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Abstract. While the Transformer architecture has become the de-facto
standard for natural language processing tasks and has shown promising
prospects in image analysis domains, applying it to the 3D point cloud
directly is still a challenge due to the irregularity and lack of order. Most
current approaches adopt the farthest point searching as a downsampling
method and construct local areas with the k-nearest neighbor strategy
to extract features hierarchically. However, this scheme inevitably con-
sumes lots of time and memory, which impedes its application to near-
real-time systems and large-scale point cloud. This research designs a
novel transformer-based network called Spherical Window-based Point
Transformer (SWPT) for point cloud learning, which consists of a Spher-
ical Projection module, a Spherical Window Transformer module and a
crossing self-attention module. Specifically, we project the points on a
spherical surface, then a window-based local self-attention is adopted to
calculate the relationship between the points within a window. To ob-
tain connections between different windows, the crossing self-attention is
introduced, which rotates all the windows as a whole along the spherical
surface and then aggregates the crossing features. It is inherently permu-
tation invariant because of using simple and symmetric functions, making
it suitable for point cloud processing. Extensive experiments demonstrate
that SWPT can achieve the state-of-the-art performance with about 3-8
times faster than previous transformer-based methods on shape classifi-
cation tasks, and achieve competitive results on part segmentation and
the more difficult real-world classification tasks.

Keywords: Point cloud · Spherical projection · Transformer.

1 Introduction

3D point clouds have been attracting more and more attention from both indus-
try and academia due to their broad applications including autonomous driving,
augmented reality, robotics, etc. Unlike images having regular pixel grids, 3D
point clouds are irregular and unordered sets of points corresponding to ob-
ject surfaces. This difference makes it challenging to apply traditional network
architectures used widely in 2D computer vision directly into 3D point cloud.
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Researchers propose a variety of models for deep learning on 3D point clouds
which are classified into three categories according to data representations, i.e.,
projection-based, voxel-based and point-based models. The projection-based mod-
els [25, 3, 13, 36] generally project 3D shapes into regular 2D representations, so
that many classical convolutional models can be employed. However, these meth-
ods can only obtain limited receptive field from one or a few perspectives, which
may induce losses of spatial relations between different parts. The voxel-based
models[18, 33, 23] generally rasterize 3D point clouds onto regular grids and ap-
ply 3D convolutions for feature learning, which induces massive computational
and memory costs due to the cubic growth in number of voxels related to the
resolution. Although sparse convolutional models[23, 29, 2] alleviate this prob-
lem by performing only on volexs that are not empty, it may still not capture
the spatial relations. The point-based models[20, 22] operate directly on points
and propagate features via pooling operators. Specifically, some works transform
point cloud to a graph for message passing[24, 14]. These models achieve more
competitive results over previous methods. However, the neighborhood searching
strategy which is a core component of these methods has a high computational
complexity as the iterative number increasing or points scale getting larger.

In recent years, Transformer[1, 28] has been dominating the natural language
processing field, and has been applied to image vision tasks, also achieving en-
couraging performance[31, 6]. As the core component of Transformer, the self-
attention module computes the refined weighted features based on global context
by considering the connections between any two words. So the output feature
of each word is related to all input features, which make it capable of obtain-
ing the global feature. Specifically, all operations of Transformer are paralleliz-
able and order invariance, so it is naturally suitable for point cloud processing.
Transformer-based model [8] is the pioneering work that introduces the self-
attention in points processing, which employ the farthest point searching (FPS)
as downsampling strategy and k-nearest neighbor (KNN) as local region search-
ing strategy to perform local self-attention operation. It lacks spatial connections
between different regions, and consumes a large amount of time when construct-
ing local regoins due to the high complexity of FPS and KNN.

To solve the problems mentioned above, we propose a noval Spherical Win-
dow based Point Cloud Transformer. Firstly, we project point cloud to a spherical
surface to reduce the dimension of points, which makes the processing of points
as simple as images. The Spherical Window (SW) module makes the points pro-
jected on the spherical surface more regular ressembling pixels in an image, but
with more spatial structue information. Then, we partition the points on the
spherical surface into spherical windows and apply local self-attention hierar-
chically on each window. With this spherical window-based mechanism, local
self-attention are performed in all windows parallelly, which would facilitate
point cloud processing and is beneficial to its scalability for large point clouds.
Finally, we introduce a Cross-Window operation to achieve connections between
the neighboring windows, which is an efficient operation with computational
complexity as low as O(1). We use the SWPT as the backbone to a variety of
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point cloud recognition tasks, and extensive experiments demonstrate that it’s
an effective and efficient framework.

The main contributions of this paper are summarized as following:

– We propose a Spherical Projection (SP) Layerwhich projects the points to a
spherical surface, followed by a point-wise transformation to maintain the in-
formation between points. This layer is permutition-invariant, high-efficiency
and thus is inherently suitable for point cloud processing.

– Based on the Spherical Projection Layer, we construct a Spherical Windows
(SW) Transformer which partitions the spherical surface into windows com-
prising certain patches. Then we perform local self-attention on each window
hierarchically.

– We introduce a cross window operation, which rotates the spherical sur-
face as a whole by half of the window size to exploit the spatial connections
between different windows. Extension experiments demonstrate that our net-
work achieves the state-of-the-art performance on shape classification, part
segmentation and semantic segmentation.

2 Related Works

2.1 Projection-based networks

As a pioneering work, MVCNN[25] simply use max-pooling to aggregate multi-
view features into a global descriptor. But max-pooling only retains the top
elements from a specific view, which result in loss of details. These methods[3,
13] project 3D point clouds into various image planes, and then employ 2D
CNNs to extract local features in these image planes followed by a multi-view
features fusion module to obtain the global feature. This approach[36] propose
a relation network to exploit the inter-relationships over a group of views which
are aggregated to form a discriminative representation indicating the 3D object.
Different from the previous methods, [30] construct a directed graph by regarding
multiple views as graph nodes, and then design a GCNN over the view-graph to
hierarchically achieve global shape descriptor.

2.2 Voxel-based networks

VoxNet [18] integrates volumetric Occupancy Grid representation with a super-
vised 3D CNN to utilize 3D information and deal with large amounts of point
cloud. 3D ShapeNets [33, 23] is another work using a Convolutional Deep Belief
Network to represent a geometric 3D shape as a probability distribution of bi-
nary variables on a 3D voxel grid, which can learn the distribution of complex 3D
shapes across different categories. However, these methods are unable to scale
well to dense 3D data since the computation and memory consumption of such
methods increases cubically with respect to the resolution of voxel.

3036



4 X. Guo et al.

2.3 Point-based networks

PointNet[20] as a pioneer work firstly utilizes permutation-invariant operators
such as MLP and max-pooling to aggregate a global feature from a point cloud.
As PointNet lacks local connections between points, the author propose Point-
Net++[22] which applies tiny PointNet within a hierarchical spatial structure
to extract local features with increasing contextual scales. Inspired by PointNet,
many a recent works[11, 32, 9] are propoesd with more sophisticated architecture
achieving encouraging performance. Afterwards, a graph convolutional neural
network(GCNN) is applied to extract features. DGCNN[24] is the first perform-
ing graph convolutions on KNN graphs. As the core component of EdgeConv in
DGCNN, MLP is used to learn the features for each edge. Deepgcns[14] presents
a new way to train a very deep GCNs to solve the vanishing gradient problem
and shows a 56-layer GCN achieving positive effect. PointCNN[15] propose a
X-transformation learnt from the point cloud, which weight the input features
associated with the points and reorder them into latent potentially canonical
order simultaneously. PointConv[32] extend the dynamic filter to a new convo-
lution and take the local coordinates of 3D points as input to compute weight
and density functions.

2.4 Transformer in NLP and Vision

[1] propose a neural mechine translation with an attention mechanism allowing
a model to automatically search for parts of a source sentence that are relevant
to predicting a target word. [16] further propose a self-attention mechanism to
extract an interpretable sentence embedding. Subsequent works employed self-
attention layers to replace some or all of the spatial convolution layers. [28]
propose Transformer based solely on self-attention mechanism without recur-
rence and convolutions entirely. [5] propose a new Bidirectional Transformers to
pre-train deep bidirectional representations and it obtains competitive results.

Transformer and self-attention models have revolutionized natural language
processing and inspired researchers to apply them to vision tasks. [31] proposed
visual transformers that apply Transformer to token-based images from feature
maps. [6] propose a pure transformer-based network partitioning a image to
patches, and results show with sufficient training data, Transformer provides
better performance than a traditional convolutional neural network. [17] propose
a new vision Transformer, called Swin-Transformer, to incorporate inductive bias
for spatial locality, as well as for hierarchy and translation invariance.

3 Spherical-Window Point Transformer

3.1 Overview

In this section we detail the design of SWPT. We first show how the spherical
projection (SP) can provide an efficient representation for point clouds. Then we
present the detail of the gridding module which splits the points on the spherical
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Fig. 1. Model Architecture. The above is the classification network, and the below is
the segmentation network. SP stands for the spherical projection. SW is the spherical
window layer used to split points. C-SA is the crossing self-attention applied to calculate
the cross window attentions. Exp means expanding high-dimension features to local
windows.

surface into non-overlapping patches. Lastly, we introduce a high-performance
self-attention module to extract local features, and with a rotation to enhance
the cross-window connections.

The model architecture is illustrated in Fig 1. The above of Fig 1 illustrates
the classification network which takes as input the raw point cloud with N points.
Firstly, the network applies a Spherical Projection (SP) to all points, followed
by a point-wise transformation, e.g. multi-layers perceptron (MLP). Then the
outputs of the previous layer are fed into two stacked Spherical Window Trans-
former (SWT) which consists of a Spherical Window (SW) module, a Crossing
self-attention (C-SA) module and a pooling module to learn hierarchical fea-
tures. It is worth noting that the network achieves competitive results with only
two iterations of the SWT module thanks to the high efficiency of the Spherical
Window based neighborhood searching strategy. Finally, a self-attention (SA)
and a pooling operation are employed to produce a global feature which is fed
into a fully connected (FC) layer followed by a softmax function to predict the
label. The below of Fig 1 shows the segmentation network which expands the
high-dimension features to the corresponding local windows in the previous layer
and then concatenates them with features from the last layer. After three ex-
panding and concatenation operations, the network produces the dense points
features that a lightweight fully connected network use to generate labels.

3.2 Spherical Projection

Spherical Projection Layer plays a role of data pre-processing in the framework,
which projects the points from the point cloud to a spherical surface, as illus-
trated in Fig 2. For projecting the points on the spherical surface evenly, we
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Fig. 2. Visualization of Spherical projection. For simplification, here we just show two
spheres for projection. The points on different sections in the same frustum are gathered
into a spherical window. The blue points and the green points in the window are from
the blue spherical surface and green spherical surface respectively.

normalize the points by the following formulation:

p′ = p− pc pc =
1

N
(

N∑
i=1

xi,

N∑
i=1

yi,

N∑
i=1

zi) (1)

where pc is the centroid of point cloud and p′ is the point translated from point
p = (x, y, z). N stands for the number of points. By doing so, we translate the
centroid of point cloud to the origin of coordinates.

Then, we define a spherical projection method which can be formulated as
follows:

r =
√
x2 + y2 + z2

θ = arctan
y

x

φ = arccos
z

r

(2)

Here (x, y, z) is the coordinate of point in the Cartesian system, θ and φ are the
angle of azimuth and angle of pitch, respectively.

Although the spherical projection preserves most prominent features, the
information of connection between points on the spherical surface may change
compared to the original point cloud due to the reduction of dimension, causing
structure information loss. To solve this problem, we apply a transformation
to the points through a shared MLP, projecting the features of the points to a
latent space, while maintaining the spatial relations between points:

f = T (p)⊕ P (p) P (p) = r ⊕ θ ⊕ φ , (3)

where p ∈ RD is the feature of a point such as x-y-z coordinate, in our case D
is 3. In other cases, D may be different when the point includes features like
normal vector, etc. T is a pointwise transformation such as MLP. ⊕ is a vector
concatenation operator. P indicates the spherical projection mentioned before.

Eventually, the output of the Spherical Projection module is a new set of
features:

F = {fi | fi = P (pi)⊕ T (pi), i ∈ N}, (4)
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Fig. 3. The proposed Spherical Window Transformer obtains the global feature by
merging features within a 2 × 2 spherical window hierarchically. The points features
within a solid window are adopted to perform local self-attention and then aggregated
to a point for the next stage denoted by the dotted box. The green box indicates a
local spherical window to perform self-attention and pooling operation. Please note
that here we simplify the figure structure to illustrate the principle of a module clearly.

among which the angle of azimuth θ and angle of pitch φ are utilized to partition
features into windows.

3.3 Spherical Window Transformer

The simplest way to apply Transformer on point clouds is to treat the entire
points as a sequence and each point as an element, but it incurs massive com-
putation and memory costs and local spatial relation loss. In addition, it lacks
hierarchies which are significant in learning features proved by [22]. On the other
hand, the farthest point sampling (FPS) and K-nearest neighbors (KNN) search-
ing strategies adopted by most previous models introduce large computation and
memory costs, making it unsuitable for large scale point clouds [7, 8].

To this end, we propose the Spherical Window Transformer layer to compute
local self-attention and to construct a hierarchical architecture, which has lin-
ear computational complexity to patch size. The Spherical Window Transformer
layer aims to provide an efficient local area partitioner which splits the points
on the spherical surface into lots of patches, a patch involve points from a neigh-
borhood. To this end, we adopt a very simple and efficient approach formally
defined as follow:

F ′ = Rφ(Sφ(Rθ(Sθ(F )))), (5)

where F ∈ RN×C is a set of point features from the last layer, Sθ is a sort function
by θ, Rθ is capable of reshaping the set shape from N ×C to Θ×Nθ ×C where
N = Nθ ×Θ. Sφ and Rφ perform the similar thing. After then we obtain a new
set with the shape Φ×Θ×Nϕ×Nθ×C meaning that the point cloud is partitioned
into Φ×Θ spherical windows with Nθ ×Nϕ points in each window. Because of
using sorting and reshaping only, this layer maintains the permutation-invariance
of point cloud.

Then a local self-attention is employed in each window, followed by a patch
merging block to gather the local features with low-dimension. Afterwards, local

3040



8 X. Guo et al.

points are gathered to a high-dimension space with fewer points. The windows
are arranged to enenly partition the points into non-overlapping areas which
produce a higher layer local neighborhood, as shown in Fig 3.

Given a window size of (θ, φ), which means it has a number of θ × φ points,
the computational complexity of global self-attention and window-based local
self-attention on a spherical surface of Θ × Φ patches are:

Ω(SA) = 4ΘΦC2 + 2(ΘΦ)2C, (6)
Ω(W − SA) = 4ΘΦC2 + 2(ΘΦ)(θφ)C, (7)

where the former is quadratic to points number Θ × Φ, and the latter is linear
when the window size is fixed. The global self-attention computation cost is
generally unaffordable for a large scale point cloud, while window-based self-
attention is scalable. Another function of the Spherical Window module is to
reduce the cardinality of patches as required, for example, from N points to
N/W through a window of W size.

The strategy of choosing local neighborhoods of previous works is KNN with
Euclidean distancewhich has a linear computational complexity with respect to
the number of neighborhoods, total points and the dimension of data. So it’s
still a challenge to extend a model using this to large scale point clouds. Our
method using the Spherical Window to split points only needs to make a spherical
surface grid by sorting points along the angle of azimuth and pitch, which only
need to do once after the projection finished and is invariant to permutation
of points. Extensive experiments demonstrates that the Spherical Window is a
novel representation of point cloud on which local self-attention can be applied
effectively and efficiently.

3.4 Crossing Windows Self-Attention

Spherical window-based local self-attention performs well to obtain local fea-
tures. However, it lacks the capacity of acquiring relationships across neighboring
windows, which limits its modeling power. To capture cross window relationships
while maintaining the efficiency of computation and memory cost, we propose
a rotating spherical surface approach which rotates all the windows as a whole
sphere along the angle of azimuth and the angle of pitch by half of window size
respectively. As illustrated in Fig 4, the module on the left calculates a regular
self-attention within each window. Then the module on the right rotates windows
along the angle of azimuth and pitch by ⌊θ/2, φ/2⌋, followed by a self-attention
computation same as before, where the θ and φ are window size. As the windows
form a spherical surface and data points are distributed discretely over it, the
rotation of windows does not need a masked operation resembling that in [17].
Results show that our Crossing Self-Attention approach introduces relationships
between neighboring windows in previous layers and performs effectively and
efficiently in several point cloud recognition tasks, as shown in table 5.
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Fig. 4. Illustration of Crossing Windows Self-Attention considering the relationship
between differenet windows. In this example, the window size is 4× 4 and the rotating
size is 2× 2. After calculating the window-based self-attention showed by (a), the whole
spherical window rotate along azimuth and pitch by 2 × 2 patches respectively, illus-
trated by (b). The green and blue dotted boxes in (b) indicate the spherical windows
before rotation corresponding to windows in (a), and the solid boxes in (b) denote the
spherical windows after rotation.

4 Experiments

We evaluate the performance of SWPT on three recognization tasks: 3D shape
classification, 3D part segmentation and real-world object classification, giving
comprehensive analyses and comparing with other approaches. For 3D shape
classification, we use the widely adopted ModelNet40 [34] dataset. For 3D part
segmentation, we use the ShapeNet55 [37] dataset. For real-world object clas-
sification, we use the ScanObjectNN [27] dataset which is a recent point cloud
object dataset constructed from the real-world indoor datasets such as SceneNN
[10] and ScanNet [4].

We use PyTorch [19] as the framework to implement SWPT. We employ the
stochastic gradient descent (SGD) optimizer with momentum 0.9 and weight de-
cay 0.0001 for training. Other training parameters including number of patches,
window size, learning rate and batch size are given later in each related section.

4.1 Shape Classification

Data and metric. The ModelNet40 [34] dataset contains 12,311 CAD models
in 40 categories, which is widely used in shape classification. For a fair compar-
ison, we use the official split with 9,843 models for training and 2,468 models
for testing, and use the same strategy as PointNet [20] to sample 1,024 points
uniformly from each CAD model. For evaluation metrics, we adopt the mean
accuracy within each category (mAcc) and the overall accuracy (OA) over all
classes. In addition, we retrain the point-based methods to evaluate their effi-
ciency.
Experiment results. During training we used a random translation in [0.2,
0.2], a random anisotropic scaling in [0.67, 1.5] and a random input dropout as
the data augmentation strategy, while no data augmentation was used in testing.
We set the batch size to 32, epochs to 200 and initial learning rate to 0.01 with a
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Table 1. Comparison of state-of-the-art models on ModelNet40 dataset. The mAcc
and OA results are quoted from the cited papers, while the latencies are obtained by
training and testing the official code in the same environment.

Method input points mAcc(%) OA(%) Latency(s)
3DShapeNets [33] voxel - 77.3 84.7 -
VoxNet [18] voxel - 83.0 85.9 -
Subvolumn [21] voxel - 86.0 89.2 -
MVCNN [25] image - - 90.1 -
Kd-Net [12] point - - 91.8 -
PointNet [20] point 1k 86.2 89.2 11
PointNet++ [22] point 1k - 91.9 21
PointCNN [15] point 1k 88.1 92.2 45
DGCNN [24] point 1k 90.2 92.2 10
PointConv [32] point 1k - 92.5 58
KPConv [26] point 1k - 92.9 25
PCT1 [7] point 1k - 92.8 34
PCT2 [8] point 1k - 93.2 18
SWPT (ours) point 1k 90.1 93.5 5

step schedule to adjust it at every 40 epochs. For a fair comparison of efficiency,
we use the same hardware environments and only the official code from github.
We experiment in the same test datasets and report the average latency time.

The results are presented in Table 1. The SWPT outperforms all prior meth-
ods in overall accuracy with 93.5%. As for Transformer-based methods, the
SWPT achieves a better result with less time.

4.2 Part Segmentation

Data and metric. Part Segmentation is a challenging task which aims to di-
vide a 3D point cloud into multiple meaningful parts. We evaluate the models
on the ShapeNet [37] dataset which contains 16,880 3D models consisting of
14,006 models for training and 2,874 models for testing. It has 16 categories and
50 parts, where each category has a number of parts between 2 to 6. Follow-
ing PointNet [20], we downsample each model to 2,048 points with point-wise
labels, which is widely used in prior works. For metrics, we evaluate the mean
Intersection-over-Union (IoU) and IoU for each object category.
Experiment results. During training we used a random translation in [0.2,
0.2], a random anisotropic scaling in [0.5, 1.5] and a random input dropout as
the data augmentation strategy, while no data augmentation was used in testing.
We set the batch size to 32, epochs to 200 and initial learning rate to 0.001 with
a step schedule to adjust it at every 40 epochs by 0.5. Table 2 shows the mean
part IoU and category-wise IoU. The results show that our SWPT improves by
1.7% over PointNet and is competitive with most SOTA methods. The reason
why SWPT does not achieve the best result in mIoU is that projecting over-
lapped and shaded points (of objects like motorbikes and cars) on a spherical
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Fig. 5. Visualization of part segmentation results on the ShapeNet dataset. The top
row shows the ground truth, results of SWPT are on the bottom row.

surface may cause semantic ambiguity issues.
Visualization. Fig 5 shows the results of object part segmentation on a number
of models in the ShapeNet dataset. The predictions of SWPT on the bottom row
are precision and close to the ground truth, from which we can see some struc-
tural details captured by SWPT, such as the engines of the plane and wheels of
the automobile.

4.3 Real-World Object Classification

Data and metric. While ModelNet40 is the most popular benchmark for point
cloud classification, it may lack a practical scenario due to its synthetic nature
(i.e. complete, well-segmented and noisy-free). To evaluate the performance of
our model on real-world objects, we conduct experiments on the ScanObjectNN
benchmark which contains 15,000 objects categorized into 15 classes with 2,902
unique instances in read world. We adopt the following variants of ScanObjectNN
in our experiments: (1)OBJ_ONLY which has only ground truth objects seg-
mented from the scene datasets, and (2)PB_T50_RS which is the hardest
variant for training and testing our model. For metrics, we report the overall
accuracy (OA) over all classes. We use
Experiment results. We use the same batch size, training epochs and other

Table 2. Comparison of part segmentation models on the ShapeNet. mIoU means
part-average Intersection-over-Union. All results are quoted from the cited papers.

Method mIoU aero bag cap car chair ear
phone guitar knife lamp laptop motor mug pistol rocket skate

board table

Yi[38] 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3
Kd-Net [12] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
PointNet [20] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [22] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
PointCNN [15] 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.2 84.2 64.2 80.0 83.0
DGCNN [24] 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
PointConv [32] 85.7 - - - - - - - - - - - - - - - -
PCT1 [7] 85.9 - - - - - - - - - - - - - - - -
PCT2 [8] 86.4 85.0 82.4 89.0 81.2 91.9 71.5 91.3 88.1 86.3 95.8 64.6 95.8 83.6 62.2 77.6 83.7
SWPT (ours) 85.4 82.2 79.2 83.1 74.3 91.7 74.7 91.7 86.0 80.6 97.7 55.8 96.6 83.3 53.0 74.5 83.9

3044



12 X. Guo et al.

settings as in experiments on ModelNet40. As presented in Table 3, our SWPT
achieves competitive results on both OBJ_ONLY and PB_T50_RS datasets
compared with previous methods. There is still a small gap between SWPT and
the SOTA method, mostly because of the dimensionality reduction caused by
projection, however which significantly accelerates the speed of model inference.
Visualization. Fig 6 illustrates the confusion matrices of the mainstream meth-
ods on the PB_T50_RS dataset which is the hardest variant. It can be seen that
SWPT only has ambiguity issues between box and pillow, while PointNet and
PointNet++ have ambiguity issues between table and desk besides. Even the
PCT which obtains a good experimental result on the synthetic dataset has
some ambiguity such as pillow vs bag and table vs desk. DGCNN has less am-
biguity, which might benefit from the EdgeConv module recomputing graphs
dynamically in each layer.

4.4 Ablation Study

We construct a number of ablation studies to analyze the performance of different
components in SW-PCT. All studies are performed on the shape classification.
Spherical Window size. We first evaluate the setting of window size (θ, φ),
which determines the local areas to performe self-attention. As presented in Ta-
ble 4, SWPT achieves the best performance when the window size is set to (4, 4).
When the windows size gets smaller, the model may not have sufficient context
to compute self-attention, leading to some local detail loss. When the window
size gets larger, the local area may have more data points with fewer relation-
ships, which introduces extreme noise into self-attention computation, reducing
the model’s accuracy.
Cross-Attention. We conducted an ablation study on the Cross-Attention
layer. As shown in Table 5, we investigate global self-attention, local self-attention
and cross-attention with different times in each layer. The results indicate adopt-
ing cross-attention twice in each layer achieves the best performance, while con-

Table 3. Comparision of state-of-the-art methods on ScanObjectNN. All results are
quoted from [27] except for the PCT.

Method OBJ_ONLY(%) PB_T50_RS(%)
3DmFV [2] 73.8 63
PointNet [20] 79.2 68.2
SpiderCNN [35] 79.5 73.7
PointNet++ [22] 84.3 77.9
DGCNN [24] 86.2 78.1
PointCNN [15] 85.5 78.5
BGA-DGCNN [27] - 79.7
BGA-PN++ [27] - 80.2
PCT [8] 80.7 71.4
SWPT (ours) 85.1 77.2
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Fig. 6. Confusion matrices of some previous methods on the hardest real-world dataset
PB_T50_RS.

tinuously increasing cross-attention within a layer reduces the performance. This
suggests that relationships between windows are critical in learning local fea-
tures.
Attention type. We now study the attention type in self-attention layers. The
results are shown in Table 6. It shows that scalar attention is more expressive
than vector attention in our model. In addition, vector attention consumes more
memory and time.
Pooling type. Finally, we investigate the type of pooling used for gathering
local features from a window. As shown in Table 7, Max-pooling outperforms
other methods even the ’Max-Ave’ pooling which is a concatenation of the re-
sults of Max-pooling and Average-pooling. ’Con-Pool’ stands for the operation
which concatenates all the features in a spherical window. This indicates that
Max-pooling captures the most expressive features in the local area.

Table 4. Ablition study: window size to perform self-attention

size layers mAcc OA
(2,2) 5 88.7 90.8
(3,3) 4 89.6 92.4
(4,4) 3 90.1 93.5
(8,8) 2 89.4 92.3
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Table 5. Ablition study: Cross-Attention

type mAcc OA
Local-AT 88.0 90.1
Cross-AT 89.5 92.2

Cross-AT × 2 90.1 93.5
Cross-AT × 3 89.7 92.7

Table 6. Ablition study: Cross-Attention

type mAcc OA
scalar attention 90.1 93.5
vector attention 89.9 93.2

Table 7. Ablation study: type of pooling to gather local features, Con-Pool refers to
the concatenation of features in a window.

Pooling mAcc OA
Max-Pool 90.1 93.5
Avg-Pool 87.9 90.2
Max-Avg 88.5 91.4
Con-Pool 88.6 92.3

5 Conclusion

In this paper, we present a Transformer-based architecture for 3D point cloud
recognition which achieves competitive results with more efficiency compared
with previous methods. To this end, we project the points on a spherical surface
to reduce the dimension of each point, followed by a spherical window layer to
perform local self-attention. We also introduce crossing window self-attention
module to capture hierarchical features, which is proved that the relationships
between different windows are effective to improve the accuracy of recognition
tasks. In the future, we expect to study the semantic properties extracting, which
would promote the network for other tasks such as 3D point cloud generation
and 3D object detection.
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