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Abstract. Recently, Neural Radiance Fields (NeRF) is revolutionizing
the task of novel view synthesis (NVS) for its superior performance.
In this paper, we propose to synthesize dynamic scenes. Extending the
methods for static scenes to dynamic scenes is not straightforward as
both the scene geometry and appearance change over time, especially
under monocular setup. Also, the existing dynamic NeRF methods gen-
erally require a lengthy per-scene training procedure, where multi-layer
perceptrons (MLP) are fitted to model both motions and radiance. In
this paper, built on top of the recent advances in voxel-grid optimization,
we propose a fast deformable radiance field method to handle dynamic
scenes. Our method consists of two modules. The first module adopts a
deformation grid to store 3D dynamic features, and a light-weight MLP
for decoding the deformation that maps a 3D point in the observation
space to the canonical space using the interpolated features. The second
module contains a density and a color grid to model the geometry and
density of the scene. The occlusion is explicitly modeled to further im-
prove the rendering quality. Experimental results show that our method
achieves comparable performance to D-NeRF using only 20 minutes for
training, which is more than 70× faster than D-NeRF, clearly demon-
strating the efficiency of our proposed method.

Keywords: Dynamic View Synthesis · Neural Radiance Fields · Voxel-
grid Representation · Fast Optimization.

1 Introduction

Novel view synthesis (NVS) is a long-standing problem in computer vision and
graphics, and has many applications in augmented reality, virtual reality, con-
tent creation, etc. Recently, neural rendering methods have achieved signifi-
cant progress in this problem [31,60,34]. In particular, the neural radiance fields
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Fig. 1. Neural Deformable Voxel Grid (NDVG) for fast optimization of dynamic
view synthesis. Left side of the figure shows that our method achieves a super fast
convergence in 20 minutes, which is 70× faster than the D-NeRF method. Right side
of the figure visualizes the results after training with 1, 5 and 20 minutes.

(NeRF) [31] produces photorealistic rendering by representing a static scene with
a multi-layer perception (MLP), which maps a 5D input (3D coordinate and 2D
view direction) to its density and color. Recently, a series of works extend NeRF
based framework from static scenes to dynamic scenes [13,22,58,52,35,39,55,8].

Novel view synthesis of a dynamic scene from a monocular video is still a
very challenging problem. Besides the difficulties to recover motions and geome-
tries with only one observation at each time step, the training process usually
takes days which hinders applications in practice. The NeRF based methods, at
each iteration, require millions of network queries to obtain colors and densities
of the sampled points for the sampled rays, based on which volume rendering
computes the pixel colors [18]. In dynamic condition, the methods are even more
complex with deformation model, e.g ., D-NeRF [39] optimizes a large deforma-
tion network and a canonical network to fit a dynamic scene, requiring more
than 27 hours to converge. How to develop an efficient and accurate dynamic
view synthesis method remains an open problem.

In a static scenario, to reduce the training time for a scene, some methods pro-
pose first to train the model on a dataset consisting of multiple scenes [5,65,53,56],
and then finetune it on the target scene, reducing the optimization time to sev-
eral minutes. However, these methods rely on a large training dataset and a
lengthy pre-training time.

Very recently, the voxel-grid representation has been exploited to speed up
the optimization of radiance fields [64,48,32]. These methods are able to opti-
mize a scene representation from scratch within just a few minutes, significantly
accelerating the training speed without any pre-training. The key idea is to re-
place the time-consuming deep network query with the fast trilinear voxel-grid
interpolation. However, these methods are tailored for static scenes and cannot
be directly applied to handle dynamic scenes.
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To the best of our knowledge, there are few works for fast optimization dy-
namic NeRF. Also, it is challenging to design a compact deformation model,
while having enough capacity. In this paper, we propose a fast optimization
method, named NDVG for dynamic scene view synthesis based on the voxel-grid
representation. Our method consists of a deformation module and a canonical
module. The deformation module maps a 3D point in the observation space to
canonical space, and volume rendering is performed in the canonical space to
render the pixel color and compute image reconstruction loss. In contrast to
static scene applications where the occlusion is only determined by the viewing
direction when the scene is known, the occlusion in the dynamic scene NeRF
is determined by both view direction and motion (or view time) and should be
taken well care of. Hence, we designed a particular occlusion handling module
to explicitly model the occlusion to further improve the rendering quality.

In summary, the key contributions of this paper are as follows:

• We propose a fast deformable radiance field method based on the voxel-
grid representation to enable space-time view synthesis for dynamic scenes.
To the best of our knowledge, this is the first method that integrates the
voxel-grid optimization with deformable radiance field.

• We introduce a deformation grid to store the 3D dynamic features and adopt
a light-weight MLP to decode the feature to deformation. Our method ex-
plicitly models occlusion to improve the results.

• Our method produces rendering results comparable to D-NeRF [39] within
only 20 minutes, which is more than 70× faster (see Fig. 1).

2 Related Work

Novel View Synthesis Rendering a scene from arbitrary views has a long
history in both vision and graphics [4,6,21,14], and surveys of recent methods
can be found in [44,50,49]. Traditional methods need to explicitly build a 3D
model for the scene, such as point clouds [1] or meshes [42,43,51,16], and then
render a novel view from this geometry. Another category of methods explicitly
estimates depth and then uses it to warp pixels or learned feature to a novel view,
such as [19,37,7,42,43,11,59]. Numerous other works using multi-plane images
(MPIs) to represent scenes [10,30,46,47,69,54,17,15], but the MPIs representation
can only support relatively limited viewpoint changes during inference.
Neural Scene Representation Recently, neural scene representations dom-
inate novel view synthesis. In particular, Mildenhall et al . propose NeRF [31]
to use MLPs to model a 5D radiance field, which can render impressive view
synthesis for static scenes captured. Since then, many follow-up methods have
extended the capabilities of NeRF, including relighting [3,45,68], handling in-
the-wild scenarios [29], extending to large unbounded 360◦ scenes [66], removing
the requirement for pose estimation [57,23], incorporating anti-aliasing for multi-
scale rendering [2], and estimating the 6-DoF camera poses [61].
Fast NeRF Rendering and Optimization Rendering and optimization in
NeRF-like schemes are very time-consuming, as they require multiple samples
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along each ray for color accumulation. To speed up the rendering procedure,
some methods predict the depth or sampling near the surface to guide more
efficient sampling [33,38]. Other methods use the octree or sparse voxel grid to
avoid sampling points in empty spaces [26,64,28]. In addition, some methods
subdivided the 3D volume into multiple cells that can be processed more effi-
ciently, such as DeRF [40] and KiloNeRF [41]. AutoInt [24] reduces the number
of evaluations along a ray by learning partial integrals. However, these methods
still need to optimize a deep implicit model, leading to a lengthy training time.
To accelerate the optimization time on a test scene, some methods first train the
model on a large dataset to learn a scene prior, and then finetune it on the target
scene [5,53,65,56]. However, these methods require time-consuming pretraining.

More recently, the voxel-grid representation has been exploited to speed up
the optimization of radiance field [63,48,32]. Plenoxels [63] represents a scene
as a 3D grid with spherical harmonics, which can be optimized from calibrated
images via gradient methods and regularization without any neural components.
Similarly, DVGO [48] optimizes a hybrid explicit-implicit representation that
consists of a dense grid and a light-weight MLP. Although these methods achieve
a fast optimization speed, they are only applicable to static scenes and thus
cannot be used to render dynamic scenes.
Dynamic Scene Modeling Recently, several concurrent methods have ex-
tended NeRF to deal with dynamic scenes [13,22,58,52,35,39,55,8].

NeRFlow [8] learns a 4D spatial-temporal representation of a dynamic scene
from a set of RGB images. Yoon et al . [62] propose to use an underlying 4D
reconstruction, combining single-view depth and depth from multi-view stereo
to render virtual views with 3D warping. Gao et al . [13] jointly train a time-
invariant model (static) and a time-varying model (dynamic), and regularize the
dynamic NeRF by scene flow estimation, finally blending the results in an unsu-
pervised manner. NSFF [22] models the dynamic scene as a time-variant contin-
uous function of appearance, geometry, and 3D scene motion. DCT-NeRF [55]
uses the Discrete Cosine Transform (DCT) to capture the dynamic motion and
learn smooth and stable trajectories over time for each point in space.

D-NeRF [39], NR-NeRF [52] and Nerfies [35] first learn a static canonical
radiance field for capturing geometry and appearance, and then learn the defor-
mation/displacement field of the scene at each time instant w.r.t. the canonical
space. Xian et al . [58] represent a 4D space-time irradiance field as a function
that maps a spatial-temporal location to the emitted color and volume density.

Although promising results have been shown for dynamic view synthesis,
these methods all require a long optimization time to fit a dynamic scene, limiting
their wider applications.

As the concurrent research of our work, there are few works which aim to
speed up training of dynamic NeRF [9,12,25]. TiNeuVox [9] uses a small MLP
to model the deformation and uses the multi-distance interpolation to get the
feature for radiance network which estimates the density and color. Compared to
TiNeuVox [9], we propose a deformation feature grid to enhance the capability
of the small deformation network and not effect training speed. V4D [12] uses
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the 3D feature voxel to model the 4D radiance field with additional time dimen-
sion concatenated and proposes look-up tables for pixel-level refinement. While
V4D [12] focuses mainly on improving image quality, the speed up of training is
not significant compared with TiNeuVox [9] and ours. DeVRF [25] also builds on
voxel-grid representation, which proposes to use multi-view data to overcome the
nontrivial problem of the monocular setup. Multi-view data eases the learning
of motion and geometry compared with ours which uses monocular images.

3 Neural Deformable Voxel Grid

Given an image sequence {It}Tt=1 with camera poses {Tt}Tt=1 of a dynamic scene
captured by a monocular camera, our goal is to develop a fast optimization
method based on the radiance fields to represent this dynamic scene and support
novel view synthesis at different times.

3.1 Overview

Mathematically, given a query 3D point p, the view direction d, and a time
instance t, we need to estimate the corresponding density σ and color c.

A straightforward way is to directly use an MLP to learn the mapping from
(p,d, t) to (σ, c). However, existing dynamic methods show that such a high-
dimensional mapping is difficult to learn, and they propose a framework based
on the canonical scene to ease learning difficulty [39,52,36]. These methods adopt
a deformation MLP to map a 3D point in the observation space to a static
canonical space as Ψt : (p, t) → ∆p. The density and color are then estimated in
the canonical space as Ψp : (σ, c) = f(p+∆p,d). However, to render the network
with the capability of handling complex motion, large MLPs are inevitable in
existing methods and therefore result in a long optimization time (i.e., from
hours to days).

Motivated by the recent successes of voxel-grid optimization in accelerating
the training of static radiance field [48,63], we introduce the voxel-grid represen-
tation into the canonical scene representation based framework to enable fast
dynamic scene optimization. Our method consists of a deformation module and
a canonical module (see Fig. 2). The key idea is to replace most of the heavy
MLP computations with the fast voxel-grid feature interpolation.

3.2 Deformation Module for Motion Modeling

Assuming the canonical space is at time tcan, the deformation module estimates
the offset ∆p of a point p at any time t to the canonical space. As the input
has 4 dimensions (i.e., 3 for p and 1 for t), it is inefficient to directly store
the offsets in a 4D feature grid. Therefore, we adopt a hybrid explicit-implicit
representation that consists of a 3D feature grid and a light-weight MLP to
decode the interpolated feature.

3761



6 X. Guo et al.

𝑡

𝑝
∆𝑝 + 𝑝!Light 

MLP
𝑓"

𝑤!""

DeformGrid

ColorGrid

𝜎

𝑓#

𝑑

𝑝!
Light 
MLP 𝑐

(a) Deformation Module (b) Canonical Module

DensityGrid

Fine stage

Coarse stage

Distance

𝜎

Predicted Color

(c) Volume Rendering

∗ 𝑤!""

∗ 𝑤!""

Fig. 2. Overview of our proposed method. Our method consists of (a) a defor-
mation module to model the motion of the space points and (b) a canonical module
to model the radiance field of the static scene at the canonical time. To render a ray
shooting from the camera center, we compute the deformation of all sampled points
and transform the sampled points to the canonical space, where the density and color
are computed. The pixel color can then be rendered by (c) volume rendering.

Neural Deformable Voxel Grid (NDVG) We first build a 3D deformation
feature grid Gd ∈ RNx×Ny×Nz×Nc with a resolution of Nx ×Ny ×Nz, and the
feature vector in each voxel has a dimension of Nc. For a continuous 3D coor-
dinate p, its deformation feature can be quickly queried from the deformation
feature grid using trilinear interpolation:

interp(p,Gd) : (R3,RNx×Ny×Nz×Nc) −→ RNc . (1)

To obtain the offset from the observation space to the canonical space for a
query point, we introduce a light-weight MLP F d

θ1
. It takes the coordinate p,

time t, and the interpolated feature as input, and regresses the offset ∆p.

fd = interp(p,Gd), ∆p =

{
F d
θ1
(p, t, fd) if t ̸= tcan,

0 otherwise.
(2)

Following [31], we apply positional encoding for p and t. Finally, we get the
position of p in the canonical space p′ as: p′ = p+∆p.

The deformation feature grid can provide learnable features that encode the
deformation information of the points in the 3D space, so that a light-weight
MLP is capable to model the deformation of the 3D space.

3.3 Canonical Module for View Synthesis

To render the pixel color of a camera ray in the observation space, we first
sample K points on the ray and transform them to the canonical space via our
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deformation module. The canonical module then computes the corresponding
densities and colors for volume rendering to composite the pixel color.
Density and Color Grids The canonical module contains a density grid to
model the scene geometry, and a hybrid explicit-implicit representation (contains
a color feature grid and a light-weight MLP) to model the view-dependent effect.

The density grid Gσ ∈ RN ′
x×N ′

y×N ′
z with a resolution of N ′

x×N ′
y ×N ′

z stores
the density information of the scene. Following [48], for a 3D query point p′, we
perform trilinear interpolation on the grid and apply post-activation with the
softplus activation function to get the density: σ = softplus(interp(p′,Gσ))

The color feature grid Gc ∈ RH′×W ′×D′×N ′
c with a resolution of H ′×W ′×D′

stores the color feature of the scene, where the feature dimension is N ′
c. To obtain

the view dependent c for a 3D point p′, we use a light-weight MLP F c
θ2

to decode
the interpolated color feature f c. Positional encoding is applied on p′ and d.

f c = interp(p′,Gc), c = F c
θ2(p

′,d, f c). (3)

3.4 Occlusion-aware Volume Rendering

Volume rendering is the key in radiance fields based methods to render pixel
color in a differentiable manner. For a ray r(w) = o + wd emitted from the
camera center o with view direction d through a given pixel on the image plane,
the estimated color Ĉ(r) of this ray is computed as

Ĉ(r) =

K∑
k=1

T (wk)α (σ(wk)δk) c(wk) , T (wk) = exp

−
k−1∑
j=1

σ(tj)δj

 , (4)

where K is the sampled points in the ray, δk is the distance between adjacent
samples on the ray, and α (σ(wk)δk) = 1− exp(−σ(wk)δk).
Occlusion Problem Note that for dynamic scenes, the occlusion will cause
problems in the canonical scene-based methods. We assume the “empty” points
(i.e., non-object points) in the space are static. If a 3D point is the empty
point at time t but occupied by an object point in the canonical space, the
occlusion happens. This is because the ideal deformation for an empty point
in the observation space is zero, then this point will be mapped to the same
location (but occupied by an object point) in the canonical space (see Fig. 3 for
illustration). As a result, the obtained density and color value for this empty
point will be non-zero, leading to incorrect rendering color.
Occlusion Reasoning To tackle the occlusion problem, we additionally esti-
mate an occlusion mask for a query point using the deformation MLP F d

θ1
. Then

Eq. (2) is revised as:
(∆p,wocc) = F d

θ1 (p, t , f
D). (5)

If a query point is an empty point at time t but is occupied by an object point
in the canonical space, the estimated wocc should be 0. Based on the estimated
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Fig. 3. Effect of Occlusion. If the static empty point in current time is occluded by
the object point in canonical time, this empty point will bring the object point back
to current time, which creates artifacts.

occlusion mask wocc, we filter the estimated density and color before sending
them to volume rendering to remove the influence of the occluded points:

σ′ = σ × wocc, c′ = c× wocc. (6)

The occlusion estimation is optimized by the image reconstruction loss in an
end-to-end manner. By taking occlusion into account, our method is able to
achieve better rendering quality.

4 Model Optimization

There is a trade-off between grid resolution and time consumption. Using a
higher grid resolution generally leads to better image quality but at the cost of a
higher computational time. Meanwhile, the space is dominated by empty space,
which takes no effect on the synthesized images.
Loss Function We utilize a series of losses to optimize the model. The first
is the photometric loss, which is the mean square error (MSE) between the
estimated ray color Ĉ(r) and the ground-truth color C(r) as

Lphoto =
1

|R|
∑
r∈R

∥∥∥Ĉ(r)−C(r)
∥∥∥2
2
, (7)

where R is the set of rays sampled in one batch.
Also, similarly to [48], we use the sampled point color supervision Lptc, which

optimizes the color of sampled points with top N weights that contribute most
to the rendered color of the ray. In addition, we use the background entropy loss
Lbg to encourage the points to concentrate on either foreground or background.

3764



NDVG 9

For the deformation module, we apply the L1 norm regularization to the
estimated deformation based on the prior that most points are static:

Ld_norm =
1

|R|
∑
r∈R

K∑
i=1

∥∆pi∥1 . (8)

Moreover, we apply the total variation loss on deformation feature grid to
smooth the voxel features as

Ld_tv =
1

|V|
∑

v∈Vc∈[Nc]

√
∆2

x(v, c) + ∆2
y(v, c) + ∆2

z(v, c), (9)

where ∆2
x(v, c) represents the square difference between c-th element in voxel

V(i, j, k) and voxel V(i+ 1, j, k), and the same for ∆2
y(v, c) and ∆2

z(v, c).
The overall loss function for can be written as

L = Lphoto + wptc ·Lptc + wbg ·Lbg + wd_norm ·Ld_norm + wd_tv ·Ld_tv, (10)

where wptc, wbg, wdf_norm, and wdf_tv are weights to balance each components
in the final coarse loss.

Following [48], we use the same strategy for voxel allocation, model point
sampling, and low-density initialization. Considering that the deformation is
more sensitive to resolution compared with radiance (density and color), we set
a higher grid resolution to the deformation module than the canonical module.
Progressive Training Typically, when a time step goes further away from the
canonical time, the deformation between this time step and the canonical time
step get larger. To reduce the learning difficulty, we use a progressive training
strategy. The optimization starts with training images close to canonical time,
and progressively adds images with further time steps.
Coarse-to-fine Optimization To speed up the training while maintaining
the model capacity, we adopt a coarse-to-fine optimization procedure follow-
ing [31,48]. We first optimize a coarse model to roughly recover the deformation
and the canonical space geometry. Then, we use the coarse model to locate the
object region and filter out a large portion of empty space, after which a fine
model is optimized to recover a more accurate and detailed deformation and
geometry. In the coarse model, we do not model the view-dependent effect, and
the feature dimension of color grid K ′ is set to 3, which directly corresponds to
the RGB color. Based on the optimized coarse module, we apply empty space
filtering strategies, including finding fine-stage bounding box and empty point
filtering to speed up training. Also, we initialize the fine-stage model with model
weight trained during coarse stage. We present details of our empty space filter-
ing strategies and fine model design in the supplementary material.

5 Experiments

5.1 Dataset and Metrics

We evaluate our method on the D-NeRF dataset [39], which contains eight dy-
namic scenes with 360◦ viewpoint settings. Beside synthetic dataset, we also
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Table 1. Quantitative comparison. We report LPIPS (lower is better) and
PSNR/SSIM (higher is better) on eight dynamic scenes of the D-NeRF dataset.

Hell Warrior Mutant Hook Bouncing Balls
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

D-NeRF (half1)[39] 25.03 0.951 0.069 31.29 0.974 0.027 29.26 0.965 0.117 38.93 0.990 0.103
NDVG(half1) 25.53 0.949 0.073 35.53 0.988 0.014 29.80 0.965 0.037 34.58 0.972 0.114

NDVG(w/o occ2) 25.16 0.956 0.067 34.14 0.980 0.026 29.88 0.963 0.047 37.14 0.986 0.080
NDVG(w/o grid3) 26.45 0.959 0.065 34.42 0.980 0.025 29.08 0.956 0.050 37.78 0.988 0.063
NDVG(w/o refine4) 24.30 0.946 0.092 28.59 0.940 0.070 26.85 0.935 0.081 28.17 0.954 0.178
NDVG(w/o filter5) 19.55 0.927 0.104 31.75 0.961 0.051 27.71 0.948 0.068 35.47 0.988 0.054
NDVG(full6) 26.49 0.960 0.067 34.41 0.980 0.027 30.00 0.963 0.046 37.52 0.987 0.075

Lego T-Rex Stand Up Jumping Jacks
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

D-NeRF (half) [39] 21.64 0.839 0.165 31.76 0.977 0.040 32.80 0.982 0.021 32.80 0.981 0.037
NDVG(half) 25.23 0.931 0.049 30.15 0.967 0.047 34.05 0.983 0.022 29.45 0.960 0.078

NDVG(w/o occ) 24.77 0.935 0.059 32.57 0.979 0.031 18.78 0.899 0.112 30.87 0.973 0.044
NDVG(w/o grid) 24.18 0.916 0.078 31.64 0.976 0.034 32.99 0.980 0.027 30.64 0.971 0.044
NDVG(w/o refine) 23.30 0.851 0.167 27.35 0.940 0.079 29.80 0.965 0.051 26.13 0.920 0.150
NDVG(w/o filter) 22.75 0.887 0.140 28.58 0.952 0.067 32.36 0.976 0.035 28.19 0.957 0.077
NDVG(full) 25.04 0.940 0.053 32.62 0.978 0.033 33.22 0.979 0.030 31.25 0.974 0.040
1 half: using half resolution of the original dataset images 4 w/o refine: only using coarse training stage
2 w/o occ: not using occlusion reasoning 5 w/o filter: not using coarse training,direct optimize fine module
3 w/o grid: not using deformation feature grid, only deform MLP 6 full: using full resolution of the original dataset images

conduct experiments on real scenes, proposed by HyperNeRF [36]. This dataset
captures images of real dynamic scenes with a multi-view camera rig consisting
of 2 phones with around a 16cm baseline. The dynamic motion consists of both
rigid and non-rigid deformation with unbounded scenes. We use several metrics
for the evaluation: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
(SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) [67].

5.2 Implementation Details

We set the expected voxel number to 1,664k and 1903 for the grid in Deformation
Module in the coarse and fine stages, respectively. For Canonical Module, we set
the expected voxel number to 1,024k and 1603. The light-weight MLP in the
deformation module has 4 layers, each with a width of 64. The light-weight
MLP in the canonical module has 3 layers, each with a width of 128.

When training with full resolution images, we train 10k and 20k iterations
for the coarse and fine stages for all scenes. When training with half-resolution
images, we reduce the iteration to 5k and 10k for coarse and fine stages. In terms
of positional encoding, we set the frequency to 5 for position and time, and 4 for
direction. We use the Adam optimizer [20] and sample 8,192 rays per iteration.
More details of settings can be found in our supplementary material.

5.3 Comparisons

Quantitative evaluation on the dataset We first quantitatively compare
the results in Table 1. To compare with D-NeRF[39], we set the same 400×400
image resolution, and present average results on each scene assessed by metrics
which are mentioned above. According to Table 1, we could see that our method
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Table 2. Quantitative comparison on real scenes.

3D Printer Broom Chicken Peel Banana Mean
Methods Time PSNR↑ MS-SSIM↑ PSNR↑ MS-SSIM↑ PSNR↑ MS-SSIM↑ PSNR↑ MS-SSIM↑ PSNR↑ MS-SSIM↑

NeRF [31] ∼ hours 20.7 0.780 19.9 0.653 19.9 0.777 20.0 0.769 20.1 0.745
NV [27] ∼ hours 16.2 0.665 17.7 0.623 17.6 0.615 15.9 0.380 16.9 0.571
NSFF [22] ∼ hours 27.7 0.947 26.1 0.871 26.9 0.944 24.6 0.902 26.3 0.916
Nerfies [35] ∼ hours 20.6 0.830 19.2 0.567 26.7 0.943 22.4 0.872 22.2 0.803
HyperNeRF [36] ∼ hours 20.0 0.821 19.3 0.591 26.9 0.948 23.3 0.896 22.4 0.814
TiNeuVox [9] 30 mins 22.8 0.841 21.5 0.686 28.3 0.947 24.4 0.873 24.3 0.837

NDVG (Ours) 35 mins 22.4 0.839 21.5 0.703 27.1 0.939 22.8 0.828 23.3 0.823

Table 3. Training time and rendering speed comparison. We report these us-
ing the public code of D-NeRF [39] on the same device (RTX 3090 GPU) with our
method. We include the mean PSNR across eight scenes in the D-NeRF dataset [39]
for comparison of synthesized image quality. Our method could achieve good PSNR,
while spend much less optimization time and have faster rendering speed.

Methods PSNR↑ Training Time (s/scene)↓ Rendering Speed (s/img)↓

NeRF(half)† [31] 19.00 60185 4.5
D-NeRF(half) [39] 30.02 99034 8.7
NDVG(half) 30.32 1380 0.4

NDVG(w/o refine) 26.73 708 2.6
NDVG(w/o filter) 27.85 2487 3.5
NDVG(full) 31.08 2087 1.7
† We use implementation of D-NeRF[39] to train NeRF on dynamic dataset

NDVG achieves comparable results with D-NeRF [39] for all three metrics. For
real scenes, we test on four scenes, namely the Peel Banana, Chicken, Broom
and 3D Printer following HyperNeRF [36]. We follow the same settings of the
experiments of TiNueVox [9] and report the metrics of PSNR and MS-SSIM in
Table 2 (results of other methods are taken from the TiNuxVox paper). As shown
in Table 2, our method could achieve comparable or even better results and at
least 10x faster, which clearly demonstrates the effectiveness of our method.
Training time and rendering speed comparison The key contribution of
our work is to accelerate the optimization speed of novel view synthesis models
on dynamic scenes. In Table 3, our method with the same half resolution setting
with D-NeRF[39], achieves 70× faster convergence with an even higher average
PSNR. Though our main purpose is to speed up training, the proposed method
also has a reasonably fast rendering speed, compared to complete neural network
based model. According to Table 3, our method has a 20× faster rendering speed
compared with D-NeRF[39].

For real scenes in Table 2, compared with previous methods without acceler-
ation which takes hours or even days to train, our method could finish training in
35 minutes which is at least 10x faster. Compared with the concurrent research
TiNueVox [9], which also aims to speed up training, we could achieve compara-
ble results with the same training time, without using cuda acceleration for ray
points sampling and total variation computation.
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Canonical (t = 0) t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

Fig. 4. Learned Geometry. We show examples of geometries learned by our model.
For each, we show rendered images and corresponding disparity under two novel views
and six time steps.

Qualitative comparison We provide some visualization of the learned scene
representation in Fig. 4. We can see that our method can successfully recover
the canonical geometry, and render high-quality dynamic sequences. The results
indicate that our method can faithfully model the motion of the dynamic scenes.

In Fig. 5, we show the rendering results of more difficult situations and com-
pare them with the results of D-NeRF [39]. Our method achieves comparable or
even better image results using only 1/70 of the training time. If zoom in for
more details, we could see that our method actually recovers more high-frequency
details, taking the armour and the cloth of the worker as examples.

5.4 Method Analysis

In this section, we aim to study and prove the effectiveness of three designs in
our proposed method: the occlusion reasoning, the coarse-to-fine optimization
strategy, and the deformation feature grid.
Occlusion Reasoning We show that occlusion reasoning is critical in Sec. 3.4
for the canonical-based pipeline under the assumption that the empty point is
static. Results of NDVG (full) and NDVG (w/o occ) in Table 1 compare the
quantitative results of models with and without occlusion reasoning. We can see
that the model with occlusion reasoning achieves more accurate results, verifying
the effectiveness of our method.

We also visualize the estimated occlusion at different time steps in Fig. 6. We
warp the canonical grid (density grid and color grid) into the different time steps,
and show the points with corresponding colors if they are object points. And we
show the occluded points estimated by deformation module in blue. In Fig. 6,
while the character pushes out the punch and the body moves forward, the
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NDVG GT D-NeRFNDVG NDVG GT D-NeRFNDVG

Fig. 5. Qualitative Comparison. Synthesized images on test set of the dataset. For
each scene, we show an image rendered at novel view, and followed by zoom in of
ground truth, our NDVG, and D-NeRF [39].

empty points behind his back are estimated as being occluded which fits the
actual situation. These results indicate the estimated occlusion is accurate.

Effectiveness of Coarse-to-fine Optimization The coarse-to-fine optimiza-
tion could not only improve the image quality rendered by our model, but also
help speed up the training and rendering process significantly. To prove the
efficiency of the coarse-to-fine optimization, we conduct two extra experiments
(see Table 1). The first one is NDVG (w/o refine), which only contains the coarse
training stage. As NDVG (w/o refine) has limited grid resolution and does not
have view-independent color representation, the performance is expected to be
low. The second one is NDVG (w/o filter), which is not initialized by coarse
training and directly begins from scratch for fine stage. As NDVG (w/o filter)
does not have a trained coarse model for object region location, the fine model
could not shrink the bounding box of the scene which means most of the grid
space is wasted, which lead to obvious worse results. Also, the empty points can-
not be filtered, which could increase training time and decrease rendering speed
significantly, which is evidenced in Table 3.

Deformation Feature Gird In our deformation module, we use a deformation
feature grid to encode dynamic information of 3D points, which will be decoded
by a light-weight MLP to regress the deformation. A light-weight MLP is suf-
ficient to model the complex motion of scenes by integrating with this feature
grid. Table 1 shows that the method integrated with a deformation feature grid,
NDVG (full), achieves better novel-view synthesis results than the one without,
NDVG (w/o grid). This result clearly demonstrates the effectiveness of the pro-
posed deformation feature grid. Please refer to our supplementary material for
further study of the deformation feature grid design.
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Fig. 6. Occlusion Estimation Visualization. We visualize the estimated occlusion
points at different times in blue color. The first row shows the images at each time step
which gives an insight of the motion. We warp the canonical grids into corresponding
time step by the deformation estimated by deformation module. We visualize points
with their rgb colors whose density is over 0.8.

6 Conclusions

In this paper, we have presented a fast optimization method for dynamic view
synthesis based on a hybrid implicit-explicit representation. Our method consists
of a deformation module to map a 3D point in observation space to canonical
space, and a canonical module to represent the scene geometry and appearance.
In each module, explicit dense grids and the light-weight MLP are used for fast
feature interpolation and decoding, which significantly accelerates the optimiza-
tion time compared with methods that rely on heavy MLP queries. Moreover,
occlusion is explicitly modeled to improve the rendering quality. Experiments
show that our method only requires 30 minutes to converge on a dynamic scene.
Compared with the existing D-NeRF method, our method achieves a 70× accel-
eration with comparable rendering quality.
Limitation Despite our method greatly speeds up the training of radiance field
methods for dynamic view synthesis, it is mainly designed for bounded scenes.
In the future, we will extend our method to deal with real-world unbounded
scenes (e.g ., unbounded 360 and face-forward scenes).
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