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(a) Synthetic empty scene (b) Synthetic furnished scene (c) Real-world empty scene (d) Real-world furnished scene

Fig. 1: Indoor panorama inpainting. We present a learning-based indoor panorama
inpainting method that is capable of generating plausible results for the tasks of hole
filling (a)(c) and furniture removal (b)(d) in both synthetic (a)(b) and real-world (c)(d)
scenes.

Abstract. We present an end-to-end deep learning framework for indoor panoramic
image inpainting. Although previous inpainting methods have shown impressive
performance on natural perspective images, most fail to handle panoramic im-
ages, particularly indoor scenes, which usually contain complex structure and
texture content. To achieve better inpainting quality, we propose to exploit both
the global and local context of indoor panorama during the inpainting process.
Specifically, we take the low-level layout edges estimated from the input panorama
as a prior to guide the inpainting model for recovering the global indoor structure.
A plane-aware normalization module is employed to embed plane-wise style fea-
tures derived from the layout into the generator, encouraging local texture restora-
tion from adjacent room structures (i.e., ceiling, floor, and walls). Experimental
results show that our work outperforms the current state-of-the-art methods on
a public panoramic dataset in both qualitative and quantitative evaluations. Our
code is available online1.

1 https://ericsujw.github.io/LGPN-net/
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1 Introduction

Image inpainting is a widely investigated topic in computer graphics and vision com-
munities, which aims at filling in missing regions of an image with photorealistic and
fine detailed content. It plays a crucial step toward many practical applications, such
as image restoration, object removal, etc. With the rapid development of deep learning,
image inpainting has been revisited and improved significantly in the past few years.
A considerable body of researches has been explored to generate impressive results on
perspective datasets.

In this work, we address the image inpainting problem in the context of indoor
panoramas. Indoor panoramas provide excellent media for the holistic scene under-
standing [40] that would further benefit several applications such as object detection,
depth estimation, furniture rearrangement, etc. In particular, removing foreground ob-
jects and filling the missing regions in an indoor panorama is essential for the interior
redesign task. However, the complex structures and textures presented in the indoor
scenes make the inpainting problem non-trivial and challenging for previous methods.
As shown in Figure 2(EC), results generated by a state-of-the-art deep learning method
fail to align the image structure along the layout boundaries and produce inconsistent
blurry image contents.

Recently, Gkitsas et al. [9] introduced PanoDR, a diminished reality-oriented in-
painting model for indoor panorama. The main idea is to translate a furnished indoor
panorama into its empty counterpart via a network that leverages both a generator and
an image-to-image translation module. The inpainting result is then obtained by com-
positing the predicted empty panorama and input panorama using the object mask.
However, there are still obvious artifacts near the boundaries of masked regions as
shown in Figure 2.

To achieve better inpainting quality, we present an end-to-end deep generative ad-
versarial framework that exploits both the global and local context of indoor panoramas
to guide the inpainting process. Specifically, we take the low-level layout boundaries
estimated from input panorama as a conditional input to guide the inpainting model,
encouraging the preservation of sharp boundaries in the filled image. A plane-aware
normalization module is then employed to embed local plane-wise style features de-
rived from the layout into the image decoder, encouraging local texture restoration from
adjacent room structures (i.e., ceiling, floor, and individual walls). We train and eval-
uate our model on a public indoor panorama dataset, Structured3D [41]. Experimental
results show that our method produces results superior to several state-of-the-art meth-
ods (see Figure 1, Figure 2 and Figure 5). The main contributions are summarized as
follows:

– We present an end-to-end generative adversarial network that incorporates both the
global and local context of indoor panoramas to guide the inpainting process.

– We introduce a plane-aware normalization module that guides the image decoder
with spatially varying normalization parameters per structural plane (i.e., ceiling,
floor, and individual walls).

– Our method achieves state-of-the-art performance and visual quality on synthetic
and real-world datasets.
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Input EC [28] PanoDR [9] Ours

Fig. 2: Limitations of existing methods. EC [28] and PanoDR [9] fail to align the im-
age structure along the layout boundaries and produce inconsistent blurry image con-
tents in the inpainted regions (red mask).

2 Related Work

Traditional image inpainting. There are two main genres among traditional image
inpainting works: diffusion-based methods and patch-based methods. Diffusion-based
methods [6, 1, 2, 4, 23, 36] propagate pixels from neighboring regions to the missing
ones to synthesize the image content. On the other hand, patch-based methods [3, 32,
19, 11, 27, 26, 7] fill the missing regions by searching for and copying similar image
patches from the rest of the image or existing image datasets. Without a high-level
understanding of the image contents, these methods easily fail on images with complex
structures.
Learning-based image inpainting. With the rapid development of deep learning, sev-
eral image inpainting techniques based on convolutional neural networks (CNN) have
been proposed. These methods aim to learn a generator from a large dataset to produce
photorealistic image contents in the missing regions effectively. Context Encoders [30]
pioneers CNN-based image inpainting by proposing an adversarial network with an
encoder-decoder architecture. However, due to the information bottleneck layer of the
autoencoder, the results are often blurry, incoherent, and can not work on irregular
masks. Yu et al. [39] proposed a coarse-to-fine network and a context-aware mecha-
nism to reduce blurriness. Iizuka et al. [14] adopted local and global discriminators and
used dilated convolutions to increase the model’s receptive field and enhance coherence.
Liu et al. [25] proposed partial convolutions, which only consider valid pixels during
convolution, to handle irregular masks. Yu et al. [38] further extends the partial convo-
lutions by introducing a dynamic feature gating mechanism, named gated convolutions,
to deal with free-from masks. Both Liu et al. [25] and Yu et al. [38] adopt PatchGAN
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discriminator [15] to improve the coherence further. Recently, several models were pro-
posed to significantly improve the image painting quality by incorporating the structure
knowledge in a different context, including image edges [28, 22], object contours [37],
smooth edge-preserving map [31], and gradient map [17]. Nazeri et al. [28] introduced
a two-stage network named EdgeConnect, which firstly recovers the missing edges in
the masked regions, followed by a generator conditioned on the reconstructed edge
map. The authors prove that the structure-to-content approach can effectively preserve
the structure information in the inpainting results. However, EdgeConnect uses canny
edges to represent structure features, which might be suitable for natural images but may
lead to complex local edges in indoor scenes. In contrast, our work exploits the Horizon-
Net [34] to estimate layout edges, representing the global room structure, which is suit-
able for our indoor inpainting task. In addition, our model is an end-to-end architecture
instead of a two-stage network. Yang et al. [17] developed a multi-task learning frame-
work to jointly learn the completion of image contents and structure map (edges and
gradient). A structure embedding scheme is employed to embed the learned structure
features while inpainting explicitly. The model further learns to exploit the recurrent
structures and contents via an attention mechanism. While demonstrating impressive
performance in generating realistic results, these structure-aware methods still fail to
model long-range structure correspondence such as the layout in the indoor scenes. On
the other hand, some works have successfully recovered a single partially occluded ob-
ject [5, 20]. However, their architecture does not handle multiple object instances of the
same class and is thus not suitable for our context where the plane-wise segmentation
consists of different numbers of wall planes.

Image-to-image translation. The image inpainting is essentially a constrained image-
to-image translation problem. Significant efforts have been made to tackle various prob-
lems based on image-to-image translation architectures [15, 42, 18]. Here we focus on
the ones that are closely related to our work. Park et al. [29] introduced SPADE, which
utilizes a spatial adaptive normalization layer for synthesizing photorealistic images
given an input semantic segmentation map. Specifically, a spatially-adaptive learned
transform modulates the activation layer with a semantic segmentation map and ef-
fectively propagates the semantic information throughout the network. In contrast to
SPADE, which uses only one style code to control the image synthesis, Zhu et al. [43]
presents SEAN by extending the SPADE architecture with per-region style encoding.
By embedding one style code for individual semantic classes, SEAN shows signifi-
cant improvement over SPADE and generates the highest quality results. In the con-
text of indoor scenes, Gkitsas et al. [9] introduce PanoDR that combines image-to-
image translation with a generator to constrain the image inpainting with the underly-
ing scene structure. Percisely, to convert a furnished indoor panorama into its empty
counterpart, PanoDR exploits a generator for synthesizing photorealistic image con-
tents where the global layout structure is preserved via an image-to-image translation
module. The empty indoor panorama is then used to complete the masked regions in
the input panorama via a simple copy-and-paste process. Gkitsas et al. [10] extend the
architecture of PanoDR to make the model end-to-end trainable. However, the quan-
titative evaluation indicates that the performance improvement is marginal compared
with PanoDR. Our system also combines a generator with image-to-image translation
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Fig. 3: Architecture overview. Our network architecture follows the conventional gen-
erative adversarial network with an encoder-decoder scheme supervised by low- and
high-level loss functions and a discriminator. Given a masked indoor panoramic image
Iin with a corresponding mask M, our system uses an off-the-shelf layout prediction
network to predicts a layout map. The low-level boundary lines in Lm serve as a con-
ditional input to our network to assist the inpainting. Then, we compute two semantic
segmentation maps from the layout map Lm, declared L3−class and Lp−wise, where
the latter is used to generate plane-wise style codes for ceiling, floor, and individual
walls. Finally, these per plane style codes, together with L3−class, are fed to a struc-
tural plane-aware normalization module to constrain the inpainting.

as PanoDR does. However, we obtain superior results than PanoDR by exploiting the
global layout edges as a prior and adapting SEAN blocks in a local plane-wise man-
ner to guide the inpainting. Moreover, in contrast to PanoDR performs the inpainting
task via an indirect way, our system performs the inpainting task in an end-to-end fash-
ion, directly completing the mask areas instead of hallucinating an empty scene, thus
resulting in better visual quality and consistency.

3 Overview

Figure 3 illustrates an overview of our architecture. Our system takes a masked panoramic
image Iin and the corresponding binary mask M as inputs and generates the inpainted
panoramic image Iout. The masked panoramic image is generated by Iin = Igt ⊙ (1−M),
where Igt represents the ground-truth panoramic image and ⊙ denotes the Hadamard
product. Our system first utilizes an off-the-shelf model to estimate the room layout
Lm from input masked panoramic image. This layout map is then concatenated with
Iin and M to obtain a five-channel input map fed into the generator G. We further
derive two semantic segmentation maps L3−class and Lp−wise using the layout map
for the subsequent normalization module (Section 4.1). The image generation model
follows the conventional generative adversarial architecture with one content encoder
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Fig. 4: Plane-aware normalization. Given an incomplete indoor panoramic image Iin
with mask M, we first predict two normalization values β and γ through several partial
convolution [25] blocks and a plane-wise average pooling based on the plane-wise seg-
mentation map Lp−wise. Second, we predict another set of normalization values β′ and
γ′ through several vanilla convolution blocks based on the 3-class segmentation map
L3−class. The final normalization values are thus computed using the weighted sum
weighted by learnable parameters αβ and αγ .

and one image decoder with one discriminator. (Section 4.2). To impose structure in-
formation during inpainting, we introduce a plane-aware normalization that modifies
the SEAN [43] block with two semantic segmentation maps to guide the decoder with
spatially varying normalization parameters per structural plane (i.e., ceiling, floor, and
individual walls). Such a plane-aware normalization provides useful guidance for global
structure preservation as well as consistent local image content generation (Section 4.3).
Finally, common loss functions in image inpainting, including the reconstruction loss,
the perceptual loss, the style loss, and the adversarial loss are employed to train our
model (Section 4.4).

4 Method

4.1 Layout Guidance Map

We employ an off-the-shelf model, HorizonNet [34], to estimate a layout map from
input masked panorama. Through a recurrent neural network, the HorizonNet predicts
a 3-dimensional vector representing ceiling, ground, and corner location. We further
process the output vector to generate a layout map Lm comprising low-level boundary
lines. This layout map serves as a conditional input to encourage the preservation of
global layout structure while inpainting. Moreover, we extract two semantic segmen-
tation maps from the layout map that depict (i) the segmentation mask L3−class with
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three semantic labels of indoor scene, i.e., ceiling, floor, and wall; and (ii) a plane-wise
segmentation mask Lp−wise where pixels are indexed in a per structural plane basis
(i.e., ceiling, floor, or individual walls). These semantic segmentation maps are gener-
ated using conventional image processing operations (i.e, flood-fill) and will be used in
the later normalization module.

4.2 Image Inpainting Backbone

As shown in Figure 3, our network architecture consists of one generator and one dis-
criminator. The generator G follows a conventional scheme with one content encoder
and one image decoder. The content encoder consists of two down-sampling convo-
lution blocks followed by eight residual blocks using dilated convolution [12]. The
image decoder uses a cascade of our proposed plane-aware residual blocks and two
up-sampling blocks. Motivated by EdgeConnect [28], we use PatchGAN [16] as our
discriminator to determine the real or fake sample by dividing the input image into sev-
eral patches. In the following sections, we will elaborate plane-aware residual block,
loss functions, and discriminator in more detail.

4.3 Plane-aware Normalization

Considering the different styles among wall planes is very common in real-world indoor
scenes. We follow the architecture of SEAN [43] and propose leveraging two kinds of
segmentation maps Lp−wise and L3−class to establish our plane-aware normalization
(see Figure 4). Our plane-aware normalization consists of one style encoder and two
style blocks, which enhance the global style semantics and local style consistency of
the generated results. The inputs of the style encoder include masked panoramic image
Iin and mask image M. We use partial convolution blocks in style encoder instead of
vanilla convolution to make feature extraction conditioned only valid pixels. We first
adopt the plane-wise average pooling on the output features to generate style codes for
each plane based on Lp−wise. Second, we spatially broadcast each style code on the
corresponding area and output the local style block. On the other side, we predict the
global style block by passing the 3-class segmentation map L3−class through several
convolution layers. Finally, the remaining part of our plane-aware normalization follows
the same architecture of SEAN [43], and combines global and local style blocks into
the downstream β and γ parameters of the final batch normalization.

4.4 Loss Functions

Here we elaborate on the low- and high-level loss functions and the discrimination used
for training our image generator.
Reconstruction loss measures the low-level pixel-based loss between the predicted and
ground-truth images. To encourage the generator to pay more attention to the missing
regions, we additionally calculate the L1 loss in the missing regions. The reconstruction
loss Lrec is defined as follows:

Lrec = ∥M⊙ Igt −M⊙ Iout∥1 + ∥Igt − Iout∥1 , (1)
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where Igt and Iout represent the ground-truth image and the generator’s output, respec-
tively, and M is a binary mask.
Perceptual loss encourages the predicted and ground-truth images to have similar
representation in high-level feature space extracted via a pre-trained VGG-19 [33], and
is defined as follows:

Lperc =
∑
i

∥ϕi (Igt)− ϕi (Iout)∥1 , (2)

where ϕi is the activation map of the ith layer of the pre-trained feature extraction
network.
Style loss calculates the co-variance difference between the activation maps. For the
activation map ϕi of size Ci × Hi × Wi, the style loss is defined as follows:

Lsty =
∥∥∥Gϕ

i (Igt)−Gϕ
i (Iout)

∥∥∥
1
, (3)

where Gϕ
i is a Ci × Ci gram matrix [8] constructed by the activation map ϕi.

Adversarial loss is implemented with the patch-based discriminator [16], which out-
puts the feature map divided into several feature patches and uses hinge loss [24] to
optimize the generator G and the discriminator D. The adversarial loss for generator G
and discriminator D are defined as follows:

LG = −D (Iout) , (4)

LD = λD (max (0, 1 +D (Iout)) +max (0, 1−D (Igt))) ; (5)

The overall loss function used in the generator G is defined as follows:

Ltotal = λrecLrec + λpercLperc + λstyLsty + λGLG, (6)

where λrec, λperc, λsty , λG, and λD are the hyperparameters for weighting the loss
functions.

5 Experiments

In this section, we evaluate the performance of our model by comparing it with several
state-of-the-art image inpainting approaches and conducting ablation studies to verify
the necessity of individual components in the proposed architecture. Please refer to our
online webpage for other experiments and more results2.

5.1 Experimental Settings

Dataset and baselines. We compare our model with the following state-of-the-art
structure-aware image inpainting models:

2 https://ericsujw.github.io/LGPN-net/
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Input / Layout EC [28] LISK [17] PanoDR [9] Ours GT

Fig. 5: Qualitative comparisons with state-of-the-arts. Top 8 rows: the inpainting re-
sults of the empty indoor scenes. Bottom 8 rows: the inpainting results of the furnished
indoor scenes. Our method produces superior results in generating image contents that
align the layout structure well and are consistent with the surrounding of the masked
regions.
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– EC [28]: a two-stage adversarial network that comprises an edge completion model
followed by a generator.

– LISK [17]: a multi-task learning framework that exploits image structure embed-
ding and an attention mechanism in the generator.

– PanoDR [9]: a deep learning framework that combines image-to-image translation
with generator to condition the inpainting on the indoor scene structure.

The experiments were conducted on a public indoor panorama dataset, Structured3D [41],
which contains 21,835 indoor panoramas. The official data split is adopted for train-
ing(18,362), validation(1,776), and testing(1,697). We follow the same procedure as
PanoDR to generate mask images using contours of foreground furniture (see Section
3.1). We use the officially released implementation of baselines for training from scratch
and testing. Note that each indoor panorama in Structured3D has two representations of
the same scene (i.e., empty and furnished). Therefore, the experiments were conducted
in two phases to evaluate our model and baselines in different application scenarios
(i.e., structural inpainting vs. furniture removal).
Evaluation metrics. We take several commonly used image quality assessment met-
rics in previous inpainting approaches for quantitative evaluation. Specifically, we used
the low-level feature metrics, including Mean Absolute Error (MAE), Peak Signal-to-
Noise (PSNR), Structural Similarity Index (SSIM) [35], and Fréchet Inception Distance
(FID) [13].
Implementation details. We implement our model in PyTorch and conduct the exper-
iments on a single NVIDIA V100 with 32G VRAM. The resolution of the panoramic
images is resized to 512 × 256. We use Adam [21] optimizer in the training process
with the hyper-parameters setting of b1 = 0.0 and b2 = 0.9, a learning rate of 0.0001,
and a batch size of 8. We empirically set λrec = 1, λperc = 0.1, λsty = 250, λG = 0.1,
and λD = 0.5 in the total loss function (Equation 6). For HorizonNet [34], we use the
official pre-trained model for layout estimation.

5.2 Evaluation on the Empty Scenes

In this experiment, we evaluate both the qualitative and quantitative performance of
our model on the image inpainting task by comparing it with baselines. The qualitative
comparisons are shown in Figure 5 (top 8 rows). In contrast to EC and LISK, which
fail to restore image structures in the masked regions, our method faithfully gener-
ates image contents adhering to the underlying layout structure. While PanoDR shows
slightly better structure preservation than EC and LISK, it fails to generate image con-
tents consistent with the surrounding of masked regions as our method does. Therefore,
our method achieves the best performance against all the baselines across all evaluation
metrics as shown in Table 1 (top).

5.3 Evaluation on the Furnished Scenes

Furniture of irregular shape will more or less obscure the layout of the indoor scene,
making it more challenging to restore the regular structure in the missing area. There-
fore, in this experiment, we would like to evaluate how well our model learned from
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Table 1: Quantitative comparisons with state-of-the-arts. The top and bottom tables
summarize the performance of our model and baselines on the empty and furnished
scenes, respectively.

Dataset Method PSNR↑ SSIM↑ MAE↓ FID↓

Empty scene

EC [28] 38.6936 0.9892 0.0039 3.9480
LISK [17] 41.3761 0.9895 0.0055 4.1660
PanoDR [9] 37.2431 0.9884 0.0040 4.3591
Ours 41.8444 0.9919 0.0030 2.5265

Furnished scene

EC [28] 31.4439 0.9493 0.0076 11.9955
LISK [17] 34.7325 0.9553 0.0068 14.2676
PanoDR [9] 34.3340 0.9641 0.0051 7.8399
Ours 35.3923 0.9672 0.0047 7.2328

Table 2: Quantitative results of the ablation study. We evaluate the effectiveness of
our design choices by gradually adding the individual components into the architecture.

PSNR ↑ SSIM ↑ MAE ↓ FID ↓

Backbone 40.6449 0.9911 0.0034 3.3915
Layout map only 41.2884 0.9916 0.0033 2.8105
Full model 41.8444 0.9919 0.0030 2.5265

empty scenes can generalize to the furnished scenes. Since the inpainting task setup
here exactly matches the one defined in the PanoDR, we use the pre-trained model
of PanoDR in this experiment for a fair comparison. As shown in Figure 5 (bottom 8
rows), our method still clearly outperforms baselines in generating image contents that
align the layout structure well and are consistent with the surrounding of the masked
regions. The quantitative results are shown in Table 1 (bottom). It is worth noting that
the way PanoDR performs image completion via compositing the predicted empty im-
age and input image using the object mask will lead to severe artifacts where occlusion
occurred between foreground objects (see Figure 2(PanoDR)).

5.4 Ablation Study

Here, we conduct ablation studies to validate our model from different perspectives.
First, we evaluate the necessity of individual design choices in our architecture. Then,
we conduct two experiments to evaluate how sensitive our model is to the size of input
masks and the quality of input layout maps.
Ablation on network architecture. In this experiment, we start with the backbone
model (Backbone) as the baseline, then progressively adding only layout guidance
map (Layout map only), and our plane-aware normalization (Full model). As shown
in Table 2, we obtain the best performance with the full model on all the metrics. The
qualitative comparisons shown in Figure 6 indicate that adding layout guidance map
generates clear structure boundaries in the final result (2nd and 3rd columns), while our
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Input Backbone Layout map only Full model GT

Fig. 6: Qualitative results of the ablation study. Side-by-side comparisons of inpaint-
ing results generated using our method by gradually adding individual components.
From left to right, input images and masks, our baseline model (Backbone), adding
the layout guidance map (Layout map only), full model with our plane-aware nor-
malization (Full model), and ground truth images.

full model with plane-aware normalization can constrain the image generation to the
adjacent structural planes and obtain visually consistent results (3rd and 4th columns).

Sensitivity to the mask size. In this experiment, we analyze the testing dataset and
classify the images into different categories according to the area proportions of input
masks. Table 3 shows the inpainting performance for each category. We can tell that
the inpainting quality degrades with the increasing mask size. A significant drop occurs
where the ratio of input mask is greater than 30%.

Sensitivity to the layout estimation. In order to explore the effect of the accuracy
of layout estimation on the inpainting quality, we first devise a mechanism to generate
layout maps with different levels of accuracy. Specifically, we feed masked images of
different mask sizes into HorizonNet. We start by generating randomly located rect-
angle masks of 5% image size and increase the mask ratio to 10%, 30% and 50% to
deliberately produce layout structures with decreasing quality. Then we take these lay-
out maps as conditional inputs of our model and compare the inpainting performance
empty-room testing dataset. As shown in Table 4, our model degrades marginally when
the quality of estimated layouts decreases from 0.96 to 0.84, indicating our model is
robust to the varying input layout maps.
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Table 3: Mask size vs. inpainting quality.

Mask Size(%) Count
Content

PSNR ↑ SSIM ↑ MAE ↓

0-10 1045 44.3921 0.9967 0.0011
10-20 163 34.2823 0.9841 0.0055
20-30 48 30.4371 0.9726 0.0111
30-40 39 25.0731 0.9386 0.0266
40+ 13 24.2958 0.9345 0.0305
total 1308 41.8444 0.9919 0.0030

Table 4: Accuracy of layout estimation vs. inpainting quality.
Structure Content

mIOU ↑ PSNR ↑ SSIM ↑ MAE ↓ FID ↓

0.9603 42.3212 0.9925 0.0028 2.4322
0.9561 42.2871 0.9925 0.0028 2.4441
0.9175 42.0682 0.9923 0.0029 2.5624
0.8489 41.7300 0.9919 0.0030 2.8455

5.5 Qualitative Results on Real-world Scene

Real-world scenes have complex lighting and layout structure. However, the amount of
data in the real-world scene dataset and the quality of furniture category annotations
are insufficient for training our model, so we choose to train on the synthetic dataset
Structured3D [41]. Nevertheless, we still compare our results with PanoDR [9], which
also implements the furniture removal task, on the real-world scene dataset. Since the
real-world scene dataset does not contain paired data (i.e., scenes before and after furni-
ture removal), quantitative evaluation is infeasible and we can only provide qualitative
comparisons here. Figure 7 shows that our inpainted results have a higher quality of
structural maintenance and color restoration. Moreover, compared with PanoDR, we
can still exert more stable performance in real-world scenes. Please refer to our online
webpage for more results3.

6 Conclusions

We proposed an end-to-end structural inpainting network for the indoor scene. We in-
troduce layout boundary line conditions the output structure and utilize the plane-aware
normalization to enhance planar style consistency. Experiment results show the out-
standing performance of our model in both structural inpainting and furniture removal
on the indoor scene.

3 https://ericsujw.github.io/LGPN-net/
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Input EC [28] LISK [17] PanoDR [9] Ours

Fig. 7: Qualitative comparisons with state-of-the-arts on real-world scenes. Our
model clearly outperforms baselines by preserving layout boundary and restoring lo-
cal texture from adjacent room structures (i.e., floor and walls).

Input PanoDR [9] Ours

Fig. 8: Limitation. Both the state-of-the-art method and our model produce visual arti-
facts in the scenes presenting strong shading effect surrounding the removed furniture.

Limitations. In the real-world application of furniture removal, we can often see resid-
uals of shading effect caused by the removed furniture. These residuals are hard to
segment and even harder to model. As shown in Figure 8, our model is slightly affected
by these residuals but still produces more realistic results than PanoDR [9].

Future work. We plan to adopt a more reasonable segmentation mask of the indoor
scene inpainting which can cover the shading area and thus improve our results in those
shaded scenes.
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