
‘Labelling the Gaps’: A Weakly Supervised
Automatic Eye Gaze Estimation

Shreya Ghosh1, Abhinav Dhall1,2, Munawar Hayat1, and Jarrod Knibbe3

1 Monash University, 2 IIT Ropar, 3 University of Melbourne
{shreya.ghosh,munawar.hayat}@monash.edu, abhinav@iitrpr.ac.in,

jarrod.knibbe@unimelb.edu.au

Abstract. Over the past few years, there has been an increasing interest
to interpret gaze direction in an unconstrained environment with limited
supervision. Owing to data curation and annotation issues, replicating
gaze estimation method to other platforms, such as unconstrained out-
door or AR/VR, might lead to significant drop in performance due to
insufficient availability of accurately annotated data for model training.
In this paper, we explore an interesting yet challenging problem of gaze
estimation method with a limited amount of labelled data. The proposed
method utilize domain knowledge from the labelled subset with visual
features; including identity-specific appearance, gaze trajectory consis-
tency and motion features. Given a gaze trajectory, the method utilizes
label information of only the start and the end frames of a gaze sequence.
An extension of the proposed method further reduces the requirement of
labelled frames to only the start frame with a minor drop in the gener-
ated label’s quality. We evaluate the proposed method on four benchmark
datasets (CAVE, TabletGaze, MPII and Gaze360) as well as web-crawled
YouTube videos. Our proposed method reduces the annotation effort to
as low as 2.67%, with minimal impact on performance; indicating the
potential of our model enabling gaze estimation ‘in-the-wild’ setup1.

Keywords: Gaze estimation · Weakly-supervised learning · Neural net-
work.

1 Introduction

The ‘language of the eyes’ provides an insight into a complex mental state such
as visual attention [29] and human cognition (emotions, beliefs and desires) [52].
Accurate gaze estimation has wide applications in computer vision-related as-
sistive technologies [33,16] where the gaze is measured as a line of sight of the
pupil in 3D/2D space or 2D screen location [24]. Recent advances in computer
vision and deep learning have significantly enhanced the accuracy of gaze esti-
mation [15]. Most promising eye gaze estimation techniques either require spe-
cialized hardware (for example Tobii [34]) or use supervised image processing
solutions [62,46]. Device and sensor based gaze estimation methods are highly

1 https://github.com/i-am-shreya/Labelling-the-Gaps
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dependent on user assistance, illumination specificity, the high device failure
rate in an uncontrolled environment and constraints on the device’s working dis-
tance. On the other hand, supervised methods require a large amount of labelled
data for training. Manual labelling of human gaze information is a complex,
noisy, resource-expensive and time-consuming task. To overcome these limita-
tions, weakly-supervised learning provides a promising paradigm since it en-
ables learning from a large amount of readily available non-annotated data. Few
works [26,17,57,10] explore in this direction to eliminate the data curation and
annotation issue. However, these methods mostly investigate from a spatial anal-
ysis perspective. Human eye movement is a spatio-temporal, dynamic process
which is either task-driven or involuntary action. Thus, it would be interesting to
simplify the ballistic eye movement and curate large-scale training data for gaze
representation learning. To this end, we propose a weakly supervised eye gaze es-
timation framework. Our proposed technique reduces the requirement of a large
number of annotated training samples. We show that the technique can also be
used to facilitate the annotation process and reduce the bias in the data anno-
tations. The proposed method requires the ground truth labels of start and end
frames in a pre-defined gaze trajectory. We further refine this strategy where only
the start frame’s gaze annotation is required. Our proposed method significantly
reduces the annotation effort which could be beneficial for annotating large-scale
gaze datasets quickly. Moreover, it can be used in several applications such as
immersive, augmented and virtual reality [49,9] (especially in Foveated Rending
(FR)), animation industry [18,38] and social robotics [2,58], where unsupervised
or weakly supervised calibration is highly desirable. In Foveated Rending (FR),
gaze based interaction demands low latency gaze estimation to reduce energy
consumption. To achieve this, the virtual environment displays high-quality im-
ages only from the user’s point of view and blurs the peripheral region. Due to
the subsequent delays in the frame-wise gaze estimation pipeline, the usage of
FR is quite limited and mostly headpose direction is used to approximate the
field of view [9]. Our proposed method has the potential to bridge the gap and
reduce energy consumption by interpolating the gaze trajectory of the user. An-
other potential application includes animation industry [18,38]. Given the start
and end Point of Gaze (PoG) of a virtual avatar, our method can easily generate
realistic labels for intermediate frames to display realistic facial gestures in the
interaction environment [18,38]. Similarly, in social robotics, multi-modal gaze
control strategies have been explored for guiding the robot’s gaze. For example,
an array of microphones has been utilized [2] to guide the gaze direction of a
robot named Maggie. The other well-established methods include the usage of
infrared laser and multimodal stimuli (e.g., visual, auditory and tactile) for mod-
elling any known gaze trajectories [58]. Our proposed methods could eliminate
the aforementioned requirement of specialised hardware or pre-defined heuris-
tics to navigate the environment. The main contributions of the paper are as
follows:
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1. We propose two weakly supervised neural networks (2-labels, 1-label) for
gaze estimation. ‘2-labels’ and ‘1-label’ require the labels of two and one
frames in a gaze sequence, respectively.

2. We use task-specific information to bridge the gap between labelled and un-
labelled samples. Our proposed method leverages facial appearance, relative
motion, trajectory ordering and embedding consistency. This task-specific
knowledge bridge the gap between labelled and unlabeled samples via learn-
ing.

3. We evaluate the performance of the proposed networks in two settings: 1)
On benchmark datasets (CAVE, TabletGaze, MPII and Gaze360) and 2) On
unlabelled ‘in the wild’ YouTube data where ground truth annotation is not
available. Additionally, we perform cross-dataset experiments to validate the
generalizability of the framework.

4. We also demonstrate the effectiveness of our proposed techniques by re-
learning state-of-the-art eye gaze estimation methods with the labels gener-
ated by our method with very few prior annotations. The results indicate
comparable performance for state-of-the-art frameworks (for example, 3.8
degrees by pictorial gaze [37] and 4 degrees with our 2-label technique).

5. We also validate our learning based interpolation method on unlabelled
YouTube data where ground truth annotation is not available. Our exper-
imental results suggest that this annotation method can be useful for ex-
tracting substantial training data for learning gaze estimation models.

2 Related Work

Gaze Estimation. Recent advances in computer vision and deep learning tech-
niques have significantly enhanced the gaze estimation performance [37,24]. A
thorough analysis of gaze estimation literature is mentioned in a recent sur-
vey [15]. Appearance based gaze estimation methods [30,63,31] learn image to
gaze mapping either via support vector regression [46] or deep learning meth-
ods [27,63,59,60,23,12]. Among the deep learning based methods, supervised
learning methods [63,23,60,37] mostly encode appearance based gaze which re-
quire a large amount of annotated data. To overcome the limitation, few works
explore gaze estimation with limited supervision such as ‘learning-by-synthesis’
[48], hierarchical generative models [51], conditional random field [6], unsuper-
vised gaze target discovery [62], unsupervised representation learning [10,57],
weakly supervised learning [26], pseudo labelling [17] and few-shot learning [36,56].
Among these studies, the few shot learning approach required very few (≤ 9)
calibration samples for gaze inference. Our method requires even less data anno-
tation for gaze estimation (CAVE: 6.56%, TabletGaze: < 1%, MPII: 4.67% and
Gaze360: 2.38%).
Gaze Motion. Eye movements are divided into the following categories: 1) Sac-
cade. Saccades are voluntary eye movements to adjust the PoG in a visual field
and it usually lasts for 10 to 100 ms. 2) Smooth Pursuit. It is an involuntary
eye movement that occurs while tracking a moving visual target. 3) Fixations.
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Fig. 1: Weakly supervised labelling approach illustration. The zig-zag path
−−→
AD in the

left is an example of a human gaze movement. This path can further be broken into

several ‘gaze trajectories’ (
−→
AB,

−−→
BC and

−−→
CD). Given a gaze trajectory

−→
AB with gaze

annotation for A and B, the objective of this work is to annotate all the intermediate
unlabelled frames i.e. P1, P2 and P3. The right side is an example of a gaze trajec-
tory [63].

Fixations consist of three involuntary eye movements termed as tremor, drift
and microsaccades [11]. The main objective is to stabilize the PoG on an ob-
ject. Prior works along this line mainly used velocity based thresholding [25],
BLSTM [47], Bayesian framework [42], and hierarchical HMM [67] for classi-
fication. Arabadzhiyska et al. [3] model saccade dynamics for gaze-contingent
rendering. Our proposed method uses trajectory constrained gaze interpolation
using temporal coherency with limited ground truth labels.
Gaze Datasets. In the past decade, several datasets [46,13,21,60,59,12,24,14,35]
have been proposed to estimate gaze accurately. The dataset collection tech-
nique has evolved from constrained lab environments [46,61] to unconstrained in-
door [21,60,59,12,61] and outdoor settings [24]. To consider both the constrained
and unconstrained settings, we evaluate our weakly supervised framework in
CAVE [46], TabletGaze [21], MPII [60] and Gaze360 [24] datasets.
Weakly Supervised Neural Networks. Over the past few years, several
promising weakly supervised methods have been proposed which mainly infer
on the basis of prior knowledge [8,28], task-specific domain knowledge [64,4,65],
representation learning [53,66], loss-imposed learning paradigms [4,41] and com-
binations of the above [4]. Williams et al. [54] propose a semi-supervised Gaus-
sian process model to predict the gaze. This method simplifies the data collection
process as well. Bilen et al. [8] use pre-trained deep CNN for the object detection
task. Arandjelovic et al. [4] propose a weakly supervised ranking loss for the place
recognition task. Haeusser et al. [19] introduce ‘associative learning’ paradigm,
which allows semi-supervised end-to-end training of any arbitrary network ar-
chitecture. Unlike these studies, we explore loss-imposed domain knowledge for
our framework.

3 Preliminaries

Gaze Trajectory. Human eye movement follows an arbitrary continuous path
in three-dimensional space termed as the ‘gaze trajectory’ [40]. Gaze trajectories
generally depend on the person, context and external factors [32]. Eye movements
can be divided into three types: fixations, saccades and smooth pursuit [40].
Fixation occurs when the gaze may pause in a specific position voluntarily or
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involuntarily. Conversely, gaze moves from one to another position for a saccade.
The human gaze consists of a series of fixations and saccades in random order.
In this work, we consider a small duration of eye movement from one position
to another. Let us assume, the zig-zag path (left of Fig. 1) is an example of the
human gaze movement path. This path can be divided into three small sub-paths

(
−−→
AB,

−−→
BC and

−−→
CD). We conduct our experiments on each such small sub-path.

We use the term ‘gaze trajectory’ to refer to this simplified version of the gaze

path (i.e.
−−→
AB). The red points (P1, P2 and P3) in

−−→
AB are the frames in the A to

B sequence. Considering these as discrete, they can be split into 3-point subsets
with a constraint: each subset should contain the start and endpoints and the
points should maintain the order of trajectory sequence. We term the 3 points
set as 3-frame set. For example, {A,P1, B}, {A,P2, B} and {A,P3, B} are three
3-frame sets.
Problem Statement. In the context of a video, the points (A, P1, P2, P3 and
B) are frames in a specific trajectory order. Throughout this paper, we term A
and B as start and end frames. Given the annotated start and end frames, the
gaze trajectory sequence can be divided into small segments. There might be a
high and insignificant temporal coherence if the segment duration is too small.
On the other hand, a longer duration could affect the learning of meaningful
representation due to diversity. We observed that the average difference in large
time segment consisting of approx. ∼ 80 frames is around ∼ 35°. On the other
hand, the smallest segment has angular difference of < 1°. On this front, from a
long sequence, we mine 3-frame subsets of gaze trajectory for learning meaningful
representation. We work on two experimental settings: (a) 2-labels: When the
start and end frame annotations are available. (b) 1-label: When only the start

frame annotation is available. Given a gaze trajectory similar to
−−→
AB with labels

for A and B, the objective of this work is to annotate the unlabelled frames i.e.
P1, P2, P3, . . .Pn where, n is the number of intermediate frames.
Notations. Suppose that we have a set of N ‘3-frame set’ samples in a dataset
D = {Xn, Ysn , Yen}Nn=1, where Xn is a nth 3-frame set consisting of start, mid-
dle/unlabelled and end frames (fs, ful, fe)n, Ysn and Yen are the nth start and
end frame labels, respectively. Lets assume our model G with learnable pa-
rameter θ maps input Xn ∈ R3×100×50×3 to the relevant label spaces i.e.,
Ysn ∈ R3, Yuln ∈ R3 and Yen ∈ R3. The mapping function is denoted as
Gθ : Xn → {Ysn , Yuln , Yen}.

4 Gaze Labelling Framework

4.1 Architectural Overview of ‘2-labels’

The overview of the proposed framework is shown in Fig. 2. Given a 3-frame set
Xt : {fs, ful, fe}, we define an encoder E which maps the inputXt to latent space
Zt : {Zs, Zul, Ze}, where Zs ∈ R2048, Zul ∈ R2048, Ze ∈ R2048 (Refer Fig. 2 Left).
After E : Xt → Zt mapping, two motion features Ms ul and Mul e are extracted
between start-middle frames and middle-end frames. These motion features are
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concatenated with the latent embeddings. On top of it, Fully Connected (FC)
layers having 512 and 1024 nodes are appended before prediction. Finally, the
network predicts Y p

s , Y
p
ul and Y p

e , where, Y
p
s , Y

p
ul and Y p

e are gaze information
corresponding to the input frames {fs, ful, fe}. The backbone network is not
architecture-specific, although we use VGG-16 [45] and Resnet-50 [20] for our
experiments. The rationale behind the framework design is explained as follows:

Identity Adaptation The obvious usefulness of user adaptation of gaze cali-
bration for AR and VR devices motivates us to design an identity specific gaze
labelling framework [43]. Thus, we purposefully select identity specific 3-frame
sets. At the same time, it is important for the framework to be able to learn
the variations across a large number of subjects with a different head pose, gaze
direction, appearance, illumination, image resolution and many other configu-
rations. Additionally, the framework should encode rich features relevant to eye
region appearance, which is the most important factor for weakly supervised
gaze labelling. Similar to recent studies [59,36], we use eye region images as in-
put for gaze inference. The 3-frame set is selected over a small duration temporal
window in a video. As there is a subtle change in the appearance of eyes from
one frame to another, the latent representation of the image also has minimal
change. At a conceptual level, we are motivated by the smoothness constraint
in optical flow algorithms. We choose to calculate cosine distance between start
and middle, middle and end pair while calculating consistency loss. It helps in
preserving the identity specific features across the 3-frame set.

Motion Feature. At first glance, the task of predicting gaze from sparsely la-
belled data may seem overly challenging. However, given a ‘3-frame set’ sequence
of a subject in very small time duration, there will be a high correspondence be-
tween frame A, Pi and B, where i = {1, 2, 3}. Given this constraint, the objective
is reduced to modelling the head and eye motion information to bridge the gap.
This motivates us to use motion features for sequence modelling. Similar to [7]
in pose estimation domain, we encode a weak inter-frame motion by computing
the ℓ1 distance between two consecutive frames in the latent space. We define
motion feature by Ms ul ⊕Mul e where Ms ul = Zs −Zul and Mul e = Zul −Ze.
Ms ul and Mul e represent motion feature between start-middle and middle-end
frames, respectively. Further, we use this feature to estimate the gaze-direction
in a given trajectory. To train the above-mentioned network, we use the following
loss functions.

Regression Loss. Corresponding to each 3-frame set Xt, the start and end
frames are annotated in the 2-labels setting. These annotations provide strong
supervisory information to predict the gaze information of the middle unlabelled
frame. It provides information regarding an arbitrary gaze trajectory. The unla-
belled middle frame lies in between start and end frames in that specific trajec-
tory. Thus, it belongs to the same distribution of the start and end frames. The
regression loss is defined as: lreg = MSE(Ys, Y

p
s ) +MSE(Ye, Y

p
e ) Here, MSE is

Mean Squared Error, Ys, Y
p
s , Ye and Y p

e are start label, predicted start label,
end label and predicted end label, respectively.
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Labelling the Gaps 7

Fig. 2: Overview of ‘2-labels’ and ‘1-label’ network pipelines. The frameworks take 3-
frame set as input and learn to interpolate intermediate labels via weak supervision.
Refer Sec. 4 for more details.

Consistency Loss. The main aim of the consistency loss is to maintain con-
sistency between latent and label space. Here, latent space is denoted as Z and
label space is the output space of the ‘2-labels’ framework. In the latent space, let
the distance between Zs and Zul be dzs ul and the distance between Zul and Ze

be dzul e. Similarly in the label space, let the distance between Y p
s and Y p

s be dys ul

and the distance between Y p
s and Ye be dyul e. According to our hypothesis, the

distance from start to unlabelled frame and unlabelled to end frame remains con-
sistent. The loss is defined as follows: lconsistency = {|dys ul−dzs ul|+|dyul e−dzul e|}

In the equation, the cosine distance is considered. The rationale behind the
choice is as follows: the cosine distance is applied pairwise to utilize the partial
annotations and bridge the gap between labelled and unlabelled frames. The
distance has following properties: it leverages the identity specific information
across the 3-frame set and it captures the motion-similarity information which
indirectly encodes relative ordering of the frames. The angular distance (da b)
between the frames a and b is defined as follows: da b = a

||a||2 .
b

||b||2 where, a

and b are latent or label space embeddings of the start, unlabelled and end
frames. ‘(.)’ denotes the dot product. According to [5], this term is calculated
in two stages. First, the latent embeddings are L2-normalized (i.e. a

||a||2 ), which

maps the d-dimensional latent embedding to a unit hyper-sphere, where the
cosine similarity/distance and dot product are equivalent. As the human gaze
follows a spatio-temporal trajectory [40], the 3-frame sets satisfy their relative
trajectory ordering as well. The condition is satisfied by the consistency loss as
it incorporates their relative position w.r.t. the middle unlabelled frame from
label space to the latent space.
Overall Loss Function. The final loss function is defined below:

Loss = λ1lreg + λ2lconsistency (1)

It includes regression and consistency losses. Here, λ1,2 are the regularization
parameters. Further, we reduce the label requirement (by removing the require-
ment of the end frame’s label) in the next framework with minimal impact in
the performance.
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4.2 Architectural Overview of ‘1-label’

The network architecture of 1-label network is shown in Fig. 2 Right. Similar
to the 2-labels network, the motion feature and identity specific appearance are
leveraged for gaze estimation. The main motivation for moving from 2-labels
to 1-label architecture is to leverage rich features with even lesser number of
total annotations in a dataset. In ‘1-label’ architecture, we have additional de-
coder module defined as D(Z ′

e;ϕD) consisting of an FC layer. The decoder D,
parameterized by ϕD, maps the penultimate layer features (i.e. Z ′

e ∈ R1024) to
latent-embeddings Zr

e ∈ R2048. The rationale behind this remapping is adding
constraints which can enhance the performance of the network by encoding
meaningful representation from fe. l2 loss is computed between Ze and Zr

e . The
backbone network is not architecture-specific similar to the 2-labels architecture,
although we use VGG-16 [45] and Resnet-50 [20] as backbone networks for our
experiments. To train this network, we use the following loss functions:
Regression Loss. Similar to 2-labels architecture, we compute the regression
loss corresponding to the start label as follows: lreg = MSE(Ys, Y

p
s ) Here, MSE

is mean squared error, Ys and Y p
s are start and predicted start label, respectively.

Consistency Loss. Similar to 2-labels, in the 1-label technique, we add the
consistency loss lconsistency. The loss is defined as follows: lconsistency = {|dys ul−
dzs ul|} Here, dys ul and dzs ul are distance between start and unlabelled frame in
label and latent space, respectively.
Similar Distribution. We leverage on the constraint that the gaze information
belongs to similar distribution. Given a 3-frame set Xt, the output gaze should
belong to a specific distribution and for that we compute Kullback-Leibler di-
vergence (KL). To computes KL divergence loss between Ytrue and Ypred, the
following equation is followed: loss = Ytrue(log

Ytrue

Ypred
). The objective function

ldivergence is the loss term to minimize the divergence between the gaze informa-
tion of start and unlabeled frames, defined as follows: ldivergence = (KL(Ys, Yul))
Embedding Loss. It is the ℓ2 loss computed between Ze and Zr

e . This pattern
is predicting future embeddings from prior knowledge.
Overall Loss Function. The final loss function for ‘1-label’ is an ensemble of re-
gression, consistency, similar distribution and embedding losses, where, λ1 · · ·λ4

are the regularization parameters.

Loss = λ1lreg + λ2lconsistency + λ3ldivergence + λ4lembedding (2)

5 Experiments

On Benchmark Datasets. We validate the proposed methods on 4 benchmark
datasets: CAVE, Tabletgaze, MPII and Gaze360. These datasets are collected
in fully constraint (CAVE), less constrained (Tabletgaze and MPII) and uncon-
strained (Gaze360) environments.
Automatic 3-frame set mining: The first step to implement our proposed method
is 3-frame set mining. For generating 3-frame sets, we perform dataset-specific
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Table 1: Comparison of benchmark dataset statistics to show the amount of images in
the original data and derived data (3-frames set mined).

Dataset Original Dataset Derived Dataset

CAVE [46] 5,880 3,024

MPII [63] 213,659 32,751

TabletGaze [21] 1,428 min 108,524

Gaze360 [24] 172,000 197,588

pre-processing as the datasets are collected in different setups. Please note that
we require ground truth labels to define the gaze trajectories, especially for
CAVE and MPII datasets as temporal information is not present. Moreover, the
annotated subset required for weak supervision is a special subset which contains
start and end frame of the trajectories. Additionally, there is no temporal overlap
between 3-frame sets for any of the datasets. Table 1 shows the comparison
among dataset statistics to show the amount of images in the original data and
derived data (3-frames set mined used for weak-supervision). See supplementary
material for more details.

On unlabelled ‘in the wild’ YouTube data. We evaluate our method on an
‘in the wild’ data i.e. when the expert/ground truth labels are not available. We
leverage two eye symmetry property i.e. the change in relative position of the iris
is symmetrical while scanning 3D space [10]. We collect approximately 400,000
frames from YouTube videos using this strategy. The details are mentioned in
the supplementary material.

Experimental Settings. We define the following terminologies for easy navi-
gation in the upcoming sections. 1) Original Data (OD): It refers to benchmark
dataset’s unaltered data; 2) Derived Data (DD): 3-frame set mined data de-
rived from OD; 3) Original Labels (OL): Original ground-truth labels provided
with OD; and 4) Predicted Labels (PL): Labels predicted from ‘2-labels’ and
‘1-label’ methods (i.e. Y p

ul). We perform experiments with the following settings:
1) Validation w.r.t. Ground Truth Labels. First, we applied ‘3-frame set
mining’ to obtain the DD (Refer Table 1) from OD. Further, we split the DD
into 80%-20% train-test splits without any identity overlap. We evaluate our
proposed method with OL. 2) Label Quality Assessment via State-of-the-
art Methods’ Performance. We train the state-of-the-art methods [37,21,24]
on PL and validate on OL for label quality assessment. 3) Experiments with
Different Data Partitions. We train state-of-the-art models [37,21,24] with
different input data settings as follows: a) start and end frames of 3-frame sets,
b) 50% of the whole data and c) newly labelled frames. 4) Ablation Studies.
We have conducted extensive ablation studies to show the importance of loss
function, motion feature, sequential modelling and regularization parameters.
5) Gaze Labelling ‘in the wild’. We collect ‘in the wild’ gaze data from
YouTube videos having creative common licence and compare the label quality
with various model based techniques [50,55,22].
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Table 2: Comparison of ‘2-labels’ and ‘1-label’ techniques using MAE, CC and Angular
Error. Both frameworks with both VGG-16 and ResNet-50 backbone are trained on
80% of the Derived Data (DD, i.e. 3-frame set mined) and validated on 20% of the
DD. This 80%-20% partition does not have any identity overlap. Here, MAE: Mean
Absolute Error, CC: Correlation Coefficient, TG: TabletGaze.

VGG-16 ResNet-50
Dataset 2-labels 1-label 2-labels 1-label 2-labels 1-label

MAE CC MAE CC MAE CC MAE CC
Angular Error
(in °, TG: in cm)

CAVE 0.29 0.85 0.53 0.21 0.25 0.90 0.43 0.25 3.05 3.30
MPII 0.43 0.62 0.57 0.25 0.42 0.63 0.57 0.25 5.00 5.40

Gaze360 0.38 0.69 0.45 0.42 0.34 0.71 0.40 0.70 15.00 15.80
TabletGaze 0.49 0.54 0.50 0.58 0.47 0.55 0.49 0.55 2.27 2.61
YouTube

‘in the wild’
0.27 0.90 0.36 0.81 0.24 0.92 0.34 0.86 9.41 12.07

Further, we did perform additional experiments to evaluate the generalizibity of
the proposed method. See supplementary material for cross dataset evaluation.
Evaluation Metrics. For quantitative evaluation, we use Mean Absolute Error
(MAE), Correlation Coefficient (CC) and Angular Error (in °). Following each
database’s evaluation protocol, we follow ‘leave-one-person-out’ for MPII, cross-
validation for CAVE and TabletGaze; and train-val-test partitions for Gaze360
dataset. We randomly split the 3-frame sets into 80%-20% training and test-
ing sets. For a fair comparison between the datasets, we estimate the errors in
normalized space i.e. we apply min-max normalization to the labels to map it
to a [0-1] range. Additionally, we compute angular error (in °) except for the
TabletGaze dataset, for which we compute the error in cm (similar to [21]). To
compare with the state-of-the-art methods, we use similar evaluation protocols
mentioned in the respective studies. See supplementary material for more details.
Training Details. After the 3-frame set mining, we apply Dlib face detector [44]
for eye detection. If face detection (dlib) fails especially for Gaze360 dataset, we
use cropped headpose provided with the dataset2. Otherwise, we use the resized
input image. For the backbone network, we choose VGG-16 [45] and ResNet-
50 [20] architectures. For training, we use SGD optimizer with 0.001 learning
rate with 1 × e−6 decay per epoch. The values of λ1 · · ·λ4 are 1. In each case,
the models are trained for 1,000 epochs with batch size 32 and early stopping.

6 Results

Gaze Labelling and Estimation Performance Comparison. To show the
effectiveness of the proposed method, we evaluate on four benchmark datasets
and YouTube data. First, we applied 3-frame set mining to get the derived data
(Refer Table 1). Further, we split the derived data randomly into train and test
sets (train set: 80% and test set: 20%). Please note that the test set does not

2 https://github.com/erkil1452/gaze360/tree/master/dataset
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Table 3: Results of the re-trained state-of-the-art methods on MPII and CAVE dataset
in terms of angular error in °. OP=Original Predictions is the result as mentioned in
the original papers [37].

Dataset Method Alexnet VGG 16
Pictorial Gaze

[37]

C
A
V
E OP 4.20 3.90 3.80

2-labels 4.10 4.46 4.00
1-label 4.55 4.84 4.36

M
P
II OP 5.70 5.40 4.50

2-labels 5.90 5.79 4.70
1-label 6.30 6.20 4.90

Train:YouTube
CAVE – – 3.90
MPII – – 4.57

Table 4: Results of the re-trained methods on TabletGaze and Gaze360 dataset in
terms of angular error in ° and cm. OP=Original Predictions (based on manual anno-
tation) is the result as mentioned in the [24,21].

TabletGaze
mHOG+SVR

[21]

OP 2.50
2-labels 2.70
1-label 3.10

Train:YouTube 2.30

Gaze360
Pinball LSTM

[24]

OP 13.50
2-labels 14.40
1-label 17.20

Train:YouTube 12.80

have identity overlap with training partition. The results are mentioned in Ta-
ble 2 in terms of MAE, CC and angular error. We use VGG-16 and Resnet-50
as backbone networks to show the impact of different network architectures.
Quantitatively, ResNet-50 performs slightly better than the VGG-16. From Ta-
ble 2, it is also observed that ‘2-labels’ technique is closer to the original label
distribution as compared to the ‘1-label’ technique due to the absence of super-
visory signal (i.e. absence of end frame label). Due to high-resolution images in
CAVE dataset, generated labels’ similarity as compared with original labels is
high for ‘2-labels’ setting. Instead of sequential modelling, our loss imposed gaze
estimation method improves model performance.

Comparison with State-of-the-art Methods. We also evaluate the label
generation quality of our proposed methods. For this purpose, we conduct ex-
periments by training existing state-of-the-art methods [37,24,12,21] with the
labels predicted from our method. The state-of-the-art network’s performance is
measured by comparing with the original ground truth labels. The performance
comparison is mentioned in the Table 3 and 4. For [37,24], we use author’s
GitHub implementations [1]. It is observed that ‘2-labels’ performs better than
‘1-label’ for all the datasets. For CAVE dataset, ‘gazemap’ based method [37] for
‘2-labels’ (i.e. 4.08°) performs better than other settings. It is to be noted that
the results of re-trained methods are comparable to when they were trained with
the original labels. By using less than 5% labelled data (For MPII 4.67% and
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Table 5: Performance comparison for dif-
ferent input data settings with the state-
of-the-art methods on MPII, CAVE,
TabletGaze (TG) and Gaze360 dataset.
NL: Newly Labelled, SF: Start Frame, EF:
End Frame.

Dataset CAVE TG Gaze360 MPII
Method [37] [21] [24] [37]

(SF+EF) 7.14 8.60 22.10 6.10
50% data 5.50 4.50 18.70 5.40
2-labels 4.00 2.70 14.40 4.70
NL frames 4.30 3.00 14.90 4.30
1-label 4.36 3.10 17.20 4.90

Table 6: Ablation study: effect
of loss functions for ‘2-labels’
(Eq. 1) & 1-label (Eq. 2). NA:
Not Applicable

Loss
MAE

(2-labels)
MAE
(1-label)

lreg 0.98 0.99
lreg + lconsistency 0.42 0.76
lreg + lconsistency + ldivergence

(for 1-label)
NA 0.58

lreg + lconsistency + ldivergence
+lembedding (for 1-label)

NA 0.57

Gaze360 2.38%), the labels generated by our weakly-supervised method perform
favourably when evaluated on state-of-the-art methods [37,24]. This shows the
usefulness of our weakly-supervised approach of label generation.

Re-train State-of-the-art Methods with Subset of Data.To further val-
idate the generated labels, we perform following experiments: we re-train from
scratch [37], [21] and [24] using the following labelled sets independently: a)
start and end frames of 3-frame sets only, b) 50% of originally labelled train-
ing data, c) frames with labels generated with 2-labels method, d) frames with
labels generated with 2-labels method apart from start and end frames, and e)
frames with labels generated with 1-labels method. The results are shown in Ta-
ble 5. When we train the networks with start and end frames, the error is high
as the start and end frames consist of < 10% of the whole dataset. When we
use 50% of the whole labelled data, the results significantly improve. Similarly,
for newly labelled frames, the error is less as compared to above two settings.
Please note that in the newly labelled case the training is performed on 90-95%
of the training data. These results validate the quality of labels generated by our
methods.

Ablation Studies.

Impact of Loss Function. We progressively integrate different parts of our
method. We assess the impact of each loss term mentioned in Eq. 1 and Eq. 2
by considering them one at a time during learning on the MPII dataset. The
results are shown in Table 6. For ‘2-labels’ and ‘1-label’, if only regression loss
is considered, the error is high for the two techniques (0.98 and 0.99). We argue
that this could be due to lack of domain knowledge. Further, consistency loss is
added to the network, which reduces the error (0.42 and 0.76) significantly for
both settings. On the other hand, KL divergence based loss is added to the ‘1-
label’ framework, which again reduces the error significantly from 0.76 to 0.58.
Additionally, embedding loss is introduced to consider future frame consistency,
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though we note that for MPII, the change in MAE is very less (i.e. from 0.58 to
0.57). These experiments clearly establish the individual importance of each of
the proposed loss terms in our framework.

Impact of Motion Feature. To judge the impact of the motion feature, we
evaluate the performance of ‘2-labels’ on the CAVE dataset without using the
motion feature i.e. the latent space features are directly concatenated (Refer
Fig. 2). The results suggests that with the motion feature the MAE is reduced
from 0.34 to 0.25. Thus, it is important to include this information in the frame-
work.

Sequential Modelling Vs ‘2-labels’. We incorporate an LSTM module hav-
ing 3 steps instead of the whole pipeline. The input to the LSTM module is 3-
frame set and it estimate the gaze of the unlabelled frame. The MAE is quite high
(i.e. 0.95) as compared to our ResNet-50 based ‘2-labels’ framework (i.e. 0.25).
The possible reason for this performance enhancement owes to task-relevant
losses posed within very small temporal information.

Table 7: Comparison of model based meth-
ods on YouTube data. MAE: Mean Abso-
lute Error, AE: Angular Error.

Method MAE AE
2-labels 0.24 9.41

[50] 0.74 15.30
[55] 0.52 13.90
[22] 0.57 14.01

Gaze Labelling ‘in the wild’. The
best results on the collected data in
terms of MAE and CC are mentioned
in the last row of Table 2. The an-
gular errors w.r.t. the SLERP [39] for
‘2-labels’ and ‘1-label’ are 9.41° and
12.07°, although SLERP is a weak
baseline to compare eye gaze in an
unconstrained environment. When we
use the generated labels on YouTube
dataset to complement the other
dataset, the performance improves for
TabletGaze and Gaze360 (see Table 3
and 4). For adapting the SOTA methods (Table 3 and 4), we fine-tune the models
following standard protocol [10,56]. The results suggest that the network learns a
meaningful representation. Moreover, we compare our method with model based
approaches [50,55,22]. The results are depicted in Table 7. From the table, it is
observed that our proposed method outperforms model based methods.

Qualitative Analysis.Fig. 3 illustrates few examples of gaze trajectories along
with the predictions of the proposed method. The trajectories consist of start,
unlabelled and end frames and the trajectory length is not limited to 3. During
training, the proposed method takes start, end and one of the unlabelled frame as
input. Please note that the eye patch cropped from the facial images are used as
input. In the ‘2-labels’ case, the ground truth labels of both start and end frames
are provided for weak supervision. In Fig. 3, the green and red arrow indicates
ground truth and predicted gaze direction. For better understanding, we plot the
gaze direction corresponding to each eye originated from detected pupil center.
This qualitative analysis indicates that our weakly supervised method learns to
interpolate gaze labels efficiently from terminal frames of a trajectory.
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Fig. 3: Few examples of gaze trajectories along with qualitative prediction results. Here,
red and green arrow represent predicted and ground truth gaze direction, respectively.

7 Limitations, Conclusion and Future Work

Our study introduces a weakly-supervised approach for generating labels for in-
termediate frames in a defined gaze trajectory. The proposed frameworks lever-
age task-specific domain knowledge i.e. trajectory ordering, motion and appear-
ance features etc. With extensive experiments, we show that the labels generated
by our methods are comparable to the ground truth labels. Further, we also show
that the state-of-the-art existing techniques re-trained using the labels generated
by our method give comparable performance. This applies that with just 1%-
5.6% labelled data (dependent on the dataset) training can be performed with
performance comparable to when 100% training data is available. Further, we
also propose a technique to collect and label eye gaze ‘in the wild’. The pro-
posed method can be used for other computer vision based applications (e.g.
gaze tracking devices for AR and VR) without the prior need of having to use
the whole labelled dataset during training. Main limitations of our study are the
fixed gaze trajectory requirement, inclusion of eye-blink and near frontal face.
In the future, we will investigate subject specific gaze estimation in challenging
situations such as low-resolution images, uneven illumination conditions and ex-
treme head-poses. Although our methods consider gaze annotation in few of the
aforementioned diverse conditions, it would be interesting to have more in-depth
study in this domain.
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