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Abstract. The performance of deep neural networks for image recog-
nition tasks such as predicting a smiling face is known to degrade with
under-represented classes of sensitive attributes. We address this problem
by introducing fairness-aware regularization losses based on batch esti-
mates of Demographic Parity, Equalized Odds, and a novel Intersection-
over-Union measure. The experiments performed on facial and medical
images from CelebA, UTKFace, and the SIIM-ISIC Melanoma classifi-
cation challenge show the effectiveness of our proposed fairness losses on
bias mitigation as they improve model fairness while maintaining high
classification performance. To the best of our knowledge, our work is
the first attempt to incorporate these types of losses in an end-to-end
training scheme to mitigate biases of visual attribute predictors.
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1 Introduction

The manifestation of bias is evident in every aspect of our society, from educa-
tional institutions [15], to bank credit limits for women [30], to criminal justice
for people of color [13]. The core problem is the inability of an individual to make
ethically correct objective decisions without being affected by personal opinions.
With the advent of recent machine learning (ML) algorithms trained on big
data, there is a dramatic shift towards using such algorithms to provide greater
discipline to impartial decision-making. However, ML-based algorithms are also
prone to making biased decisions [4,27], as the reliability of data-based decision-
making is heavily dependent on the data itself. For instance, such models are
unfair when the training data is heavily imbalanced towards a particular class
of a sensitive attribute such as race [31]. A notable example by [4] shows that by
assuming the ML model’s target attribute as gender and the sensitive attribute
as skin color, the classification error rate is much higher for darker females than
for lighter females. A similar concern exists in the medical fraternity, where

⋆ Source code is available at https://github.com/nish03/FVAP
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a recent work [22] studied the correlation between the under-representation of
darker skin images with the classification error in predicting dermatological dis-
ease. Another work [23] showed a sharp decrease in classification performance
while diagnosing several types of thoracic diseases for an under-represented gen-
der in the X-ray image training data set. Therefore, it is critical to mitigate
these biases in ML-based models for visual recognition tasks, to alleviate ethical
concerns while deploying such models in real-world applications.

Recent studies focus on creating balanced data sets [19], or perform data aug-
mentation [36] to remove imbalance with respect to the sensitive attributes. We
argue that to make an ML model useful in real-life scenarios, it should achieve
algorithmic fairness while still being trained on data sets that consist of real-
world biases. In terms of algorithmic fairness, works such as [24,32,45] aim to
learn the features in the data that are statistically independent of the sensitive
attributes, while [18,2] focus on de-biasing the latent space of a generative model
to achieve a fair outcome. We propose that to reduce bias w.r.t. the sensitive
attributes, a model must satisfy the fairness notations by learning them during
training. Additionally, none of the previous approaches attempted to utilize an
inherent IoU-based fairness measure to train an ML model and achieve algorith-
mic fairness without loss in classification accuracy. Our overall learning scheme
is presented in Fig. 1. The contributions of our work are as follows:

– We use classical fairness notations such as Demographic Parity (DP) and
Equalized Odds (EO) to define the corresponding fairness loss terms and
measure the deviations from the assumptions of the probabilistic indepen-
dence w.r.t. sensitive attributes. We quantify these deviations by using mean
squared error as well as the Kullback-Leibler divergence (KLD) between the
learned probability distribution and the best-factorized distribution, leading
to the mutual information (MI) between the variables in the learned model.

– We generalize the fairness notations such as DP and EO for categorical vari-
ables since the task is usually a multi-class problem in image classification.
In the past, such notations were defined for binary variables only.

– We introduce a novel fairness loss based on the Intersection-over-Union(IoU)
measure and study its relevancy for achieving fair classification results empir-
ically. Our experiments show that it can simultaneously improve the model
fairness and the baseline classification performance when the model is eval-
uated with fairness metrics.

– We exhaustively evaluate all introduced losses with facial attribute predic-
tion on CelebA [25], age group estimation on UTKFace [49], and disease
classification on the SIIM-ISIC Melanoma data set [36]. It was possible for
all of these data sets to improve the model fairness with our method.

2 Related Work

We discuss current methods that deal with bias mitigation in the data domain
and provide an overview of works conducted to achieve fairness-aware facial and
medical image recognition systems.
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Fig. 1. The figure shows our new training procedure that improves the fairness of image
classification models w.r.t. to sensitive attributes such as gender, age, and ethnicity.
We add a weighted fairness loss to the standard cross-entropy loss during mini-batch
gradient descent. It estimates the fairness of the model’s predictions based on the
sensitive attributes and the predicted and ground-truth target attributes from the
samples within each batch.

Mitigating bias in the data domain: The work [33] developed an audit
process to highlight the fairness-driven concerns in facial recognition while [45]
provided a benchmark for bias removal and highlighted key ethical questions for
mitigating bias in vision data sets. Another study [22] estimated skin tones for
images with skin disease and showed that the darker skin population is under-
represented in the data set. In [11], the authors performed data augmentation
to mitigate bias in facial image data sets. Multiple authors [19,28] presented
new facial data sets with a balanced number of samples from different classes
of sensitive attributes. The works such as [26,7,8] used image generation mod-
els to synthesize new facial images and used these images with standard pre-
trained classifiers to investigate algorithmic performance bias based on sensitive
attributes. Some authors [35,2] used the latent space of the Generative Adversar-
ial Networks (GAN) to de-correlate the target and sensitive attributes, while [42]
developed a tool that uses an image data set and its annotations as input and
suggests actions to mitigate potential biases. The work [32] learned a GAN-based
mapping of the source image to a target fair image representation by removing
the semantics of target features such as eyes and lips from the sensitive attribute
gender. The issue of unfair predictions due to biased data also exists in few-shot
[50] and zero-shot [40] learning where [50] includes a constraint called decision

1213



4 T. Hänel et al.

boundary covariance, enabling independence of target and sensitive attributes
while [40] maps the unlabelled target classes to a point in semantic space exterior
to the point cluster of labeled source classes.

Fairness in facial recognition: A study [37] proposed a classifier that pre-
dicts target facial attributes using pre-learned sensitive attributes. Another work
[51] calibrated the predicted target class labels to reduce the performance bias
while [10] proposed separate fair classifiers for each target class. In [1], they used
the cross-entropy loss between the predicted sensitive labels and the uniform
distribution, causing the model to be confused and invariant to the sensitive
attributes. Many authors [29,9,18,21,14,44] proposed adversarial learning to ob-
tain a fair ML model. A study [12] presented channel-wise attention maps that
adapt to diversity in facial features in every demographic group to obtain a fair
classifier. A publication [43] used Q-learning to train an agent by rewarding less
skew of the inter-class distance between the sensitive attribute such as race.
In [17], they used a simple encoder-decoder network, [24,32] used adversarial
learning of GAN, and [48] used a style transfer GAN to synthesize facial images
independent of sensitive attributes such as gender and race. A work [16] ensured
that the generated images from an image generation model have the same error
rates for each class of the sensitive attributes. The authors of [47] introduced the
False Positive Rate (FPR) as the penalty loss to mitigate bias. The authors in
[46] showed that adversarial learning might worsen classification accuracy and
fairness performance. They suggested a constraint that standard classification
accuracy and fairness measures should be limited to the average of both metrics.

Fairness in disease diagnosis: In [23], they showed the problem of gender
imbalance in medical imaging data sets, where the classification performance is
less for disease diagnosis of the under-represented gender. A study [38] found
that True Positive Rate (TPR) disparity for sensitive attributes such as gender,
age, and race exists for all classifiers trained on different data sets of chest X-ray
images. Another publication [5] highlighted some recent works to mitigate bias
via federated learning (FL) [3,20,34]. FL enables multiple clients stationed at
different geographical locations to train a single ML model with diversified data
sets collaboratively. This method should help overcome the under-representation
of individual classes of sensitive attributes in the data, resulting in unbiased
models. However, data heterogeneity among the distributed clients remains a
challenge for such FL-based models, which might degrade the performance.

In summary, past works did not thoroughly explore the theoretical insights
into fairness-based regularization measures. They also did not apply them in
experiments on visual data to obtain a model that has high classification per-
formance on target attributes and is unbiased w.r.t. sensitive attributes.

3 Method

Let x ∈ X denote an image and T = (x1, x2, . . . , x|T |) be the training data
consisting of |T | images. Let ys ∈ {1 . . .Ks} and yt ∈ {1 . . .Kt} be sensitive and

1214



Enhancing Fairness of Visual Attribute Predictors 5

target attributes respectively. The latter is our classification target, whereas the
former is the one, classification should not depend on. The asterisk will be used
to denote the attribute ground truth values, e.g., y∗s (x) means the ground-truth
value of the sensitive attribute for an x from T . We treat a trainable classifier
as a conditional probability distribution pθ(yt|x) parameterized by an unknown
parameter θ to be learned. In our work, we use Feed Forward networks (FFNs)
as classifiers, which means θ summarizes network weights.

Next, we consider the joint probability distribution p(x, yt) = p(x) · pθ(yt|x),
where p(x) is some probability distribution, from which training data T is drawn.
Noteworthy, the ground truths can also be considered as random variables, since
they are deterministic mappings from X , i.e., there exists a unique value y∗t (x)
as well as a unique value y∗s (x) for each x ∈ X . Hence, for the ground truths,
we can also consider their statistical properties like joint probability distribution
p(y∗s , yt), independence yt ⊥ y∗s , or similar.

Demographic Parity. The notation reads yt ⊥ y∗s , i.e. the prediction should
not depend on the sensitive attribute. Traditionally (for binary variables) a clas-
sifier is said to satisfy demographic parity if

p(yt = 1|y∗s = 1) = p(yt = 1) (1)

holds. A straightforward generalization to the case of categorical variables is to
require the same for all possible values, i.e.

p(yt = a|y∗s = b) = p(yt = a), (2)

where a ∈ {1 . . .Kt} and b ∈ {1 . . .Ks}. The above notation can be used to define
a loss function, i.e. measure that penalizes the deviation of a given probability
distribution pθ from satisfying (2). One possible way is to penalize the sum of
squared differences

Ll2
dp(θ) =

∑
ab

[
pθ(yt = a|y∗s = b)− pθ(yt = a)

]2
. (3)

In fact, during the transition from (2) to (3) we compare the actual joint prob-
ability distribution pθ(yt, y

∗
s ) to the corresponding factorized (i.e. independent)

probability distribution pθ(yt) · pθ(y∗s ) using squared difference, i.e., interpreting
probability distributions as vectors to some extent1. The squared difference is
however not the only way to compare probability distributions. Another option
would be e.g., Kullback-Leibler divergence DKL(pθ(yt, y

∗
s )||pθ(yt) ·pθ(y∗s )) which

leads to the mutual information loss

Lmi
dp (θ) =

∑
ab

pθ(yt = a, y∗s = b) · log pθ(yt = a, y∗s = b)

pθ(yt = a) · pθ(y∗s = b)
=

= H(yt) +H(y∗s )−H(yt, y
∗
s ), (4)

1 Strictly speaking, it directly holds only if pθ(y
∗
s ) is uniform, otherwise (3) corresponds

to a squared difference between pθ(yt, y
∗
s ) and pθ(yt) · pθ(y∗

s ), where addends are
additionally weighted by 1/pθ(y

∗
s )

2.
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where H(·) denotes the entropy. Note that we derived different losses (3) and (4)
from the same independence requirements (2) using different distance measures
for probability distributions.

Equalized Odds. It is assumed that the predicted target attribute and the
ground truth sensitive attribute are conditionally independent given a fixed value
of the ground truth target, i.e. (yt ⊥ y∗s )|y∗t . Hence

p(yt = a|y∗t = b, y∗s = c) = p(yt = a|y∗t = b) (5)

should hold for all triples a, b ∈ {1 . . .Kt} and c ∈ {1 . . .Ks}. Again, similarly
to the previous case, we consider first the simple quadratic loss

Ll2
eo(θ) =

∑
abc

[
p(yt = a|y∗t = b, y∗s = c)− p(yt = a|y∗t = b)

]2
. (6)

It is also possible to measure the deviations of the current model pθ(yt, y
∗
t , y

∗
s )

from the requirements (5) utilizing the corresponding mutual information as

Lmi
eo (θ) =

∑
a

[
H(yt|y∗t = a) +H(y∗s |y∗t = a)−H(yt, y

∗
s |y∗t = a)

]
. (7)

Intersection-Over-Union. The above losses have a distinct statistical back-
ground since they rely on specific independence assumptions. In practice, how-
ever, we are often not interested in making some variables independent. Instead,
the general goal could be phrased as “the classification performance should be
similar for different values of the sensitive attribute”. Hence, the core question is
how to measure classifier performance adequately. We argue for the IoU measure
because it can appropriately rate performance, especially for unbalanced data.
For a target value a, the corresponding IoU is traditionally defined as

IoUθ(a) =
pθ(yt = a ∧ y∗t = a)

pθ(yt = a ∨ y∗t = a)
, (8)

where ∧ and ∨ denote logical “and” and “or” respectively. The overall IoU is
usually defined by averaging (8) over a, i.e.

IoUθ =
1

Kt

∑
a

IoUθ(a). (9)

For a model pθ(yt, y
∗
t , y

∗
s ) with target value a and sensitive value b, we extend

(8) and define IoUθ(a, b) as

IoUθ(a, b) =
pθ((yt = a ∧ y∗t = a) ∧ y∗s = b)

pθ((yt = a ∨ y∗t = a) ∧ y∗s = b)
. (10)

Now given (9), IoUθ(b) for a particular value b of the sensitive attribute is

IoUθ(b) =
1

Kt

∑
a

IoUθ(a, b) (11)
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and the loss penalizes the deviations of these IoU-s from the overall IoU (9) as:

Liou(θ) =
∑
b

[
IoUθ(b)− IoUθ

]2
. (12)

Note that to define (8) to (12), we again used statistical interpretation of all
involved variables, i.e., the joint probability distribution pθ(yt, y

∗
t , y

∗
s ). This time

however we do not explicitly enforce any independence in contrast to the demo-
graphic parity or equalized odds.

Optimization. All introduced losses are differentiable w.r.t. unknown param-
eter θ2 because we use probability values for their computation. Hence, we can
mix them with other losses simply and conveniently. In particular, if the classifier
is e.g., an FFN, we can optimize them using error back-propagation. Second, it
should be noted that all losses rely on low-order statistics, i.e., it is only nec-
essary to estimate current pθ(yt, y

∗
t , y

∗
s ) to compute them. For example, if the

involved variables are binary, we only need to estimate 8 values. We assume
that they can be reliably estimated from a data mini-batch of a reasonable size
instead of computing them over the whole training data. This makes optimizing
the introduced losses within commonly used stochastic optimization frameworks
possible. To be more specific, the overall loss can be written as

L(θ) =
∑
x∈T

Lce(x, θ) + λ · Lfair(T, θ) =

= EB⊂T

∑
x∈B

Lce(x, θ) + λ · Lfair(T, θ), (13)

where the expectation E is over all mini-batches B ⊂ T randomly sampled from
the training data, Lce is a “usual” classification loss, e.g., Cross-Entropy, λ is
a weighting coefficient, and Lfair is one of the fairness losses introduced above.
For the sake of technical convenience, we approximate (13) by

L(θ) = EB⊂T

[∑
x∈B

Lce(x, θ) + λ · Lfair(B, θ)

]
. (14)

Impact on the Performance. We want to show a crucial difference between
demographic parity and equalized odds. Imagine a hypothetical “perfect clas-
sifier” that always assigns probability 1 to the ground truth label. Hence, the
requirements of demographic parity yt ⊥ y∗s turn into y∗t ⊥ y∗s . It means that the
perfect classifier can satisfy demographic parity only if the ground truth target
and the ground truth sensitive attributes are completely uncorrelated, which is
hard to expect in practice. It follows from the practical perspective that the
classifier performance should decrease when we try to make the classifier fair in
the sense of demographic parity.

2 We also assume that probabilities are differentiable w.r.t. parameters.
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On the other side, in our notations, the case of a perfect classifier can be
written as

pθ(yt, y
∗
t , y

∗
s ) = pθ(yt|y∗t , y∗s ) · p(y∗t , y∗s ) = Jyt = y∗t K · p(y∗t , y∗s ), (15)

where J·K is 1 if its argument is true. Hence, without loss of generality

pθ(yt, y
∗
t , y

∗
s ) = Jyt = y∗t K · p(y∗t , y∗s ) = pθ(yt|y∗t ) · p(y∗s |y∗t ) · p(y∗t ). (16)

It means that for a perfect classifier, the predicted target attribute and ground-
truth sensitive attribute are conditionally independent, i.e., a perfect classifier
automatically satisfies the requirements of equalized odds (yt ⊥ y∗s )|y∗t . In prac-
tice, if the baseline classifier is already good enough, its performance should not
worsen when we try to make the classifier fair w.r.t. equalized odds.

Considering the IoU-loss (12), it is easy to see that it is zero for a perfect
classifier, just because all IoU values are equal to one in this case. Hence, as in
the case of equalized odds, we do not expect a drop in classifier performance
when we try to make it fair w.r.t. the IoU-loss.

Fairness and Calibration Properties. We consider a linear squeezing oper-
ation as follows. Let y ∈ {0, 1} be a binary variable3 and p(y|x) a conditional
probability distribution for an input x. The linear squeezing puts all probability
values into the range [0.5− α/2, 0.5 + α/2] with 0 < α < 1 by applying

p′(y|x) =
[
p(y|x)− 0.5

]
· α+ 0.5. (17)

Firstly, this operation does not change the decision about y for a given x. The de-
cision is made by thresholding p(y|x) at the 0.5 level, which does not change after
applying the linear squeezing. Secondly, it makes the classifier “less confident”
about its decision because the output probabilities lie in a narrower range. At
the same time, linear squeezing can be understood as mixing the original p(y|x)
and uniform distribution, since (17) can be rewritten as

p′(y|x) = p(y|x) · α+ 0.5 · (1− α). (18)

Consider now the confusion matrix, i.e. p(yt, y
∗
t ), obtained by averaging over the

training data, and the corresponding IoU-value (9) (for now we do not consider
the sensitive attribute). Let us assume evenly distributed ground truth labels
for simplicity. So applying (18) to the output probabilities gives

p′(yt, y
∗
t ) = p(yt, y

∗
t ) · α+ 0.25 · (1− α). (19)

For α close to 1, the IoU obtained from p′(yt, y
∗
t ) (i.e., squeezed by (19)) will be

close to the original IoU (i.e. obtained from the original non-squeezed p(yt, y
∗
t ))

for which we assume a rather high value since the classifier is essentially better

3 We discuss in detail only the case of binary variables and the IoU-loss for simplicity.
The situation is similar for other cases.
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than random chance. For α close to zero, the modified IoU converges to 1/3.
Hence, IoU differences (i.e. addends in (12)) vanish. To conclude, we can make
the IoU-loss (12) alone arbitrarily small just by applying linear squeezing without
changing the decision rule.

Note that the squeezing operation with a small α makes the primary loss,
i.e., the cross-entropy, essentially worse since the log-likelihoods of the ground
truth labels get smaller. In fact, the fairest classifier is a random choice decision,
i.e., which does not depend on the input. It is fair and under-confident but poor
in terms of the primary goal, i.e. classification accuracy, and w.r.t. the primary
cross-entropy loss. To conclude, adding the IoU-loss to the primary objective
(see (14)) pushes the solution towards being less confident. It may be a desired
or an undesired behavior depending on whether the baseline classifier is already
well-calibrated or not. For over-confident baseline classifiers, employing the IoU-
loss should improve calibration properties. The calibration properties may get
worse for already well-calibrated or under-confident baseline classifiers.

4 Experiments

We validate our contributions on three data sets. The first study of interest in
4.1 concerns the CelebFaces attributes (CelebA) data set [25] which contains
more than 200K images of celebrities and manually annotated facial attributes.
Secondly in 4.2, we investigate the UTKFace facial image data set [49] which
contains over 20K images from a broad range of age groups. In addition to
the facial images, we perform experiments with a data set from the SIIM-ISIC
Melanoma classification challenge [36] in 4.3 that contains 33k+ skin lesion im-
ages. We focus on achieving a balanced target attribute prediction performance
that does not depend on the sensitive attribute. We split each data set into a
train, validation, and test partition to verify the results of our method. First,
we train a baseline model (details in the supplementary material). To improve
its fairness, we continue the optimization process by extending the cross-entropy
loss with one of the weighted fair losses (see 14) and perform experiments with
two different strategies for selecting λ in 4.4.

4.1 CelebA

For experiments with the CelebA data set, we use SlimCNN [39], a memory-
efficient convolutional neural network, to predict whether a depicted person is
smiling or not. To evaluate how our method influences the fairness of this predic-
tion task, we select the binary variables Male and Y oung (representing gender
and age) as sensitive attributes ys. We use the original train, validation, and test
partitions in all experiments with this data set.

The results for the experiments with the best λ values are shown in Table
1 (details in the supplementary material). Each row shows the results from an
experiment with a particular training loss. The columns list the corresponding
prediction accuracy (Acc) and all fairness metrics on the validation partition.
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Table 1. Results of the experiments with manually selected weighing coefficients λ for
CelebA facial attribute prediction. The task is to predict the binary target attribute
yt = Smiling. The experiments #1 to #6 use the sensitive attribute ys = Male for
the evaluation of the fairness loss terms, while #7 to #12 use the sensitive attribute
ys = Y oung. The values in bold are the best results of each evaluation metric.

# Loss Acc Liou (12) Ll2
eo (6) Lmi

eo (7) Ll2
dp (3) Lmi

dp (4)

1 Lce 0.902 8.73× 10−4 4.89× 10−3 5.12× 10−3 1.77× 10−2 8.46× 10−3

2 Liou 0.903 7.32× 10−5 8.59× 10−4 4.26× 10−4 2.51× 10−3 1.20× 10−3

3 Ll2
eo 0.902 1.35 × 10−5 1.78 × 10−4 7.71 × 10−5 1.36 × 10−4 6.45 × 10−5

4 Lmi
eo 0.899 2.37× 10−5 2.24× 10−4 1.03× 10−4 8.40× 10−4 4.00× 10−4

5 Ll2
dp 0.899 4.28× 10−4 3.75× 10−3 1.87× 10−3 1.57× 10−4 7.43× 10−5

6 Lmi
dp 0.901 5.28× 10−4 7.73× 10−3 3.96× 10−3 7.15× 10−4 3.40× 10−4

7 Lce 0.901 1.34× 10−3 8.28× 10−3 4.93× 10−3 1.16× 10−2 3.48× 10−3

8 Liou 0.901 4.15× 10−5 9.96× 10−4 3.06× 10−4 1.31× 10−3 3.96× 10−4

9 Ll2
eo 0.902 1.01 × 10−5 5.48 × 10−5 1.65 × 10−5 6.81 × 10−5 2.08 × 10−5

10 Lmi
eo 0.901 1.64× 10−5 2.57× 10−4 7.40× 10−5 4.24× 10−4 1.29× 10−4

11 Ll2
dp 0.901 8.34× 10−4 6.93× 10−3 2.18× 10−3 1.58× 10−4 4.78× 10−5

12 Lmi
dp 0.901 5.63× 10−4 4.26× 10−3 1.33× 10−3 1.45× 10−4 4.44× 10−5

The model fairness improved for all experiments with this data set according to
almost all proposed losses. The application of the fairness losses Liou and the
Ll2
eo did not lead to a reduction in the prediction accuracy. The Ll2

eo loss yielded
the best fairness improvements according to all proposed fairness losses, while
the Liou loss could even improve the classification performance. However, the
model training with other losses slightly decreased the classification accuracy.
Furthermore, the Lmi

eo loss could improve model fairness w.r.t to all evaluated
metrics, while the DP-based Ll2

dp and Lmi
dp losses could only improve their re-

spective fairness losses. Next, applying any fairness loss did not deteriorate the
model performance with the sensitive attribute ys = Y oung.

4.2 UTKFace

The images in UTKFace have annotations of a binary gender variable (Female,
Male), a multi-class categorical ethnicity variable (White, Black, Asian, Indian,
and Others), and an integer age variable (0-116 Years). Commonly this data set
is used to perform age regression. We derive a categorical age group variable (un-
der 31 Years, between 31-60 Years, over 60 Years) from the original ages as our
predicted target attribute. ys = Ethnicity and ys = Gender represent the sen-
sitive attributes in the experiments. We quantify the performance of the trained
model by the accuracy based on data from the validation partition. Preliminary
experiments with SlimCNN [39] didn’t produce satisfying accuracies. Efficient-
Net is an alternative convolutional network [41] that can scale the depth, width,
and resolution of all filters with a single parameter (we use EfficientNet-B1).
Since UTKFace does not have any partitioning information, we split the data
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Table 2. Quantitative outcomes with manually selected weighting coefficients λ for
predicting the multi-class target attribute yt = Age group on the UTKFace facial
image data set. Experiments #1 to #6 concern the sensitive attribute ys = Gender
and #7 to #12 cover the sensitive attribute ys = Ethnicity.

# Loss Acc Liou (12) Ll2
eo (6) Lmi

eo (7) Ll2
dp (3) Lmi

dp (4)

1 Lce 0.847 1.45× 10−3 1.66× 10−1 1.23× 10−1 6.55× 10−2 4.21× 10−2

2 Liou 0.852 3.04 × 10−4 3.00× 10−2 2.89× 10−2 3.77× 10−2 2.18× 10−2

3 Ll2
eo 0.856 3.08× 10−3 8.11× 10−2 7.21× 10−2 4.85× 10−2 3.10× 10−2

4 Lmi
eo 0.857 9.82× 10−4 2.88 × 10−2 2.25 × 10−2 2.16× 10−2 1.36× 10−2

5 Ll2
dp 0.852 5.61× 10−4 3.59× 10−2 3.59× 10−2 9.39× 10−3 7.00× 10−3

6 Lmi
dp 0.848 7.78× 10−4 9.27× 10−2 6.40× 10−2 5.33 × 10−3 4.51 × 10−3

7 Lce 0.846 2.06× 10−2 3.73× 10−1 1.81× 10−1 1.96× 10−1 5.48× 10−2

8 Liou 0.847 6.62× 10−3 9.75 × 10−2 8.60× 10−2 1.98× 10−1 4.53× 10−2

9 Ll2
eo 0.844 1.85× 10−2 2.50× 10−1 1.53× 10−1 1.91× 10−1 4.70× 10−2

10 Lmi
eo 0.857 1.53× 10−2 1.12× 10−1 1.08× 10−1 1.52× 10−1 4.21× 10−2

11 Ll2
dp 0.857 1.77× 10−2 1.48× 10−1 1.62× 10−1 8.85× 10−2 3.03× 10−2

12 Lmi
dp 0.854 6.61 × 10−3 1.03× 10−1 5.19 × 10−2 3.26 × 10−2 6.24 × 10−3

set randomly into train, validation, and test partitions which contain 70%, 20%,
and 10% of the samples.

Table 2 shows the quantitative results from the experiments with UTKFace.
The interpretation of the rows and columns is the same as in Table 1. Again,
the model fairness improved w.r.t. to almost all proposed fairness metrics for
both sensitive attributes. In addition, applying any fairness loss led to an im-
provement in the prediction accuracy with the sensitive attribute ys = Gender.
Experiments with the sensitive attribute ys = Ethnicity also improved the pre-
diction accuracy except when we applied the Ll2

eo loss.

4.3 SIIM-ISIC Melanoma Classification

The prediction target attribute in our experiments is a diagnosis, whether a
lesion is malignant or benign. Each image has annotations of a binary gender
variable (Male, Female) which we use as the sensitive attribute. The performance
of the trained model is quantified with the area under the receiver operating
curve (AUC) on the validation partition, which was the standard evaluation
metric in this challenge. We use EfficientNet-B1 as the classification model in
all experiments as with UTKFace. As the data set only contains annotations
in the original train partition, we used these annotated images and randomly
assigned them to train, validation, and test partitions consisting of 70%, 20%,
and 10% of the original train samples. We used different transformations to
augment the training data, which improved the baseline AUC score (details in
the supplementary material). Since the data set only contains a small fraction
of malignant samples, we used the effective number of samples [6] as a class
weighting method to deal with this label imbalance. Each sample is assigned a
normalized weight αi = 1−β

1−βni
according to the frequency ni of the i-th class
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Table 3. Experimental results with manually selected weighting coefficients λ for pre-
dicting the binary target attribute yt = Diagnosis from skin lesion images with the
SIIM-ISIC Melanoma classification data set. The experiments use the binary variable
Gender as the sensitive attribute yt.

# Loss AUC Liou (12) Ll2
eo (6) Lmi

eo (7) Ll2
dp (3) Lmi

dp (4)

1 Lce 0.829 1.26× 10−3 6.22× 10−2 3.51× 10−2 3.54× 10−4 9.27× 10−4

2 Liou 0.801 5.71 × 10−5 3.17 × 10−2 1.67 × 10−4 1.67 × 10−4 1.32 × 10−4

3 Ll2
eo 0.869 4.10× 10−4 8.52× 10−2 3.95× 10−2 7.60× 10−4 1.27× 10−3

4 Lmi
eo 0.854 7.54× 10−4 7.71× 10−2 4.38× 10−2 7.41× 10−4 1.43× 10−3

5 Ll2
dp 0.804 6.62× 10−4 8.44× 10−2 4.86× 10−2 3.53× 10−4 8.89× 10−4

6 Lmi
dp 0.835 3.64× 10−4 4.71× 10−2 2.39× 10−2 4.52× 10−4 9.43× 10−4

in the train partition. The hyper-parameter β adjusts these weights according
to the label distribution in a particular data set, which we set to β = 0.9998.
Table 3 shows the results of the experiments with the fine-tuned class-weighting.
The application of the EO-based fairness losses Ll2

eo and Lmi
eo improved the AUC

score considerably. Additionally, incorporation of our novel Liou based fairness
loss helped to improve the fairness of the model w.r.t the baseline for all of the
proposed fairness-based evaluation metrics.

It is to be noted that our work is not comparable to closely related ap-
proaches. Some works [1,21] propose to remove biases w.r.t. sensitive attributes
from the feature representation of the model. Our approach instead focuses on
enabling the prediction accuracy of the target attribute to not depend on sen-
sitive attributes. Recent works with similar tasks as ours propose loss functions
based on distance [12] or cosine similarity [47] measures while we explore the
inherent fairness-driven probabilistic measures as the loss functions in our exper-
imental setup. Such loss functions were not studied before for visual data sets,
so a reasonable comparison with methods such as [12,47] is also not possible.

4.4 Effect of λ on Fairness vs Accuracy

We studied the effect of the coefficient λ on both model fairness and classifi-
cation accuracy. Its value depends on the dataset, optimized loss, and whether
achieving high accuracy is more relevant for a specific application or fairness.
Note that setting λ = 0 reverts to the original image classification problem.
We obtained the results for the initial experiments by heuristically searching
for good weighting coefficients. We observed that starting with small λ-values is
beneficial and studied whether the obtained model is fair. One could increase λ
until the classification performance significantly decreases. Later, we performed
hyper-parameter optimization (HPO) to find λ that leads to the best improve-
ment in the model fairness with maintaining high classification accuracy.

Heuristic Search We use the Bessel corrected standard deviation σIoU (λ) =√
1

Ks−1

∑Ks

i=1(IoUθ(bi)− IoUθ(b))2 of the IoUθ(b) (10) as a fairness evaluation
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Fig. 2. Experimental results with the fairness loss weighting coefficient λ. The standard
deviation of the IoUθ(b) for different sensitive class labels b is used to quantify the model
fairness. The prediction accuracy quantifies the classification performance.
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Fig. 3. Experimental results with the fairness loss weighting coefficient λ on UTKFace
and SIIM-ISIC Melanoma. The standard deviation of the IoUθ(b) for different sensitive
class labels b is used to quantify the model fairness (less is fairer). The prediction accu-
racy quantifies the model performance. The blue lines show the baseline performance
and fairness values.

measure and the prediction accuracy as a performance measure. The results for
the manual selection of λ on CelebA can be seen in Fig. 2. The Liou and Lmi

eo

losses improved the fairness w.r.t. the baseline models (trained with the standard
cross-entropy loss Lce) for both sensitive attributes. In contrast, the Ll2

eo loss and
the DP-based losses Lmi

dp and Lmi
dp improved the fairness only for the sensitive

attribute ys = Male.

Hyperparameter Optimization (HPO) We performed HPO of the weight-
ing coefficient λ for the UTKFace and SIIM-ISIC Melanoma data sets with
σIoU (λ) as the minimization objective and searching λ within the range [1 ×
10−1, 1× 103). We use the validation partition for the HPO trials and evaluate
the resulting models on the test partition. Due to time and resource constraints,
we restrict our experiments to the novel IoU loss Liou(θ) (12) with 60 HPO
trials on the UTKFace data set and 20 trials on the SIIM-ISIC Melanoma clas-
sification data set. The results of these HPO experiments are shown in Fig. 3.
We observe a clear trend for experiments on UTKFace with the sensitive at-
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tribute ys = Ethnicity (left figure), where the fairness of the baseline model
is relatively low. With an exponentially increasing λ, there is a linear improve-
ment in the model fairness and a linear decrease in the prediction accuracy.
However, such a trend does not exist for experiments with UTKFace for the sen-
sitive attribute ys = Gender (figure in the middle), where the baseline fairness
is already good. Here, the model fairness and the prediction accuracy decrease
linearly with exponentially increasing λ values. Additionally, there is more vari-
ation in the fairness improvements when λ is larger. In these experiments with
UTKFace, there is a certain range of λ values (the region with yellow dots)
that simultaneously improves the model fairness and prediction accuracy. The
baseline fairness is already high for the SIIM-ISIC Melanoma data set with the
sensitive attribute ys = Gender (right figure). Hence, the prediction accuracy
and fairness improvement are independent of the λ value, as its effect on these
metrics seems random.

5 Conclusion

In this work, we presented the theoretical intuition toward obtaining fair image
classification models. We implemented various fairness metrics as standardized
differentiable loss functions for categorical variables and compared their effective-
ness in bias mitigation when compared to our novel IoU loss. Our experiments
on publicly available facial and medical image data sets show that the proposed
fairness losses do not degrade the classification performance on target attributes
and reduce the classification bias at the same time. With this work and the pub-
lication of our source code, we provide a tool that encourages further work in
this research direction. An interesting future work would be the visualization of
relevant regions in the input image space that make the fair model less biased
compared to the baseline model, trained with a standalone cross-entropy loss.

Acknowledgement. This work primarily received funding from the German
Federal Ministry of Education and Research (BMBF) under Software Campus
(grant 01IS17044) and the Competence Center for Big Data and AI ScaDS.AI
Dresden/Leipzig (grant 01/S18026A-F). The work also received funding from
Deutsche Forschungsgemeinschaft (DFG) (grant 389792660) as part of TRR 248
and the Cluster of Excellence CeTI (EXC2050/1, grant 390696704). The authors
gratefully acknowledge the Center for Information Services and HPC (ZIH) at
TU Dresden for providing computing resources.

References

1. Alvi, M., Zisserman, A., Nellaker, C.: Turning a blind eye: Explicit removal of
biases and variation from deep neural network embeddings. ECCV Workshops,
Lecture Notes in Computer Science 11129 (2019)

2. Amini, A., Soleimany, A.P., Schwarting, W., Bhatia, S.N., Rus, D.: Uncovering
and mitigating algorithmic bias through learned latent structure. Proceedings of
the 2019 AAAI/ACM Conference on AI, Ethics, and Society pp. 289–295 (2019)

1224



Enhancing Fairness of Visual Attribute Predictors 15

3. Bercea, C.I., Wiestler, B., Ruckert, D., Albarqouni, S.: Feddis: Disentangled fed-
erated learning for unsupervised brain pathology segmentation. arXiv preprint
arXiv:2103.03705 (2021)

4. Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in
commercial gender classification. Proceedings of Machine Learning Research 81,
77–91 (2018)

5. Chen, R.J., Chen, T.Y., Lipkova, J., Wang, J.J., Williamson, D.F., Lu, M.Y.,
Sahai, S., Mahmood, F.: Algorithm fairness in ai for medicine and healthcare.
arXiv preprint arXiv:2110.00603 (2021)

6. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on
effective number of samples. In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition. pp. 9268–9277 (2019)

7. Denton, E., Hutchinson, B., Mitchell, M., Gebru, T.: Detecting bias with generative
counterfactual face attribute augmentation. CoRR (2019)

8. Denton, E., Hutchinson, B., Mitchell, M., Gebru, T., Zaldivar, A.: Image coun-
terfactual sensitivity analysis for detecting unintended bias. CVPR Workshop on
Fairness Accountability Transparency and Ethics in Computer Vision (2019)

9. Dhar, P., Gleason, J., Roy, A., Castillo, C.D., Chellappa, R.: Pass: Protected at-
tribute suppression system for mitigating bias in face recognition. Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV) pp. 15087–
15096 (2021)

10. Dwork, C., Immorlica, N., Kalai, A.T., Leiserson, M.: Decoupled classifiers for
group-fair and efficient machine learning. Proceedings of the 1st Conference on
Fairness, Accountability and Transparency, PMLR 81, 119–133 (2018)

11. Georgopoulos, M., Oldfield, J., Nicolaou, M.A., Panagakis, Y., Pantic, M.: Mitigat-
ing demographic bias in facial datasets with style-based multi-attribute transfer.
International Journal of Computer Vision 129, 2288–2307 (2021)

12. Gong, S., Liu, X., Jain, A.K.: Mitigating face recognition bias via group adaptive
classifier. The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) pp. 3414–3424 (2021)

13. Hetey, R.C., Eberhardt, J.L.: The numbers don’t speak for themselves: Racial
disparities and the persistence of inequality in the criminal justice system. Current
Directions in Psychological Science 27(3), 183–187 (2018)

14. Hou, X., Li, Y., Wang, S.: Disentangled representation for age-invariant face recog-
nition: A mutual information minimization perspective. IEEE/CVF International
Conference on Computer Vision (ICCV) pp. 3672–3681 (2021)

15. Jacobs, J.A.: Gender inequality and higher education. Annual Review of Sociology
22, 153–185 (1996)

16. Jalal, A., Karmalkar, S., Hoffmann, J., Dimakis, A.G., Price, E.: Fairness for im-
age generation with uncertain sensitive attributes. Proceedings of the 38th Inter-
national Conference on Machine Learning (2021)

17. Joo, J., Karkkainen, K.: Gender slopes counterfactual fairness for computer vision
models by attribute manipulation. Proceedings of the 2nd International Workshop
on Fairness, Accountability, Transparency and Ethics in Multimedia (2020)

18. Jung, S., Lee, D., Park, T., Moon, T.: Fair feature distillation for visual recogni-
tion. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) pp. 12110–12119 (2021)

19. Karkkainen, K., Joo, J.: Fairface: Face attribute dataset for balanced race, gen-
der, and age for bias measurement and mitigation. Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision pp. 1548–1558 (2021)

1225



16 T. Hänel et al.

20. Ke, J., She, Y., Lu, Y.: Style normalization in histology with federated learning.
IEEE 18th International Symposium on Biomedical Imaging (ISBI) pp. 953–956
(2021)

21. Kim, B., Kim, H., Kim, K., Kim, S., Kim, J.: Learning not to learn: Training deep
neural networks with biased data. The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) pp. 9012–9020 (2019)

22. Kinyanjui, N., Odonga, T., Cintas, C., Codella, N., Panda, R., Sattigeri, P., Varsh-
ney, K.R.: Fairness of classifiers across skin tones in dermatology. Medical Image
Computing and Computer Assisted Intervention (MICCAI) 12266, 320–329 (2020)

23. Larrazabal, A.J., Nieto, N., Peterson, V., Milone, D.H., Ferrante, E.: Gender im-
balance in medical imaging datasets produces biased classifiers for computer-aided
diagnosis. Proceedings of the National Academy of Sciences 117(23), 12592–12594
(2020)

24. Li, P., Zhao, H., Liu, H.: Deep fair clustering for visual learning. Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
pp. 9070–9079 (2020)

25. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild.
IEEE International Conference on Computer Vision (ICCV) pp. 3730–3738 (2015)

26. McDuff, D., Song, Y., , Kapoor, A., Ma, S.: Characterizing bias in classifiers using
generative models. Proceedings of the 33rd International Conference on Neural
Information Processing Systems (2019)

27. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
bias and fairness in machine learning. ACM Computing Surveys 54(6) (2021)

28. Merler, M., Ratha, N., Feris, R.S., Smith, J.R.: Diversity in faces. arXiv preprint
arXiv:1901.10436 (2019)

29. Morales, A., Fierrez, J., Rodriguez, R.V., Tolosana, R.: Sensitivenets: Learning
agnostic representations with application to face images. IEEE Transactions on
Pattern Analysis and Machine Intelligence 43(6) (2021)

30. Ongena, S., Popov, A.: Gender bias and credit access. Journal of Money, Credit
and Banking 48 (2016)

31. O’Neil, C.: Weapons of math destruction: How big data increases inequality and
threatens democracy. Crown Publishing Group (2016)

32. Quadrianto, N., Sharmanska, V., Thomas, O.: Discovering fair representations in
the data domain. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) pp. 8219–8228 (2019)

33. Raji, I.D., Gebru, T., Mitchell, M., Buolamwini, J., Lee, J., Denton, E.: Saving
face: Investigating the ethical concerns of facial recognition auditing. Proceedings
of the AAAI/ACM Conference on AI, Ethics, and Society p. 145–151 (2020)

34. Rajotte, J.F., Mukherjee, S., Robinson, C., et. al.: Reducing bias and increasing
utility by federated generative modeling of medical images using a centralized
adversary. Proceedings of the Conference on Information Technology for Social
Good pp. 79–84 (2021)

35. Ramaswamy, V.V., Kim, S.S.Y., Russakovsky, O.: Fair attribute classification
through latent space de-biasing. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) pp. 9301–9310 (2021)

36. Rotemberg, V., Kurtansky, N., Betz-Stablein, B., et. al.: A patient-centric dataset
of images and metadata for identifying melanomas using clinical context. Scientific
Data 8(34) (2021)

37. Ryu, H.J., Adam, H., Mitchell, M.: Inclusivefacenet: Improving face attribute de-
tection with race and gender diversity. Workshop on Fairness, Accountability, and
Transparency in Machine Learning (2018)

1226



Enhancing Fairness of Visual Attribute Predictors 17

38. Seyyed-Kalantari, L., Liu, G., McDermott, M., Chen, I.Y., Ghassemi, M.: Chex-
clusion: Fairness gaps in deep chest x-ray classifiers. Pacific Sympsium On Bio-
computing 26, 232–243 (2021)

39. Sharma, A.K., Foroosh, H.: Slim-CNN: A light-weight CNN for face attribute
prediction. 15th IEEE International Conference on Automatic Face and Gesture
Recognition pp. 329–335 (2020)

40. Song, J., Shen, C., Yang, Y., Liu, Y., Song, M.: Transductive unbiased embed-
ding for zero-shot learning. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition pp. 1024–1033 (2018)

41. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural
networks. Proceedings of the 36th International Conference on Machine Learning
97, 6105–6114 (2019)

42. Wang, A., Liu, A., Zhang, R., et. al.: Revise: A tool for measuring and mitigating
bias in visual datasets. International Journal of Computer Vision (2022)

43. Wang, M., Deng, W.: Mitigate bias in face recognition using skewness-aware rein-
forcement learning. The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) pp. 9322–9331 (2020)

44. Wang, M., Deng, W., Jiani Hu, J.P., Tao, X., Huang, Y.: Racial faces in-the-
wild: Reducing racial bias by deep unsupervised domain adaptation. IEEE/CVF
International Conference on Computer Vision (ICCV) pp. 692–702 (2019)

45. Wang, Z., Qinami, K., Karakozis, I.C., et. al.: Towards fairness in visual recogni-
tion: Effective strategies for bias mitigation. Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR) pp. 8916–8925 (2020)

46. Xu, H., Liu, X., Li, Y., Jain, A., Tang, J.: To be robust or to be fair: Towards
fairness in adversarial training. Proceedings of the 38th International Conference
on Machine Learning (PMLR) 139, 11492–11501 (2021)

47. Xu, X., Huang, Y., Shen, P., Li, S., Li, J., Huang, F., Li, Y., Cui, Z.: Consistent
instance false positive improves fairness in face recognition. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp.
578–586 (2021)

48. Zhang, B.H., Lemoine, B., , Mitchell, M.: Mitigating unwanted biases with adver-
sarial learning. Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics and
Society (2018)

49. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversar-
ial autoencoder. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) pp. 5810–5818 (2017)

50. Zhao, C., Li, C., Li, J., Chen, F.: Fair meta-learning for few-shot classification.
2020 IEEE International Conference on Knowledge Graph (ICKG) pp. 275–282
(2020)

51. Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang, K.W.: Men also like shop-
ping: Reducing gender bias amplification using corpus-level constraints. Proceed-
ings of the 2017 Conference on Empirical Methods in Natural Language Processing
pp. 2979–2989 (2017)

1227


	Enhancing Fairness of Visual Attribute Predictors

