global one-to-one relations of joints for spatial and tempo-
ral dimensions respectively. Such strategy undervalues the spatial interactions
of discriminative local joints and short-term temporal dynamics for identifying
crucial action-related patterns. On the one hand, since not all joints are infor-
mative for recognizing actions [27, 16], these methods suffer from the influence
of irrelevant or noisy joints by accumulating the correlations with them via at-
tention mechanism, which could harm the recognition. On the other hand, with
the fact that the vanilla transformer lacks of inductive bias [29] to capture the
locality of temporal structural data, it is difficult for these methods to directly
model effective temporal relations of joints globally over long input sequence.

To tackle these issues, we propose a novel end-to-end Focal and Global
Spatial-Temporal Transformer network, dubbed as FG-STFormer, to effec-
tively capture relations of the crucial local joints and the global contextual
information in both spatial and temporal dimensions for skeleton-based action
recognition. It is composed of two components: FG-SFormer and FG-TFormer.
Intuitively, each action can be distinguished by the co-movement of: (1) some
critical local joints, (2) global body parts, and (or) (3) joint-part interaction. For
example, as shown in Fig. 1, actions such as taking a selfie and kicking mainly
involve important joints of hands, head and feet, as well as related body parts
of arms and legs, while the actions like sit down primarily require understand-
ing of body parts cooperation and dynamics. Based on the above observations,
at the late stage of the network, we adaptively sample the informative spa-
tial local joints (focal joints) for each action, and force the network to focus
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on modelling the correlations among them via multi-head self-attention with-
out involving non-informative joints. Meanwhile, in order to compensate for the
missing global co-movement and spatial structure information, we incorporate
the dependencies among human body parts using self-attention. Furthermore,
interactions between the body parts and the focal joints are explicitly modelled
via mutual cross-attention to enhance their spatial collaboration. All of these
are achieved by the proposed FG-SFormer.

Fig. 1. The proposed FG-SFormer (bottom) learns correlations for both adaptively
selected focal joints and body parts, as well as the joint-part interactions via cross-
attention. FG-TFormer (top) models the explicit local temporal relations of joints or
parts, as well as the global temporal dynamics.

The FG-TFormer is designed to model the temporal dynamics of joints or
body parts. It is found that straightforwardly using the vanilla temporal trans-
former leads to ineffective temporal relations and poor recognition performance.
We found one of the key culprits lying in the absence of local bias, making it
challenging for transformer to focus on effective temporal motion patterns in the
long input. Taking these factors into consideration, we integrate the dilated tem-
poral convolutions into multi-head self-attention mechanism to explicitly encode
the short-term temporal motions of a joint or part from their neighbors re-
spectively, which equips transformer with local inductive bias. The short-range
feature representations of all the frames are further fused by the global self-
attention weights to embrace the global contextual motion information into the
representations. Thus, the designed strategy enables transformer to learn both
important local and effective global temporal relations of the joints and human
body parts in a unified structure, which is validated critical to make temporal
transformer work.

To summarize, the contributions of this work lie in four aspects:

1. We propose a novel FG-STFormer network for skeleton-based action recog-
nition, that can effectively capture the discriminative correlations of focal
joints as well as the global contextual motion information in both the spa-
tial and temporal dimensions.
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2. We design a focal joints and global parts coupling spatial transformer, namely
FG-SFormer, to model the correlations of adaptively selected focal joints
and that of human body parts. The joint-part mutual cross-attention is in-
tegrated to enhance the spatial collaboration.

3. We introduce a FG-TFormer to explicitly capture both the short and long
range temporal dependencies of the joints and body parts effectively.

4. The extensive experimental results on three datasets highlight the effective-
ness of our method, that surpasses all existing transformer-based methods.

2 Related Work

Skeleton-based Action Recognition. With great progress achieved in skeleton-
based action recognition, existing works can be broadly divided into three groups,
i.e., RNNs, CNNs, and GCNs based methods. RNNs concatenate the coordinates
of all joints in one frame and treat the sequence as time series [10, 53, 19, 49,
24]. Some works design specialized network structure, like trees [26, 42] to make
RNN aware of spatial information. CNN based methods transform one skeleton
sequence to a pseudo-image via hand-crafted manners [45, 18, 22, 28, 13, 11, 21],
and then use popular networks to learn spatial and temporal dynamics in it.

The appearance of GCN based methods, like ST-GCN [46], enables more
natural spatial topology representation of skeleton joints by organizing them as
a non-Euclidean graph. The spatial correlation is modelled for bone-connected
joints. As the fixed graph topology (or adjacency matrix) is not flexible to model
the dependencies among spatially disconnected joints, many subsequent methods
focus on designing high-order or multi-scale adjacency matrix [23, 12, 30, 15, 20],
and dynamically adjusted graph topology [37, 23, 48, 50, 5]. Nevertheless, these
manually devised joint traversal rules limit the flexibility to learn more effective
spatial-temporal dynamics of joints for action recognition.

Transformer based Methods. Several recent works extend Transformer [41]
to spatial and temporal dimensions of skeleton-based action recognition. Among
them, DSTA [38] is the first to use self-attention to learn joint relations, whereas
in practice spatial transformer interleaved with temporal convolution is em-
ployed for some typical datasets. ST-TR [33] adopts a hybrid architecture of
GCN and transformer in a two-stream network, with each stream replacing the
GCN or temporal convolution with spatial or temporal self-attention. STST [51]
introduces a transformer network that the spatial and temporal dimensions are
parallelly separated. Besides, the network is trained together with multi-task
self-supervised learning tasks.

3 Proposed Method

In this section, we first briefly review the basic spatial and temporal Transformer
blocks (referred to as Basic-SFormer and Basic-TFormer blocks respectively)
used by most existing skeleton-based action recognition methods [33, 38], which
is also the basics of our network. Then the proposed Focal and Global Spatial-
Temporal Transformer (FG-STFormer) is introduced in detail.
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3.1 Basic Spatial-Temporal Transformer on Skeleton Data

Vanilla Transformer (V-Former) Block. The vanilla transformer [41] block
consists of two important modules: multi-head self-attention (MSA) and point-
wise feed-forward network (FFN). Let an input composed of N elements and
C-dimensional features be X ∈ RN×C . For a MSA having H heads, X is first
linearly projected to a set of queries Q, keys K and values V . Then, the scaled
dot-product attention of head h is calculated as:

Attention(Qh,Kh, V h) = softmax(
QhKhT

√
d

)V h = AhV h , (1)

where Qh, Kh, V h ∈ RN×d with d = C/H being the feature dimension of one
head. Ah ∈ RN×N is the attention map.

MSA concatenates the output of all the heads and feeds into FFN module,
that generally consists of a number of linear layers to transform the features.

Basic Spatial Transformer (Basic-SFormer) Block. For a skeleton
sequence of T frames and N joints, let the input of C-dimension be X ={
Xt ∈ RN×C

}T

t=1
. The Basic-SFormer block extends the V-Former block [41]

to spatial dimension. It computes the inter-joint correlations for each frame Xt

via Eq. (1) and generates an attention map Ah
t ∈ RN×N , with each element

(Ah
t )ij representing the spatial correlation score between joints i and j. Then,

the features of each joint are updated as the weighted sum of values of all the
joints. For the entire skeleton sequence, T spatial attention maps are produced.

Basic Temporal Transformer (Basic-TFormer) Block. By extending
the V-Former to the temporal dimension, one Basic-TFormer learns global-range
dynamics of a joint along the entire sequence. It rearranges the input as X ={
Xn ∈ RT×C

}N

n=1
to tackle temporal dimension. With Eq. (1), one of the N

attention map Ah
n ∈ RT×T is computed for the nth joint. Each row in it stands

for the dependencies of this joint across all the frames.

3.2 Focal and Global Spatial-Temporal Transformer Overview

The overview of the proposed FG-STFormer network is depicted in Fig. 2. It
consists of two stages, in which our two primary components are FG-SFormer
block and FG-TFormer block. The former is designed for the network late stage
to model both the correlations of the sampled focal joints and the co-movement
of human body parts globally in spatial dimension, as well as the interactions
between the focal joints and body parts. The latter is devised to learn important
local relations explicitly and global motion dynamics in temporal dimension, and
is used in both stages. Therefore, the two stages are assigned specific responsi-
bilities. That is, stage 1 aims to learn correlations for all joint pairs as generally
done, so as to provide effective representations for stage 2 to mine reliable focal
joints and part embeddings. Stage 2 targets at modelling both the discriminative
relations among focal joints and the global movement information of body parts.
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Fig. 2. Architecture of the proposed Focal and Global Spatial-Temporal Transformer
(FG-STFormer). L1 and L2 are the number of layers in Stage 1 and Stage 2 respectively.

These two stages cooperate with each other to make the network learn discrim-
inative and comprehensive spatial-temporal motion patterns for recognition.

Specifically, given a raw skeleton sequence Xin ∈ RN×T×C0 , a linear layer is
first applied to project it from the 2D or 3D joint coordinates of C0 to a higher
dimension C1, generating feature X1 ∈ RN×T×C1 . Then, X1 goes through the
two successive stages of FG-STFormer. Stage 1 sequentially stacks L1 layers with
each consisting of a Basic-SFormer block and an our FG-TFormer block.

At the end of stage 1, we obtain the high-level feature representations X2 ∈
RN×T×C2 . It is then passed into stage 2, where the network is split into two
branches. One branch adaptively selects K focal joints for each frame of the
sequence and discards the remaining non-informative ones, producing features
XJ

2 ∈ RK×T×C2 . Meanwhile, the other branch partitions the joints into P
global-level human body parts and generates feature tensor XP

2 ∈ RP×T×C2 .
XJ

2 and XP
2 are then passed through L2 layers that interleave FG-SFormer

and FG-TFormer blocks. In particular, one FG-SFormer block consists of a
Basic-SFormer sub-block and a joint-part cross-attention sub-block to sufficiently
model the spatial interaction information of actions. Stage 2 then produces out-
put features XJ

3 and XP
3 from the two branches respectively. They are applied

global average pooling (GAP), and then concatenated along feature channels
producing features Xout ∈ R1×1×Cout . With which, FG-STFormer finally per-
forms classification using two fully connected layers and a Softmax classier.

3.3 Focal and Global Spatial Transformer (FG-SFormer)

The proposed FG-SFormer block designed for network stage 2 learns critical
and comprehensive spatial structure and motion patterns based on facts in two
aspects. For one aspect, there is often a subset of key joints that play a vital
role in action categorization [27, 16], while the other joints are irrelevant or even
noisy for action analysis. Especially, for transformer-based methods, the features
of one joint could be influenced by those non-informative ones when integrating
features of all the joints. Therefore, it is beneficial to identify the focal joints and
concentrate on them at the deep layers of the network after the shallow layers
have sufficiently learned the relationships among all the joints.

For the other aspect, it is not enough to just focus on the movement of fo-
cal joints. The movement of human body parts carry crucial global contextual
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motion information for recognizing an action [10, 14]. Meanwhile, the interac-
tions between joints and parts convey rich kinematic information, that could be
exploited to fully mine action-related patterns.

Therefore, we propose to learn relations for adaptively identified focal joints
and for human body parts, as well as their interactions in spatial dimension.
Three modules to achieve this are designed: (i) Focal joints selection; (ii) Global-
level part partition encoding; and (iii) Joint-part cross-attention.

Focal Joints Selection. In the joint branch of stage 2, we design a ranking
based strategy to adaptively sample the focal joints subset for each frame in an
action sequence with the input X2 ∈ RN×T×C2 , and discard the non-informative
ones. To achieve this, we leverage a trainable projection vector Wp ∈ RC2×1 and
sigmoid function to predict the informativeness scores S ∈ RN×T for all the
joints in individual frame as:

S = sigmoid(X2Wp/||Wp||) , (2)

Each element Sij represents the informativeness score of ith joint in jth frame.
The larger the score is, the more informative the joint is. We sort the scores of
all the joints for each frame and take the features corresponding to the top K
joints having the largest scores to form the features XJ

2 ∈ RK×T×C2 of the focal
joints subset as:

idx = sort(S,K) ,

XJ
2 = X2(idx, :, :) ,

(3)

where idx is the indices of the selected joints with largest scores.
XJ

2 is then fed into the Basic-SFormer sub-block introduced in Section 3.1
to calculate the correlations only for those focal joints and update their feature
embeddings. The Basic-SFormer block/sub-block used in both stages 1 and 2
is depicted in Fig. 3 (a). It uses the sine and cosine position encoding [41] to
encode the joint type information. In the MSA module with H heads, the spatial
attention map At is calculated for each frame. As in [38], we add a global regular-
ization attention map Ag shared by all the sequences. The FFN module consists
of a linear layer followed by applying activation function of Leaky ReLU [31].

Global-level Part Partition Encoding. We explicitly model the corre-
lations between global-level body parts in the other branch of stage 2 in our
FG-STFormer. The joints are partitioned into P parts based on the physical
skeleton structure and human prior. To obtain feature embeddings of the P
parts with X2, we concatenate the features of joints belonging to the same body
part and then transform them into one part-level feature embedding via a linear
layer shared by all parts. This generates the part embedding XP

2 ∈ RP×T×C2 ,
which is then passed into the Basic-SFormer sub-block shown in Fig. 3 (a) to
model the one-to-one part relations and update features correspondingly.

Joint-Part Cross-attention. To enable information diffusion across the
focal joints and body parts to model their co-movement, we devise a joint-part
cross-attention sub-block, termed as JP-CA. It uses multi-head cross-attention
to interact and diffuse features of the two branches. Here, we present JP-CA
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Fig. 3. (a) The Basic-SFormer block/sub-block used in Stages 1 and 2. (b) The Joint-
part cross-attention (JP-CA) sub-block used in FG-SFormer block.

from the part branch to the focal joint branch as an example, as shown in Fig. 3
(b). For notational convenience, we omit the subscripts of XJ

2 and XP
2 . Let

QJ , KJ and VJ be the queries, keys and values mapped from the joint-branch
features XJ , and QP , KP and VP be those from the part-branch features XP

respectively. The part-to-joint cross-attention takes the QJ as queries, and KP

and VP as keys and values, and is calculated as:

Attention(QJ ,KP , VP ) = softmax(
QJKP

T

√
d

)VP = AjpVP , (4)

where d is the feature dimension of one head.
The attention map Ajp ∈ RK×P models the joint-part correlations and is

used to aggregate part features for each focal joint. Other operations in this
sub-block is same as those in the adopted Basic-SFormer sub-block. Notably,
JP-CA is adaptive to actions, which is flexible to capture distinct collaborative
patterns for input actions. Analogously, the cross-attention from the joint-branch
to part-branch can be defined in similar operations.

3.4 Focal and Global Temporal Transformer (FG-TFormer)

Though temporal transformer has been applied in skeleton-based action recog-
nition in existing works [51, 33, 1], it is rarely effectively deployed solely with
spatial transformer in a single-stream architecture or in pure transformer-based
models, largely because: (i) it is difficult for the self-attention to directly model
effective temporal relations globally for distinguishing actions over the long input
sequence; and (ii) the lack of inductive biases of transformer.

To address these issues, we propose to assist transformer in focusing on both
the important local and the global temporal relations of joints explicitly, and
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design the component of focal and global temporal self-attention (FG-TSA), as
depicted in Fig. 4. It utilizes the dilated temporal convolution to generate the
values V in MSA, that works in two aspects: (i) explicitly learning the short-
term temporal motion representation of a joint from its neighboring frames;
and (ii) introducing beneficial local inductive biases to transformer. Meanwhile,
the attention map generated by MSA models the global temporal correlations.
Therefore, the resulting fused joint representations integrate both local temporal
relation and global contextual information. The same effect is also achieved for
the body part representations when FG-TFormer is applied to the part-branch.

Fig. 4. The pipeline of the proposed FG-TFormer block.

Specifically, let the input feature tensor of the FG-TFormer block in layer
l (l = 1, 2, ..., L) be X l ∈ RN×T×C , where L is the total number of layers.
First, the absolute position encoding is used to encode the temporal order in-
formation. And then, for the queries and keys Ql

h, Kl
h ∈ RN×T× C

H in head h
among the H ones, they are generated via the usual linear projection in FG-TSA.
Whereas for the V l

h, different from existing works, we utilize dilated temporal
convolution with kernel size kt × 1 and dilation rate dt to obtain it, denoted as
V l
h = TCNdilate(X

l)h ∈ RN×T× C
H . Then, the global self-attention map is calcu-

lated via Eq. (1) and utilized to fuse the local feature representation V l
h. Hence,

each joint representation is injected with its global contextual dynamics. The
features are then reshaped and linearly transformed with Wh ∈ R C

H × C
H . This is

followed by concatenating the output features of all the heads and conducting
linear transform with WO ∈ RC×C using activation function of Leaky ReLU.
The output of the FG-TFormer block X l+1 is obtained by adding the shortcut
from the input X l. The whole process is formulated as:

X l+1 = Concat[head(X l)1, ...,head(X l)H ]WO + X l ,

head(X l)h = [Attention(Ql
h,K

l
h)TCNdilate(X

l)h]Wh + TCNdilate(X
l)h .

(5)

Besides, we halve the temporal resolution of a sequence during generating
V with convolution of stride 2 when the feature channels are doubled for a
FG-TFormer block. This hierarchical structure reduces the computational cost.
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4 Experiments

4.1 Dataset

NTU-RGB+D 60 (NTU-60) [35] contains 56,880 sequences in 60 classes. It
is collected from 40 subjects and provides the 3D locations of 25 human body
joints. It recommends two benchmarks for evaluation: (1) Cross-subject (X-Sub):
training data is from 20 subjects and test data from the other 20 subjects. (2)
Cross-view (X-View): sequences captured by camera views 2 and 3 are taken as
training data, and those captured by camera view 1 as testing data.
NTU-RGB+D 120 (NTU-120) [25] has 120 classes and 113,945 samples cap-
tured from 32 camera setups and 106 subjects. It recommends two benchmarks:
(1) Cross-subject (X-Sub): training data is from 53 subjects, and test data from
the other 53 subjects. (2) Cross-setup (X-Set): samples with even setup IDs are
used for training data, and samples with odd setup IDs for test.
Northwestern-UCLA (NW-UCLA) [43] is captured by three Kinect cam-
eras from three viewpoins. It contains 1,494 sequences in 10 action categories,
with each performed by 10 actors. The same evaluation protocol in [26] is used:
training data from the first two cameras and test data from the other camera.

4.2 Implementation Details

Our FG-STFormer model consists of 8 layers in two stages. Stage 1 contains
L1 = 6 layers and stage 2 consists of L2 = 2 layers. The channel dimensions of
each layer are 64, 64, 128, 128, 256, 256, 256 and 256. The number of frames
is halved at the third and fifth layers. The number of spatial attention heads
for the Basic-SFormer and FG-SFormer blocks is set to be 3. Each FG-TFormer
block uses 2 attention heads, which adopt temporal kernel size of kt = 7, and
dilation rates of dt = 1 and dt = 2 respectively. The numbers of focal joints and
body parts in the two branches of stage 2 are K = 15 and P = 10 respectively.

All experiments are conducted on one RTX 3090 GPU with PyTorch frame-
work. We use SGD with Nesterov momentum of 0.9 and weight decay of 0.0005
to train our model for 80 epochs. Warm up strategy is used for the first 5 epochs.
The initial learning rate is set to 0.01 and decays by a factor of 10 at the 50th
and 70th epochs. For NTU-60 and NTU-120, the batch size is 32. The sequences
are sampled to 128 frames, and we use the data pre-processing method in [5].
For NW-UCLA, the batch size is 32, we use the same data pre-processing in [43].

4.3 Ablation Study

In this section, the effectiveness of individual component of FG-STFormer is
evaluated under X-Sub protocol of NTU-60 dataset, using only the joint stream.

Effectiveness of FG-SFormer Block. To examine the effectiveness of the
proposed FG-SFormer, we evaluate the important components in it, i.e., focal
joints selection, part branch and joint-part cross-attention (JP-CA). We employ
the Basic-SFormer as baseline, which calculates the correlations for all the joints
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at every layer of the network without using part branch and JP-CA. For temporal
modelling, our FG-TFormer is used. We gradually replace the baseline by adding
our designs one-by-one. The experimental results are shown in Table 1.

Table 1. Ablation study of different components in FG-SFormer block.

Methods
Focal Joints

Part Branch JP-CA Acc (%)
Selection

Basic-SFormer - - - 87.8

A
√

- - 88.3
B

√ √
- 89.1

C
√ √ √

89.5

As seen, model A selects the focal joints at stage 2 of the network and im-
proves the performance of Basic-SFormer by 0.5%. This indicates that it is bene-
ficial to identify discriminative joints. Then, model B introduces the part branch
to network stage 2. This provides performance improvement of 0.8% and reflects
the spatial relations of intra-parts carry helpful global motion patterns. Finally,
by adding the JP-CA into model C, the accuracy is further increased by 0.4%.
This implies that the interactions between body parts and the selected focal
joints are helpful for distinguishing actions.

Impact of Number of Focal Joints. To explore the effect of selecting
different number of focal joints, we test the models using different K in FG-
SFormer blocks at stage 2. Note that K = 25 means all the joints are used. As
shown in Table 2, the accuracy gradually improves as K increases from 3 to 15,
and then decreases when it further increases. This implies that the redundant
or noisy joints indeed harm the recognition performance. In addition, too small
number of focal joints are not enough to accurately identify the actions.

Table 2. Comparison of classification accuracy using different number of focal joints.

K 3 6 9 12 15 18 21 25

Acc (%) 88.6 88.9 89.0 89.2 89.5 89.2 89.3 89.1

Effectiveness of FG-TFormer Block. To evaluate the efficacy of FG-
TFormer block, we build up experiments based on the complete network by
modifying the FG-TFormer block only. The model using Basic-TFormer is taken
as the baseline, which solely adopts the global MSA in temporal dimension.
According to the results shown in Table 3, without the TCNdilate in MSA, the
Basic-TFormer performs significantly worse than our FG-TFormer with a large
margin of −6.7%. Besides, by replacing Basic-TFormer with TCNdilate, the per-
formance is greatly improved by 6.3%. Finally, our FG-TFormer further achieves
improvement of 0.4% by integrating TCNdilate into self-attention mechanism.
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12 Z. Gao et al.

Table 3. Ablation study for components in FG-TFormer block.

Methods Global MSA TCNdilate Acc (%)

Basic-TFormer
√

× 82.8

FG-TFormer
×

√
89.1√ √
89.5

Configuration Exploration. We explore different network configurations
for stages 1 and 2 in our FG-STFormer by adjusting the number of layers L1 and
L2. The total number of layers is fixed as 8. The results are shown in Table 4.
Comparing models A, B and C, we can find that higher performance is obtained
with more than 4 layers used in stage 1, and the best performance is achieved
by L1 = 6 and L2 = 2. The accuracy drops down when stage 2 is assigned less
layers in model D. These observations indicate that it is necessary for stage 1 to
sufficiently learn the relations among all the joints, otherwise the performance
could be harmed by focusing on unreliable focal joints and part collaborations.

Table 4. Comparison of different network configurations of our FG-STFormer.

Methods
Stage 1 Stage 2

Acc (%) Methods
Stage 1 Stage 2

Acc (%)
L1 L2 L1 L2

A 4 4 88.8 C 6 2 89.5
B 5 3 89.0 D 7 1 89.0

Fig. 5. The selected focal joints and learned joint-part interactions of actions.

4.4 Visualization and Analysis

To validate what the focal joints are concentrated on at stage 2, we visualize the
sampled 13 focal joints having largest scores for three actions in Fig. 5. These
focal joints are depicted as coloured dots in the left skeleton of each action. The
darker the dot is, the higher the informativeness score is of the joint. We can see
that the actions Clapping, Kicking something and Say stop mainly select hands,
shoulders, elbows and feet as the focal joints. Besides, Fig. 5 illustrates the
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FG-STFormer for Skeleton-based Action Recognition 13

learned attention weights from parts to focal joints of these actions. Attentions
with large values are shown as green lines. As seen, the actions Clapping and
Say stop mainly build interactions between focal joints and upper limbs, while
action Kicking something interacts between focal joints and the whole body
parts. These results verify that the spatial relations between the key joints and
the global contextual movement information are captured by our FG-SFormer.

Moreover, we compare the performance of the Basic-TFormer with our FG-
TFormer on action classes that the former has low accuracy. As shown in Fig. 6,
our network improves the performance of those exhibited classes, which mainly
involve the subtle and fine-grained motions of hands, feet and head. This con-
cludes that our FG-TFormer can capture those subtle interaction patterns via
explicitly embedding the neighboring relations into it.

Fig. 6. Accuracy comparison between the Basic-TFormer and our FG-TFormer blocks.

Table 5. Comparison to state-of-the-arts on NW-UCLA dataset.

Methods Year
NW-UCLA
Top-1 (%)

HBRNN-L [10] 2015 78.5
Ensemble TS-LSTM [19] 2017 89.2
AGC-LSTM [39] 2019 93.3
Shift-GCN [8] 2020 94.6
DC-GCN+ADG [7] 2020 95.3
CTR-GCN [5] 2021 96.5

FG-STFormer (ours) 2022 97.0

4.5 Comparison with the State-of-the-arts

We compare our FG-STFormer with existing state-of-the-art (SOTA) methods
on three datasets: NW-UCLA, NTU-60 and NTU-120. Following the previous
works [30, 51, 38], we fuse results of four modalities, i.e., joint, bone, joint motion,
and bone motion. The results are shown in Table 5 and Table 6. As seen, our
method outperforms all existing transformer-based methods under nearly all
evaluation benchmarks on NTU-60 and NTU-120, including the latest method
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STST [51] which uses not only the parallel spatial and temporal transformers but
also multiple self-supervised learning tasks, and ST-TR [33] which adopts hybrid
architecture of spatial-temporal transformer and GCN. Our method surpasses
DSTA [38] by 2.4% and 1.6% on the two evaluation protocols of NTU-120.

Table 6. Performance comparisons against the SOTA methods on NTU- 60 and 120.

Methods Year
NTU-60 NTU-120

X-Sub (%) X-View (%) X-Sub (%) X-Set (%)

GCN-based Methods

ST-GCN [46] 2018 81.5 88.3 70.7 73.2
2s-AGCN [37] 2019 88.5 95.1 82.9 84.9
DGNN [36] 2019 89.9 96.1 - -
Shift-GCN [8] 2020 90.7 96.5 85.9 87.6
Dynamic GCN [48] 2020 91.5 96.0 87.3 88.6
MS-G3D [30] 2020 91.5 96.2 86.9 88.4
MST-GCN [6] 2021 91.5 96.6 87.5 88.8
CTR-GCN [5] 2021 92.4 96.8 88.9 90.6
STF [17] 2022 92.5 96.9 88.9 90.0

Transformer-based Methods

DSTA [38] 2020 91.5 96.4 86.6 89.0
ST-TR [33] 2021 89.9 96.1 82.7 84.7
UNIK [47] 2021 86.8 94.4 80.8 86.5
STST [51] 2021 91.9 96.8 - -

FG-STFormer (ours) 2022 92.6 96.7 89.0 90.6

Moreover, compared to GCN-based methods, the performance of our FG-
STFormer is also at the top. It compares favourably with current state-of-the-art
STF [17] and CTR-GCN [5] on NTU-60 and NTU-120, and even outperforms
the latter on NW-UCLA by 0.5%, verifying the effectiveness of FG-STFormer.

5 Conclusion

In this work, we present a novel focal and global spatial-temporal transformer
network (FG-STFormer) for skeleton-based action recognition. In spatial dimen-
sion, it learns intra- and inter- correlations for adaptively sampled focal joints
and global body parts, which captures the discriminative and comprehensive
spatial dependencies. In temporal dimension, it explicitly learns both the lo-
cal and global temporal relations, enabling the network to capture rich motion
patterns effectively. On three datasets, the proposed FG-STFormer achieves the
state-of-the-art performance, demonstrating the effectiveness of our method.
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