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Abstract. 3D shape of human body can be both discriminative and
clothing-independent information in video-based clothing-change per-
son re-identi�cation (Re-ID). However, existing Re-ID methods usually
generate 3D body shapes without considering identity modelling, which
severely weakens the discriminability of 3D human shapes. In addition,
di�erent video frames provide highly similar 3D shapes, but existing
methods cannot capture the di�erences among 3D shapes over time. They
are thus insensitive to the unique and discriminative 3D shape informa-
tion of each frame and ine�ectively aggregate many redundant frame-
wise shapes in a videowise representation for Re-ID. To address these
problems, we propose a 3D Shape Temporal Aggregation (3STA) model
for video-based clothing-change Re-ID. To generate the discriminative
3D shape for each frame, we �rst introduce an identity-aware 3D shape
generation module. It embeds the identity information into the genera-
tion of 3D shapes by the joint learning of shape estimation and identity
recognition. Second, a di�erence-aware shape aggregation module is de-
signed to measure inter-frame 3D human shape di�erences and automat-
ically select the unique 3D shape information of each frame. This helps
minimise redundancy and maximise complementarity in temporal shape
aggregation. We further construct a Video-based Clothing-Change Re-
ID (VCCR) dataset to address the lack of publicly available datasets for
video-based clothing-change Re-ID. Extensive experiments on the VCCR
dataset demonstrate the e�ectiveness of the proposed 3STA model. The
dataset is available at https://vhank.github.io/vccr.github.io.

Keywords: Clothing-change person re-identi�cation · 3D body shape ·

temporal aggregation.

1 Introduction

Person re-identi�cation (Re-ID) aims to match the same person across non-
overlapping cameras. Short-term Re-ID methods [30, 16, 14, 8] consider the prob-
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(1) Distribution of 3D shape parameters (2) 3D meshes constructed from video frames with the standardized pose

Fig. 1. The motivation of this paper. (1) 3D shape parameters are not discriminative,
as shown by randomly sampled 100 images of 10 di�erent persons (color indicated)
on the VCCR dataset, with their corresponding 3D shape parameters estimated by a
3D human estimation model [21], visualized by t-SNE. (2) The 3D shapes captured in
successive video frames are usually very similar and redundant, as shown in the 3D
mesh examples by SMPL [29] constructed with standardized pose parameters.

lem within a short time period assuming no changes of clothing, and therefore
are mostly clothing-dependent. In practice, Re-ID over a longer time period in a
more general setting, e.g., over several days, probably includes clothing changes.
In certain situations, a suspect may even deliberately change clothes to avoid
being found. To this end, a number of methods have been proposed to address
the challenge of clothing-change person Re-ID (CC Re-ID) [38, 44, 34, 26, 15].

Since clothing is less reliable in CC Re-ID, it is necessary to explore other
clothing-independent characteristics, e.g., body shape. Some methods consider
2D body shape features by human contours/silhouettes extraction [44, 13], key-
points detection [34] or body shape disentanglement [26]. However, human body
actually exists in a 3D space. 2D body shape information is not only view-
dependent but also lacking of 3D depth information, which has been shown to
be discriminative in Re-ID [42, 37]. Some works [49, 1] therefore have explored
3D shape information for Re-ID, but they su�er from two major limitations.

First, these methods [49, 1] generate 3D human shapes without considering
discriminative identity modelling. They usually directly employ a 3D human esti-
mation model to generate 3D shape parameters, which are then used to construct
3D meshes by SMPL [29] for discriminating di�erent persons. As illustrated in
Fig.1 (1), due to lack of identity modelling, the 3D shape parameters of the
same person can be dispersive (especially when the same person wears di�erent
styles of clothes), while those of di�erent persons can be close, making such 3D
shape information not discriminative enough for Re-ID. Second, as shown in
Fig.1 (2), although a video provides richer information a single frame, the 3D
shapes captured by successive frames are mostly highly similar. Existing tempo-
ral aggregation models [5, 41, 47] in Re-ID are usually designed for appearance
instead of 3D shape information. They are insensitive to the di�erences among
3D shapes over time, and cannot select the unique shape information of each
frame. Consequently, many redundant shapes from di�erent frames are aggre-
gated in a videowise shape representation, while some unique and discriminative
shape information of each frame is suppressed.
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To solve these problems, in this work we propose a 3D Shape Temporal Aggre-
gation (3STA) Re-ID model for video-based CC Re-ID. Our 3STA model consists
of three main modules: Identity-aware 3D Shape Generation (ISG), Di�erence-
aware Shape Aggregation (DSA) and Appearance and Shape Fusion (ASF). 1)
In order to generate the discriminative 3D shape for each video frame, the ISG
embeds identity information into the 3D shape generation. This is realized by
combing shape supervision of an auxiliary 3D human dataset with identity su-
pervision of a Re-ID dataset in a joint learning framework. 2) The DSA is for-
mulated to adaptively aggregate videowise shape representations from frames by
referring to the intra-frame and inter-frame shape di�erences. The intra-frame
shape di�erence enables our model to compare the changes of all the shape pa-
rameters in each frame for framewise spatial attention learning. The inter-frame
shape di�erence is used to capture the change of each shape parameter over time
to learn temporal attention. By considering both di�erences, DSA is sensitive to
the unique and discriminative shape information in each frame and selectively
aggregates into videowise shape representations with suppressed redundancy and
enhanced complementarity. 3) We also exploit appearance information to model
visual similarities una�ected by clothing changes, which can complement shape
information especially when the target person only partially changes clothes. The
ASF module is presented to fuse appearance and shape information adaptively
into the �nal identity representation.

Another signi�cant challenge to video-based CC Re-ID is that there is no
publicly available dataset. For this purpose, we introduce a Video-based Clothing-
Change Re-ID (VCCR) dataset in this work. Built on the attribute recognition
dataset RAP [24] collected in a large indoor shopping mall, VCCR covers rich
variations in clothing, cameras and viewpoints. To our best knowledge, it is
currently the largest video-based CC Re-ID dataset with 4,384 tracklets of 232
clothing-change persons and 160 distractors, compared to the other dataset [3].

Our contributions are summarized as follows. 1) To our best knowledge, our
3D Shape Temporal Aggregation (3STA) model is the �rst attempt to explore
temporal 3D shape information for video-based CC Re-ID. 2) To generate dis-
criminative 3D shapes for Re-ID, we introduce Identity-aware 3D Shape Gen-
eration (ISG) that enforces 3D shape parameters to be person-speci�c. 3) The
proposed Di�erence-aware Shape Aggregation (DSA) can be sensitive to tempo-
ral shape di�erences, and help minimise the redundancy of shape aggregation.
4) We construct a VCCR dataset for video-based CC Re-ID research. Exten-
sive comparative evaluations show the e�ectiveness of our method against the
state-of-the-art methods.

2 Related Work

Short-Term Re-ID. Short-term person Re-ID includes image-based [9, 32, 31,
10, 17] and video-based [20, 33, 25] Re-ID. This research primarily relies on cloth-
ing information for discriminative person representation learning. Compared
with image-based Re-ID methods, video-based Re-ID methods can leverage tem-
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poral information in video sequences to explore richer identity features. However,
the performance of these short-term Re-ID methods su�ers a sharp drop when
a person changes clothes.

Imaged-Based Clothing-Change Re-Id. To handle clothing variations for
Re-ID, many methods have been proposed to learn clothing-independent shape
information, which can be categorized into 2D and 3D shape based methods.
For 2D shape learning, Qian et al. [34] present a clothing-elimination and shape-
distillation model for structural representation learning from human keypoints.
Yang et al. [44] directly learn feature transformation from human contour sketches.
Hong et al. [13] transfer shape knowledge learned from human silhouettes to ap-
pearance features by interactive mutual learning. Li et al. [26] remove clothing
colors and patterns from identity features by adversarial learning and shape dis-
entanglement. Shu et al. [35] force the model to learn clothing-irrelevant features
automatically by randomly exchanging clothes among persons.

In contrast to 2D shape that is con�ned to a plane, 3D shape can introduce
human depth information to facilitate Re-ID. A few works have attempted to
employ 3D human estimation models to construct 3D meshes for Re-ID. Zheng et

al. [49] learn shape features directly with these 3D meshes instead of RGB images
as inputs. However, due to the lack of consideration of identity information, the
discriminability of constructed 3D meshes is not guaranteed. Chen et al. [1]
propose an end-to-end framework to recover 3D meshes from original images.
This method is supervised in a 2D manner by reprojecting the recovered 3D
meshes back into a 2D plane again, which is lack of supervision of 3D shapes.
Unlike them, our method uni�es ground-truth 3D shape signals from a 3D human
dataset with identity signals from a Re-ID dataset in a joint learning framework.
In this way, our method can generate reliable and discriminative 3D shapes to
boost shape learning for Re-ID.

Video-Based Clothing-Change Re-Id. Compared with image-based CC Re-
ID, video-based CC Re-ID is rarely studied and still in the initial stage. Zhang et

al. [46] make the �rst attempt on video-based CC Re-ID based on hand-crafted
motion features from optical �ow, assuming that people have constant walking
patterns. Fan et al. [3] study video-based CC Re-ID with radio frequency signals
re�ected from human body instead of RGB color signals, thus completely remov-
ing clothing information. Di�erent from them, we take advantage of temporal
3D shape information as a discriminative cue, which is more stable than walking
patterns and easier to obtain than radio frequency signals.

Single-View 3D Human Estimation. Single-view 3D human estimation aims
to construct human 3D meshes, including 3D shape and pose, from a single
image. Current methods [21, 23] typically predict shape and pose parameters
with the supervision of 3D ground truths, and then construct 3D meshes by the
SMPL model [29]. However, the 3D shape parameters estimated by these models
are usually not discriminative enough and cannot fully re�ect the di�erences of
body shapes among persons, making these methods not well applied to Re-ID.
To this end, our proposed ISG module combines 3D shape estimation and Re-ID
in a joint learning framework to generate more discriminative shape parameters.
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Fig. 2. An overview of the proposed 3D Shape Temporal Aggregation (3STA) model.

3 Method

In this paper, we propose a 3D Shape Temporal Aggregation (3STA) Re-ID
model to learn temporal 3D shape representations for video-based CC Re-ID.
As shown in Fig. 2, our model includes three main modules. The Identity-aware
3D Shape Generation (ISG) is �rst performed to generate discriminative 3D
shape parameters for each video frame. The Di�erence-aware Shape Aggregation
(DSA) exploits the di�erences across intra-frame and inter-frame 3D shape pa-
rameters to aggregate videowise shape parameters. The Appearance and Shape
Fusion (ASF) further exploits appearance information to complement shape and
adaptively fuses them into �nal representations for CC Re-ID. Let us start with
an introduction to parametric 3D human estimation, which is the basis for our
discriminative 3D shape learning.

3.1 Parametric 3D Human Estimation

3D human estimation models [21, 23, 29] usually parameterize 3D human body
by shape parameters and pose parameters that are irrelevant to each other.
Typically, SMPL [29] is modeled as a function of the pose parameters θ ∈ R24×3

representing the rotation vectors of 24 human joints and shape parameters β ∈
R10. Given the two parameters, SMPL can construct the 3D mesh with the
corresponding pose and shape. Since pose is not person-speci�c, we focus only
on shape parameters β in our modelling.

The SMPL model prede�nes a human shape template, and uses shape pa-
rameters to formulate the shape o�set to the template by principal component
analysis (PCA). Then the body shape is represented by a linear function BS

BS =

|β|∑
n=1

βnSn, (1)

where the shape parameters β = [β1, . . . , β|β|]T, and |β| is the number of pa-
rameters (|β| = 10). Sn ∈ R3N represents orthonormal principal components of
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shape o�sets, where N is the number of vertices on the prede�ned human mesh,
and 3N is the number of 3D coordinates of N vertices. The function BS thus
formulates all the shape o�sets to the shape template. When Sn is shared by all
the people's shapes, the shape parameters β re�ect the di�erence among these
shapes. Each parameter βn (n=1,· · · ,10) usually controls some speci�c aspects
of body shape, e.g., the body size, waistline or leg length. We thus can formulate
the change of 3D shapes over time in a video by the change of shape parameters.

3.2 Identity-Aware 3D Shape Generation

One challenge of learning 3D shape information for Re-ID is that Re-ID datasets
do not contain annotations of 3D shape parameters β. In fact, it is very di�cult
and has to rely on special equipments to collect individual 3D shape parameters
in real-world scenarios. Existing CC Re-ID methods [49, 1] directly utilize 3D
human estimation models to estimate shape parameters which are nevertheless
not discriminative. To overcome this problem, we introduce an Identity-aware
3D Shape Generation (ISG) module that embeds identity information into the
generation of shape parameters.

In the ISG module (Fig. 2 (1)), a shape encoder is modeled as a function:
RC×H×W → R10, to predict 10D shape parameters for a given image, where C,
H and W are the number of channels, height and width of the image, respec-
tively. The generated 3D shape parameters need to satisfy two requirements. (1)
Validity: shape parameters are valid and close to the ground truths so that they
can formulate true 3D body shape. (2) Discriminability: shape parameters of the
same person are close while those of di�erent persons are away from each other
in the parameter space.

To meet the requirement (1), we introduce a 3D human dataset [19] as an
auxiliary dataset with ground truths of shape parameters. Images from both
the Re-ID and 3D datasets are input into the shape encoder to estimate shape
parameters β̂ID and β̂3D, respectively. We introduce a shape validity loss Lβval:

Lβval = ‖β̂3D − β3D‖
2
, (2)

where β3D is ground-truth 3D shape parameters from the 3D human dataset.
To meet the requirement (2), we further introduce a shape discrimination loss

Lβdis on β̂ID.
Lβdis = Lβce + Lβtri, (3)

where Lβce and L
β
tri are the cross-entropy and triplet losses, respectively, which

are enforced by pairwise positive and negative identity labels from the Re-ID
dataset. The total loss for ISG is

LISG = Lβval + αLβdis, (4)

where α is a weight factor. After performing ISG, the generated shape parameters
for the Re-ID dataset are kept as pseudo labels (βISGT ) to train the 3STA model.

When we train the 3STA model, the shape encoder is retrained from scratch
on the Re-ID dataset and does not share the weights with the shape encoder in
ISG. This can decrease the interference of the 3D human data distribution bias in
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training the shape encoder. We denote a random tracklet composed of T frames
in the Re-ID dataset as I T . The shape encoder generates shape parameters
βT ∈ RT×10 and is optimised by a shape regression loss Lsreg:

Lsreg = ‖βT − βISGT ‖2, (5)

where βISGT is the corresponding shape parameters generated by ISG. In this
way, the shape encoder learns to regress discriminative 3D shape parameters for
each video frame.

3.3 Di�erence-Aware Shape Aggregation

Existing temporal aggregation methods [5, 41, 47] are usually proposed for ag-
gregating appearance information, and insensitive to the shape di�erences over
time in a video. They thus aggregate much redundant shape information of dif-
ferent frames and suppress valuable unique shape information of each frame. To
this end, we propose a Di�erence-aware 3D Shape Aggregation (DSA) module,
which takes advantage of the shape di�erences among frames to drive the shape
aggregation with suppressed redundancy and enhanced complementarity.

To make our method more sensitive to inter-frame shape di�erences over
time, we use relative shape instead of absolute shape per frame in video shape
aggregation. As shown in Section. 3.1, each shape parameter βd controls some
speci�c aspects of body shape, so we can formulate the subtle di�erence of 3D
shapes among frames by the di�erence values of shape parameters. As shown in
Fig. 2. (2), we �rst compute the mean shape parameters β̄T of a tracklet as a
reference, and then obtain the shape-di�erence map βdif = βT − β̄T (βdif ∈
RT×10). We denote the value at the coordinate (t, d) as (βdif )dt indicating the
shape di�erence between the d-th shape parameter of the t-th frame and the
corresponding mean parameter. We introduce the intra-frame and inter-frame
shape-di�erence references to jointly decide the weight for each shape parameter
of each frame.
Intra-frame shape-di�erence reference. We consider a shape parameter
with a larger di�erence to the mean parameter to be more informative than
other parameters in that frame. But if most shape parameters have larger di�er-
ences, their importance should be balanced because it is possibly caused by the
body occlusion or shape estimation error. Therefore we introduce an intra-frame
shape-di�erence reference wD ∈ RT×10 to consider all the shape parameters
within a frame to balance the weight of each one. wD for the t-th frame is
formulated as

(wD)1t , · · · , (wD)10t = Sigmoid(Conv[(βdif )1t , · · · , (βdif )10t ]), (6)

where Sigmoid is the Sigmoid function, Conv is a convolutional layer, of which
the kernel size is 1×10 to span all of 10 shape parameters of a frame. The output
channel is 10 for 10 di�erent parameters. Details are illustrated in Fig. 2. (2).
Inter-frame shape-di�erence reference. To reduce the temporal redun-
dant information, we also introduce an inter-frame shape-di�erence reference
wT ∈ RT×10 to compare each shape parameter across frames to assign tem-
poral attention. Concretely, we compute an inter-frame shape-di�erence map
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β′dif ∈ RT×T×10, on which the value at the coordinate (t1,t2,d) is formulated as

(β′dif )dt1,t2 = (βdif )dt1 − (βdif )dt2 , (7)

where t1, t2=1,· · · ,T ; d=1,· · · ,10. β′dif indicates the shape di�erence of the d-th
shape parameter between the t1-th and t2-th frames. wT is then formulated by
10 convolutional layers as

(wT )dt = Sigmoid(Convd([(β
′
dif )dt,1, · · · , (β′dif )dt,T ])), (8)

where Convd is the d-th convolutional layer with a kernel size of 1 × 1, which
considers all of T frames on the d-th parameter to determine the reference weight.

The reference weights wD and wT make our model sensitive to the shape
changes both in respect to each shape parameter over time and all shape pa-
rameters in each frame at a time. They thus impose selective aggregation by
minimising redundant spatial-temporal shape information across frames in a
video. The �nal weight wS = wT � wD, where � is the elementwise product,
and then is normalized by the Softmax function. The aggregated videowise shape
parameters βs are the sum of βT weighted by wS , where βs is optimised by a
shape-based identity loss Lsid, same as in Eq.(3), i.e., the sum of the cross-entropy
loss and triplet loss to learn discriminative videowise shape parameters.

3.4 Appearance and Shape Fusion

Appearance remains useful in complementing some visual similarities to shape
for Re-ID, e.g., when a person only changes partial clothes and/or with certain
aspects of appearance una�ected by clothing changes, such as gender, age, etc.
To that end, we formulate a joint appearance and shape fused representation
that is adaptively learned in model training.

The appearance encoder extracts videowise appearance features fa, to be
combined with videowise shape parameters βs. A fusion module includes two
steps, i.e., feature transformation and weight prediction. The feature transfor-
mation projects two feature vectors into a common feature space, de�ned as

fa ← Sigmoid(Conva(L2(fa))),fs ← Sigmoid(Convs(L2(βs))), (9)

where L2 is L2 normalization, Conva and Convs are two independent convolu-
tional layers with the kernel size of 1× 1.

The weight prediction aims to estimate the weights for the two feature vectors
by making them refer to each other and jointly optimise the weight for each one.
This process is de�ned as

wa = Conva([fa,fs]), ws = Convs([fa,fs]), (10)

where fa and fs are concatenated as a tensor, which then separately goes
forward through two convolutional layers Conva and Convs. They both have the
kernel size of 1×2 and thus output two weight vectors wa and ws. A fused joint
feature vector fj = wa � fa +ws � fs, where � is element-wise product, with
fa and fj being optimised by the appearance-based loss Laid and fusion-based

loss Ljid. Each of them is the sum of a cross-entropy loss and a triplet loss as in
Eq.(3). The overall 3STA model is jointly trained by an overall loss

Lall = Lβreg + λ1Lsid + λ2Laid + λ3Ljid, (11)
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Table 1. Comparison among CC Re-ID datasets. Some data are unclear because of
being publicly unavailable.

Dataset NKUP [40] LTCC [34] PRCC [44] COCAS [45] RRD-Campus [3] Motion-ReID [46] VCCR (Ours)

Type image image image image radio frequency video video

CC IDs\Distractors 107\0 91\61 221\0 5,266\0 100\0 30\0 232\160
Cameras 15 12 3 30 5 2 23

Cropping detection detection manual manual detection manual manual

Tracklets - - - - 863 240 4,384

Images (Frames) 9,738 17,119 33,698 62,383 unclear 24,480 152,610

Clothes/ID 2∼3 2∼14 2 2∼3 unclear unclear 2∼10
Publicly Available Y Y Y N N N Y (to be released)

where λ1, λ2 and λ3 are weight factors. Discriminative appearance and shape
representations, which are optimised by Laid, Lsid and Lβreg, are the foundations
of contributing to a more discriminative joint representation optimised by Ljid.

4 VCCR Dataset

Given that there is no publicly available dataset for video-based CC Re-ID model
learning and evaluation, we introduce a new Video-based Clothing-Change Re-
ID (VCCR) dataset to be released for open access to the research community.

4.1 Collection and Labelling

We collect data from the Richly Annotated Pedestrian (RAP) dataset [24] for
reducing the collection and annotation cost. Moreover, this does not lead to
additional privacy issues by not introducing new data. RAP contains person
images captured in an indoor shopping mall over 3 months. It was originally
built for attribute recognition and annotated with identity labels. We select 232
persons that change clothes and 160 distractors that do not change clothes from
the RAP dataset, with access to the corresponding videos given the permission
and consent by the authors. Then we manually crop person patches from video
frames. Apart from the identity and camera labels from RAP, we additionally
annotate each tracklet with a clothing label. Two tracklets with the same identity
label are given two di�erent clothing labels only if there is a visible clothing
change. A change of carrying items, such as bottles, books and boxes, does not
a�ect the clothing label.

4.2 Statistics and Comparison

We compare VCCR with other CC Re-ID datasets in Table 1 in four aspects.
1) Type. Most existing datasets, e.g., NKUP [40], LTCC [34], PRCC [44] and
COCAS [45], are image-based. RRD-Campus [3] collects radio frequency signals.
Only Motion-ReID [46] is video-based, but not publicly available.
2) Scale. Motion-ReID includes 240 tracklets, while VCCR has 4,087 tracklets
of 232 clothing-change persons and 297 tracklets of 160 distractors. Each tracklet
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has 5 to 130 frames with an average of 35. VCCR is thus the currently largest
video-based CC Re-ID dataset.
3) Number of persons. Since it is much more challenging to collect and label
clothing-change data in videos than images, VCCR has a smaller number of
clothing-change persons (232) than the image-based COCAS (5,266). But VCCR
still contains more clothing-change persons than the video-based Motion-ReID
(30), and also competitive compared with most image-based datasets, such as
NKUP (107), LTCC (91) and PRCC (221).
4) Number of clothes. In contrast to NKUP, PRCC and COCAS with 2∼3
clothes/ID, VCCR contains 2∼10 clothes/ID with an average of 3.3.

4.3 Protocol

The training set includes 2,873 tracklets of 150 clothing-change persons. For test,
496 tracklets of 82 clothing-change persons constitute the query set, while 718
tracklets of these 82 persons along with 297 tracklets of 160 distractors build the
gallery set. We make sure that the training and test sets have close statistics and
diversity in samples. We adopt two test modes like [34], i.e., the cloth-changing
(CC) and standard modes, to evaluate the performance of CC Re-ID models. In
the clothing-change (CC) mode, all the ground-truth gallery tracklets have
di�erent clothing labels to the query. In the standard mode, the ground-truth
gallery tracklets can have either same or di�erent clothing labels to the query.
When evaluating Re-ID performances, we use the average cumulative match
characteristic and report results at ranks 1, 5 and 10.

5 Experiments

5.1 Implementation Details

The appearance encoder adopts the Resnet-50 [11] backbone pretrained on Im-
ageNet [2] to extract framewise appearance features and average pooling to pro-
duce 2048D videowise features fa. The shape encoder is composed of a pretrained
Resnet-50 backbone and three fully-connected layers of 1024, 1024 and 10 di-
mensions, respectively. All images are scaled to 224×112 and randomly �ipped.

We �rst run the ISG module with the VCCR dataset and 3D human dataset
Human3.6M [19]. All the tracklets of VCCR are broken into 152,610 images in
total. We randomly sample 16 persons with 4 images per person from VCCR, and
64 random images from Human3.6M in each training batch. ISG is performed
for 20,000 iterations with the Adam optimiser [22] (β1=0.9 and β2=0.999). The
learning rate is set to 0.00001 and the weight factor α is set to 500. After training
ISG, we keep the generated shape parameters βISGT for VCCR to train the overall
3STA model.

The overall 3STA model is trained on VCCR. We randomly choose 8 di�erent
persons, 4 tracklets for each person and 8 successive frames for each tracklet in
each training batch. We also use the Adam optimiser, with the learning rates
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of the shape encoder and other modules initialized at 0.00001 and 0.0001, re-
spectively, and decayed by 0.1 after 20,000 iterations. The 3STA model is jointly
trained over 30,000 epochs. The weight factor λ1=1, λ2=10, λ3=0.05, and the
margin parameters of all the used triplet losses are set to 0.3. The dimension of
the projected feature space in the appearance and shape fusion module is 2048,
i.e., fa,fs,fj ∈ R2048.

5.2 Evaluation on CC Re-Id Datasets

We compare our 3STA model and four types of state-of-the-art methods on the
VCCR dataset in Table 2. In terms of the deep learning based methods, the re-
sults show a general trend that the performance is incrementally improved from
image-based short-term, image-based CC, video-based short-term to video-based
CC Re-ID methods. Speci�cally, �rst, image-based short-term Re-ID meth-
ods have the lowest accuracies, because they primarily make use of clothing
information to discriminate persons and inevitably lose some discriminability
under clothing-change situations. Second, image-based CC Re-ID methods
reduce the reliance on clothing by exchanging clothes among persons [35] or us-
ing vector-neuron capsules to perceive clothing change of the same person [18].
Third, video-based short-term Re-ID methods have more robust Re-ID ca-
pacities due to exploiting temporal information, but they are still sensitive to
clothing changes. Overall, our video-based CC Re-ID model 3STA achieves
the highest accuracies in both CC and standard modes. The reasons are two-
fold. 1) Discriminative temporal 3D shape information in videos is modelled as
clothing-independent person characteristics. 2) Complementary appearance in-
formation is jointly modelled with 3D shape, resulting in the joint representation
more robust to both clothing-change and clothing-consistent situations.

For completeness, we also list the released results of STFV3D [27], DynFV [6]
and FITD [46] on the Motion-ReID dataset [46]. All of these methods are based
on hand-crafted features. We are unable to compare them with other methods
on Motion-ReID because the dataset is not publicly available, but we include a
comparison on the video-based short-term Re-ID dataset PRID.

5.3 Evaluation on Short-Term Re-Id Datasets

We also conduct evaluations on the video-based short-term Re-ID datasets MARS
[48] and PRID [12]. MARS is a large-scale dataset containing 1,261 persons with
20,715 tracklets. PRID includes 200 persons captured by two cameras, and only
178 persons with more than 25 frames are used, following the previous work [46].

Our 3STA model can perform clearly better than image-based short-
term and CC Re-ID methods on both MARS and PRID, bene�ting from
modelling temporal 3D shape apart from clothing information. But the video-
based short-term Re-ID methods can surpass our 3STA model, due to en-
hancing clothing based temporal information for better discriminating clothing-
consistent persons. For the two video-based CC Re-ID models, 3STA signi�-
cantly outperforms FITD on PRID. FITD utilizes motion cues for Re-ID with the
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Table 2. Results on video-based CC Re-ID datasets VCCR and Motion-ReID, and
short-term Re-ID datasets MARS and PRID (%). Image-based methods produce vide-
owise features by average pooling on framewise features. Appe., Shape and Joint denote
that appearance features fa, shape parameters βs and joint features fj in the 3STA
model are used for evaluation (the same below).

Method Type Methods Features
VCCR (CC Mode) VCCR (Standard Mode) Motion-ReID MARS PRID
mAP Rank1 Rank5 mAP Rank1 Rank5 Rank1 Rank1 Rank1

Image-Based
Short-Term

Re-ID

PCB [36] Deep Learning 15.6 18.8 38.6 36.6 55.6 75.2 - 85.2 89.1
MGN [39] Deep Learning 22.6 23.6 44.9 42.7 64.4 81.9 - 86.4 90.6
HPM [4] Deep Learning 19.4 23.1 42.9 39.5 58.3 78.7 - 87.9 90.3

Video-Based
Short-Term

Re-ID

STFV3D [27] Hand-Crafted - - - - - - 29.1 - 42.1
DynFV [6] Hand-Crafted - - - - - - 32.3 - 17.6
MGH [43] Deep Learning 30.7 34.6 54.5 51.6 76.3 87.2 - 90.0 94.8
AP3D [7] Deep Learning 31.6 35.9 55.8 52.1 78.0 88.4 - 90.1 94.6
GRL [28] Deep Learning 31.8 35.7 55.3 51.4 76.9 88.2 - 89.8 95.1

Image-Based
Clothing-Change Re-ID

ReIDCaps [18] Deep Learning 29.9 33.4 53.6 48.4 75.1 86.3 - 83.2 88.0
SPS [35] Deep Learning 30.5 34.5 54.1 50.6 76.5 85.5 - 82.8 87.4

Video-Based
Clothing-Change

Re-ID

FITD [46] Hand-Crafted - - - - - - 43.8 - 58.7
Appe. (3STA) Deep Learning 29.3 32.8 52.0 46.7 74.3 84.5 - 83.7 87.8
Shape (3STA) Deep Learning 20.6 21.3 36.9 39.2 62.8 82.4 - 74.0 76.3
Joint (3STA) Deep Learning 36.2 40.7 58.7 54.3 80.5 90.2 - 89.1 93.4

assumption that people keep constant motion patterns, which does not always
hold in practice. In contrast, 3STA explores discriminative 3D shape together
with appearance, which is more stable and robust than motion cues.

5.4 Ablation Study

Appearance v.s. Shape v.s. Joint Representations. We compare the per-
formance of appearance, 3D shape and joint representations in Table 2. The
results show two phenomenons that deserve the attention. 1) Appearance can
achieve higher performance than 3D shape in both test modes, due to two rea-
sons. First, when people do not change or just slightly change clothes, appear-
ance remains more competitive than 3D shape by exploiting visual similarities
for Re-ID. Second, 3D shape parameters only have 10 dimensions and they have
a limited capacity of modelling complex body shape. Overall, 3D shape is best
complemented with appearance instead of being used alone. 2) The joint repre-
sentations outperform both appearance and 3D shape by a signi�cant margin.
This demonstrates that our model can exploit the complementarity of two in-
formation to adaptively fuse more discriminative information, which can adapt
to both cloth-changing and clothing-consistent situations better.

Identity-Aware 3D Shape Generation (ISG). The ISG module ensures the
validity and discriminability of the generated 3D shape parameters by the loss
Lβval and L

β
dis in Eq. (4), respectively. We remove either of the two losses during

performing ISG and show the results in Table 3 (top two lines). 1) Removing

Lβval degenerates the accuracy of shape representations from 21.3%/62.8% to
12.7%/57.4% in the CC/starndard mode. Losing the supervision from the 3D
human dataset in validity makes the shape parameters not formulate true 3D
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Table 3. Rank 1 accuracy on the VCCR dataset for the ablation study of losses.

ISG module 3STA model CC Mode Standard Mode

Lβval L
β
dis L

s
reg Laid Lsid Ljid Appe. Shape Joint Appe. Shape Joint

% " " " " " 32.2 12.7 31.5 73.5 57.4 72.6

" % " " " " 32.7 6.3 24.1 73.9 18.7 67.3

" " % " " " 31.9 14.6 26.3 73.6 44.7 64.3

" " " % " " 14.5 19.7 17.6 46.2 62.5 55.7

" " " " % " 32.6 15.8 29.8 73.4 57.6 72.3

" " " " " % 33.5 21.6 30.3 75.2 62.6 73.5

" " " " " " 32.8 21.3 40.7 74.3 62.8 80.5

ℒ𝒆𝒔𝒕
𝜷

w/o ℒ𝒅𝒊𝒔
𝜷

ℒ𝒆𝒔𝒕
𝜷

ℒ𝑰𝑺𝑬 w/o ℒ𝒅𝒊𝒔
𝜷 ℒ𝑰𝑺𝑬

OG-Net Our ISG module

Fig. 3. Comparing 3D shape parameters generated by the OG-Net [49] and our ISG
module. The visualisation shows 700 images of 10 persons from the VCCR dataset.

body shapes. Only using identity supervision from the Re-ID dataset for training,
the model implicitly relies on appearance instead of 3D shape in minimising
the loss Lβdis. 2) Removing Lβdis decreases the rank 1 of shape representations
to 6.3%/18.7% in the CC/standard mode. In Fig. 3, we visualize the shape
parameters generated by the ISG and the OG-Net [49]. OG-Net does not embed

identity information, similar to removing Lβdis from ISG. ISG enables 3D shape

parameters to be separable for di�erent persons, attributed to introducing Lβdis
to signi�cantly improve discriminative 3D shape learning for Re-ID.

Di�erence-Aware 3D Shape Aggregation (DSA). 1) Intra-frame and
inter-frame shape-di�erence references. The weight wS in DSA is decided
jointly by the intra-frame and inter-frame shape-di�erence references wD and
wT . As shown in the 2nd and 3rd rows in Table 4, using wT alone degenerates
the rank 1 accuracy of shape representations from 21.3%/62.8% to 18.2%/60.7%
in the CC/standard mode. The joint representations are a�ected similarly. The
1st and 3rd rows suggest that using wD alone degrades the rank 1 accuracy of
shape representations by 3.4%/4.0% in the CC/standard mode. The joint use of
wD and wT makes DSA sensitive to the changes of spatial and temporal shape
information and reduces the redundancy of shape aggregation over time.
2) Shape di�erences. DSA uses the shape di�erences among frames (βdif =
βT − β̄T ) to guide the weight prediction. To validate the e�ectiveness, we also
show the result of directly using βT to replace βdif when computing wD by Eq.
(6). Comparing the 1st and 4th, or 3rd and 5th rows in Table 4, we can observe
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Table 4. Rank 1 accuracy of di�erent temporal aggregation methods on the VCCR
dataset. βdif = βT − β̄T .

Methods Shape Weight
CC Mode Standard Mode
Shape Joint Shape Joint

Ours

βdif wD 17.9 36.6 58.8 78.4
βdif wT 18.2 39.0 60.7 79.7
βdif wD �wT 21.3 40.7 62.8 80.5

βT wD 16.2 35.8 58.5 77.3
βT wD �wT 17.5 36.4 59.4 77.8

using βdif improves the rank 1 accuracy obviously over βT . The advantage of
βdif lies in helping the DSA module explicitly perceive the subtle 3D shape
di�erences among frames in a form of relative shape, and reduce the reuse of
redundant shape information better.

Losses. We perform the ablation study on the losses Lsreg, Laid, Lsid and Ljid
in training the 3STA model and show the results in Table 3. Taking o� Lsreg
greatly decreases the accuracy of shape representations from 21.3%/62.8% to
14.6%/44.7% in the CC/standard mode, and also a�ects adversely the joint rep-
resentations in a similar way. This is because Lsreg can enable e�ective framewise
shape learning, which is the basis of temporal shape aggregation. Our model also
su�ers from performance degradation in di�erent degrees if trained without Laid,
Lsid or L

j
id. This reveals that the discriminative joint representations have to be

built on discriminative appearance and shape representations.

6 Conclusion

To our best knowledge, for the �rst time this paper has formulated a model to
learn discriminative temporal 3D shape information for video-based CC Re-ID.
First, our proposed 3STA model has included an ISG module, which considers
identity modelling to generate the discriminative 3D shape for each frame. Then,
a DSA module that is sensitive to the shape di�erences among frames has been
proposed to aggregate framewise shape representations into videowise ones. It
selectively exploits the unique shape information of each frame to reduce the
redundancy of shape aggregation. Moreover, we have also contributed a VCCR
dataset for the video-based CC Re-ID research community.
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