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Abstract. Skeleton-based action recognition approaches usually con-
struct the skeleton sequence as spatial-temporal graphs and perform
graph convolution on these graphs to extract discriminative features.
However, due to the fixed topology shared among different poses and
the lack of direct long-range temporal dependencies, it is not trivial
to learn the robust spatial-temporal feature. Therefore, we present a
spatial-temporal adaptive graph convolutional network (STA-GCN) to
learn adaptive spatial and temporal topologies and effectively aggregate
features for skeleton-based action recognition. The proposed network is
composed of spatial adaptive graph convolution (SA-GC) and tempo-
ral adaptive graph convolution (TA-GC) with an adaptive topology en-
coder. The SA-GC can extract the spatial feature for each pose with
the spatial adaptive topology, while the TA-GC can learn the temporal
feature by modeling the direct long-range temporal dependencies adap-
tively. On three large-scale skeleton action recognition datasets: NTU
RGB+D 60, NTU RGB+D 120, and Kinetics Skeleton, the STA-GCN
outperforms the existing state-of-the-art methods. The code is available
at https://github.com/hang-rui/STA-GCN

Keywords: Action recognition · Adaptive topology · Graph convolu-
tion.

1 Introduction

Action recognition is an essential task in human-centered computing and com-
puter vision, which plays an increasingly crucial role in video surveillance, human-
computer interaction, video analysis, and other applications [26, 1, 38]. In recent
years, skeleton-based human action recognition has attracted much attention
due to the development of depth sensors [46] and pose estimation algorithms
[2, 33]. Conventional deep learning methods adopt re-current neural networks
(RNN) [8, 20, 43] and convolutional neural networks (CNN) [14–16] to analyze
the skeleton sequence by representing it as vector sequence or pseudo-image.
However, the skeleton sequence is naturally structured as a spatial-temporal
graph. For this reason, Yan et al. [40] firstly proposed the spatial-temporal graph
convolutional network (ST-GCN) to model the motion patterns of action on a
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Fig. 1. Illustration of (a) the fixed spatial and temporal topology and (b) the adap-
tive spatial and temporal topology. Different color points indicate the different human
joints, and the lines correspond to the spatial and temporal direct correlation between
joints. Best viewed in color.

skeleton spatial-temporal graph. After that, a series of graph convolutional net-
works (GCN) methods based on spatial-temporal graphs have been proposed for
skeleton-based action recognition [29, 7, 22].

However, there are still two disadvantages to the feature extraction operations
on the spatial-temporal graph: (1) In the stage of learning spatial features, the
fixed spatial topology is shared among all poses, which may not be optimal for
the action with large changes in pose. For action such as “throw”, before and
after the throw, the human pose presents two forms of backward-leaning and
forward-leaning, which represents different semantics. Using the fixed spatial
topology may mistakenly enhance irrelevant connections or weaken critical ones,
failing to accurately represent the spatial dependencies. This fact suggests that
the spatial topology should be adaptive to each pose in the skeleton sequence.
(2) In the stage of learning temporal features, existing methods apply temporal
convolution with a fixed small kernel to extract the short-range temporal feature.
It leads to the weak capacity to model temporal long-range joint dependencies
vital for action recognition.

To learn the robust feature representation in the spatial and temporal di-
mensions, we propose a spatial-temporal Adaptive Graph Convolutional Net-
work (STA-GCN) in this work. The proposed network is composed of two key
modules: Spatial Adaptive Graph Convolution (SA-GC) and Temporal Adaptive
Graph Convolution (TA-GC). Both SA-GC and TA-GC have a critical embedded
component: Topology Adaptive Encoder (TAE). The SA-GC module is designed
to extract spatial features by modeling the spatial adaptive joint dependencies.
The TA-GC module is designed to learn temporal features by capturing the di-
rect long-range joint dependencies in the temporal dimension. Combined with
SA-GC and TA-GC modules, the proposed model can learn the discriminative
features both in the spatial and temporal dimensions.
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The TAE component is proposed to learn spatial adaptive topology and
temporal adaptive topology. The existing GCN methods use fixed spatial and
temporal topology (Figure 1(a)). This fixed spatial topology forces each skele-
ton frame to adopt the same spatial topology, while the fixed temporal topology
forces all trajectories to use the same temporal topology. We argue that this
fixed topology is insufficient to represent the joint dependencies per pose or per
trajectory. Therefore, we propose the TAE to solve this problem by learning the
spatial adaptive topology and the temporal adaptive topology (Figure 1(b)). The
spatial adaptive topology can generate the pose-specific dependencies for each
frame in the skeleton sequence to learn discriminative spatial features. The tem-
poral adaptive topology can model the direct long-range dependencies between
any two joints in the trajectory graph to extract robust temporal features.

The main contributions of this work are summarized as follows:

– A spatial adaptive graph convolution (SA-GC) module is proposed to extract
the spatial feature for each pose with the spatial adaptive topology.

– A temporal adaptive graph convolution (TA-GC) module is proposed to
learn the temporal feature by modeling the direct long-range temporal de-
pendencies.

– A topology adaptive encoder (TAE) embedded into graph convolution is pro-
posed to generate the adaptive spatial topology and the adaptive temporal
topology.

– We propose a Spatial-Temporal Adaptive Graph Convolutional Network
(STA-GCN) composed of SA-GC and TA-GC, which outperforms state-of-
the-art approaches on three large-scale skeleton action recognition datasets:
NTU RGB+D [27], NTU RGB+D 120 [19], and Kinetics-skeleton [13].

2 Related Work

2.1 Skeleton-Based Action Recognition

With the development of deep learning based video understanding technology, a
series of video-based methods were proposed for action recognition. Specifically,
2D CNNs [36, 18] efficiently recognize actions by modeling the relationships in the
temporal dimension, while 3D CNNs [34, 3] capture motion information in a uni-
fied network through a simple extension from the spatial domain to the spatial-
temporal domain. Recently skeleton-based methods [8, 20, 43, 14–16, 40, 29, 7, 22,
39, 42, 24] have been developed extensively since skeleton data are more computa-
tionally efficient and exhibit stronger robustness. Skeleton data can eliminate the
influences of variations of illumination, camera viewpoints, background changes,
and clothing variance in real-world videos [35, 21, 37]. Therefore, we adopt the
skeleton-based action recognition approach in this paper.

2.2 Graph Convolution Networks in Action Recognition

The type of skeleton-based action recognition approaches is divided into three
categories: RNN-based, CNN-based, and GCN-based. RNN represents the skele-
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ton sequence as a vector sequence [8, 20, 43], while CNN represents it as a pseudo-
image [14–16]. However, both RNN and CNN methods ignore the information
of skeleton topology among joints. GCN-based methods represent the skeleton
sequence as a spatial-temporal graph and extract features in spatial and tem-
poral dimensions by graph convolution and temporal convolution respectively.
Yan [40] et al. firstly introduce graph convolution and temporal convolution into
the skeleton-based action recognition to model the spatial configurations and
temporal dynamics simultaneously. The following works improved the model by
performing multi-hop methods to extract multi-scale features [17, 12], applying
additional mechanisms to adaptively capture the relations between distant joints
[17, 44, 41], and adding additional edges between adjacent frames to extract fea-
tures based on the extended graph [9, 22, 23]. However, all these methods only
apply Graph Convolution Network (GCN) in the spatial dimension. In the tem-
poral dimension, Temporal Convolution Network (TCN) is used to learn the
temporal feature. It is not powerful due to the use of a fixed small temporal
convolution kernel. In this work, we apply graph convolution both in spatial
and temporal dimensions. Temporal graph convolution can effectively learn the
temporal feature by modeling the direct long-range temporal dependencies.

2.3 Topology Adaptive-Based Methods

The topology-based adaptive methods [29, 17, 41, 45] aim to generate the appro-
priate spatial topology based on the input data. This spatial topology indicates
whether and how important a connection exists between any two joints in the
graph. Existing methods focus only on the spatial dimension, and they mainly
use parametric adjacency matrices to learn a spatial topology optimized for all
data [29] or generate a specific spatial topology for each action sample based
on the input data [17, 41, 45]. These methods alleviate the limitation caused by
the fixed pre-defined spatial topology of GCN methods. However, existing meth-
ods force all frames to share the same spatial topology, which is unreasonable
because each pose represents a different semantic and cannot use the same spa-
tial topology to extract features. Moreover, these approaches do not consider
topology in the temporal dimension, which hinders the long-range dependencies
modeling in the temporal dimension. To address these problems, we propose the
Topology Adaptive Encoder (TAE) to learn spatial adaptive topology for each
frame in the spatial graph and temporal adaptive topology for each trajectory
in the temporal graph. The spatial adaptive topology can efficiently help spatial
graph convolution extract the features of different poses in action. On the other
hand, the temporal adaptive topology is used in temporal graph convolution to
extract long-range dependencies.

3 Methodology

3.1 Preliminaries

Notations. A human skeleton with N joints is presented as an undirected
spatial graph G = (V, E), where V = {vi|i = 1, . . . , N} is the set of N vertices
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Fig. 2. The overview of the proposed Spatial-Temporal Adaptive Graph Convolutional
Network (STA-GCN). (a) The spatial adaptive graph convolution (SA-GC) module is
adopted to learn the spatial feature for each pose with the spatial adaptive topology. (b)
The temporal adaptive graph convolution (TA-GC) module is subsequently adopted to
learn the temporal feature for each trajectory with the temporal adaptive topology. (c)
The Topology Adaptive Encoder (TAE) is used both in SA-GC and TA-GC modules
to learn the spatial adaptive topology and the temporal adaptive topology.

representing joints and E is the edges set representing bones. The topology of
G is formulated as an adjacency matrix A ∈ RN×N and its element aij ∈ (0, 1)
denoting weather an edge exists between vertex vi and vj .

Graph Convolution. According to Yan et al.[40], the spatial dependencies of
the joints in each frame can be conveniently encoded with Graph Convolution.
The operation of Graph Convolution is formulated as:

X(l+1) = σ

(
K∑
k=0

Ã(k)X
(l)W

(l)
(k)

)
(1)

where X is the feature of each layer, σ(·)is an activation function. K denotes
the pre-defined maximum graphic distance. Ã(k) = Λ

− 1
2

(k) (A(k) + I(k))Λ
− 1

2

(k) is the
k-th order normalized adjacency matrix, where A+ I is the skeleton graph with
added self-loops to keep identity features, Λ is the diagonal degree matrix of
(A+ I). W(k) is learnable parameters to implement the convolution operation.

3.2 Overview

To learn discriminative features on the spatial and temporal graph, we propose
a Spatial-Temporal Adaptive Graph Convolutional Network (STA-GCN). An
overview of our proposed method is illustrated in Figure 2. After extracting lo-
cal skeleton features using a pre-defined spatial topology (i.e. human skeleton
structure), we adopt Spatial Adaptive Graph Convolution (SA-GC) and Tem-
poral Adaptive Graph Convolution (TA-GC) to learn discriminative features.
The SA-GC is proposed to extract the spatial feature for each pose with the
spatial adaptive topology. The TA-GC is proposed to learn the temporal feature
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by modeling the direct long-range temporal dependencies. Both SA-GC and TA-
GC have an embedded Topology Adaptive Encoder (TAE), which generates a
unique and appropriate topology for each pose and each trajectory. On the top of
SA-GC and TA-GC, we apply a temporal convolutional convolution to aggregate
the features in the temporal dimension. Based on the discriminative features ex-
tracted by several STA-GC blocks, we use a fully connected layer with softmax
activation function to obtain the final class. The method will be discussed in
detail in subsequent sections.

3.3 Spatial and Temporal Graph Convolution

Most existing works treat the human skeleton sequence as a spatial-temporal
graph where features are extracted through spatial graph convolution and tem-
poral convolution. However, the temporal convolution is not powerful to learn
the temporal feature due to the use of a fixed small temporal convolution kernel.
Therefore, in this section, we introduce a more robust feature extraction opera-
tor on the spatial and temporal graph. Let us first consider a graph convolution
in spatial-temporal graph Gst = (Vst, Est) where Vst = {vnt|n = 1, . . . , N, t =
1, . . . , T, } is the set of all nodes across T frames in the skeleton sequence and
Est is the spatial-temporal edge set.

We further deconstruct a spatial-temporal graph into T spatial graphs across
time and N temporal graphs across joints. The spatial graphs are represented
as Gs = (Vst, Es) where Es is the spatial edge set and is formulated as a spatial
adjacency matrix As ∈ RT×N×N . Note that the spatial adjacency matrix is de-
graded to vanilla form A ∈ RN×N when all spatial graphs have the same spatial
correlations. Similarly, the temporal graphs are represented as Gt = (Vst, Et)
and the temporal adjacency matrix At ∈ RN×T×T can be formulated. After the
graph decomposition, we develop two graph convolutions: spatial graph convo-
lution (S-GC) and temporal graph convolution (T-GC). S-GC and T-GC are
respectively formulated as:

fout (vnt) =

N∑
p=1

as(pt)(nt)fin (vpt)w (vpt) (2)

fout (vnt) =

T∑
q=1

at(nq)(nt)fin (vnq)w (vnq) (3)

where as(pt)(nt) and at(nq)(nt) are elements of As and At, respectively. Features
on the spatial-temporal graph can be extracted by employing S-GC and T-GC.
The whole process of feature extraction is formulated as:

fout (vnt) =

T∑
q=1

at(nq)(nt)(

N∑
p=1

as(pq)(nq)fin (vpq)w1 (vpq))w2 (vnq) (4)
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3.4 Topology Adaptive Encoder

Previous works force each pose in the skeleton sequence to share a fixed spatial
topology. However, different poses represent different semantics, and using the
same topology will incorrectly extract spatial features for different poses, which
leads to weak performance in recognizing action with large changes in pose.
Moreover, existing methods do not apply graph convolution in the temporal
dimension. If graph convolution is to be performed in the temporal dimension,
a suitable temporal topology is needed to represent the relationships between
joints in the temporal graph.

To generate a more detailed topology, we propose a unified topology gener-
ation module, Topology Adaptive Encoder (TAE), which applies an unshared
topology generation strategy. Specifically, the TAE module generates the spatial
topology for each pose in spatial graph convolution and the temporal topology
for each trajectory in temporal graph convolution. Technically, the TAE applies
self-attention operations to extract correlations between joints in the embedding
space. The function is formulated as:

A = ℓ2_norm(XWϕW
T
ψX

T ) (5)

where X is the input feature, we first utilize two linear transformation functions
ϕ and ψ to embed input feature into the embedding space, Wϕ and Wψ are
the parameters of the embedding functions ϕ and ψ, respectively. Then, the two
embedded feature matrices are multiplied to obtain a topology matrix A. Finally,
the ℓ2 normalization is applied to each row of the adjacency matrix, which eases
the optimization and with the help of ℓ2 normalization, the normalization of
node degree is unnecessary.

3.5 Spatial and Temporal Adaptive Graph Convolution

We integrate the proposed TAE into S-GC and T-GC to obtain a pair of adaptive
graph convolution operations on the spatial-temporal graph: Spatial Adaptive
Graph Convolution (SA-GC) (Figure 3 (a)) and Temporal Adaptive Graph Con-
volution (TA-GC) (Figure 3 (b)). Since SA-GC on the spatial graph and TA-GC
on the temporal graph are equivalent operations, for simplicity, we only introduce
SA-GC in the rest part. Its counterpart TA-GC can be deduced naturally.

Specifically, our SA-GC contains three parts: (1) feature transformation with
function T s(·), (2) topology adaptive Encoding with function Ms(·), (3) feature
aggregation with function As(·). Given the input feature X ∈ RT×N×C , the
output Y ∈ RT×N×C′

of SA-GC is formulated as:

Y = As(T s(X),Ms(X)) (6)

Feature Transformation. The goal of feature transformation is to transform
input features into high-level representations using function T s(·). Here we use
the simple linear transformation function. which is formulated as:

Fs = T s(X) = XWs (7)
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Fig. 3. (a) The Spatial Adaptive Graph Convolution (SA-GC) module. (b)The Tem-
poral Adaptive Graph Convolution (TA-GC) module.

where Fs ∈ RT×N×C′
is the transformed high-level features and Ws ∈ RC×C′

is
the weight matrix.

Topology Adaptive Encoding The topology adaptive encoding part in SA-
GC is to use the proposed TAE module to generate a topology optimized for
each skeleton individually. The function is formulated as:

As = Ms(X) = ℓ2_norm(XWϕW
T
ψX

T ) (8)

where X is the input feature, Wϕ and Wψ are the parameters of the embedding
functions ϕ and ψ to embed the features. Then, the two feature maps are re-
shaped to matrix Mϕ ∈ RT×N×C and Mψ ∈ RT×C×N . By multiplying these two
matrices to obtain a topology matrix As ∈ RT×N×N , whose element represents
the correlation between joints on a specific frame. Finally, the ℓ2 normalization
is applied to each row of the adjacency matrix.

Feature Aggregation As indicated in Figure 3, given the temporal-wise spa-
tial adaptive adjacency matrix As from input samples, we aggregate high-level
features Fs with temporal-wise feature aggregation function As. The function is
formulated as:

Y = As(As,Fs) = [As1F
s
1 ∥t As2Fs2 ∥t · · · ∥t AsTFsT ] (9)

where ∥t is concatenation operation along the temporal dimension. Ast ∈ RN×N

and Fst ∈ RN×C are respectively from t-th frame of As and Fs. During the whole
process, the topology is optimized for each skeleton individually. Therefore, the
proposed SA-GC can effectively distinguish actions, especially those with large
changes in pose.
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3.6 Model Details.

The entire network consists of five STA-GC blocks, and the number of output
channels of five blocks are 64-64-64-128-256. We apply a data BatchNorm layer at
the start to normalize the input data. The temporal dimension is halved at the 4-
th and 5-th blocks by strided temporal convolution. The temporal convolutional
network used (TCN) in the STA-GC block is designed as multi-scale temporal
convolutions following [22]. The main difference is that we reduce the number of
channels and fuse six branches with a point-wise convolution. We also add extra
residual connections to facilitate training. Due to the operations in SA-GC and
TA-GC are equivalent, we only introduce a detailed implementation of SA-GC.
We first utilize two linear transformation functions to transform input features
into two neatly compact representations. Then, the two embedded features are
multiplied to obtain spatial adaptive topology. We further apply ℓ2 normalization
to normalize the adjacency matrix, and the resulting adjacency matrix is used
to apply the graph convolution.

4 Experiments

4.1 Datasets

NTU RGB+D 60 [27] is currently the most widely used indoor skeleton-based
action recognition dataset, which contains 56, 880 skeleton action sequences with
60 action classes performed by 40 volunteers and captured by three Microsoft
Kinect v2 cameras from different views concurrently. Each sample contains one
action with two subjects at most, and each skeleton is composed of 25 joints.
The dataset is separated into two benchmarks: (1) Cross-subject (X-Sub): 40, 320
samples performed by 20 subjects are separated into the training set, and the
other 16, 560 samples performed by different 20 subjects belong to the test set.
(2) Cross-view (X-View): the training set contains 37, 920 samples from camera
views 2 and 3, and the test set contains 18, 960 samples from camera view 1.

NTU RGB+D 120 [19] is the largest indoor skeleton-based action recogni-
tion dataset, which extends NTU RGB+D 60 with additional 57,367 skeleton
sequences over 60 extra action classes, totalling contains 114, 480 skeleton action
sequences in 120 action classes performed by 106 volunteers, and has 32 different
camera setups, each setup representing a specific location and background. Sim-
ilarly, the dataset is separated into two benchmarks: (1) Cross-subject (X-Sub):
63, 026 samples performed by 53 subjects are separated into the training set,
and the other 50, 922 samples performed by different 53 subjects belong to the
test set. (2) Cross-setup (X-Set): the training set contains 54, 471 samples with
even setup IDs, and the test set contains 59, 477 samples with odd setup IDs.

Kinetics Skeleton. Kinetics 400 [13] is a large-scale human action dataset that
contains 300, 000 video clips of 400 classes collected from the Internet. After ap-
plying Openpose [2] pose-estimation algorithm on Kinetics 400, the Kinetics
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Skeleton dataset obtain 240, 436 training and 19, 796 evaluation skeleton clips,
where each skeleton graph contains 18 body joints, along with their 2D coordi-
nates and confidence score.

4.2 Implementation Details

All experiments are implemented on two RTX 3090 GPUs with the PyTorch deep
learning framework. The stochastic gradient descent (SGD) with the momentum
of 0.9 and the weight decay of 0.0001 is used for optimization. The model is
trained for 70 epochs in total. The initial learning rate is set to 0.1 and decays
with a cosine schedule after the 10-th epoch. Moreover, a warm-up strategy [10]
was applied over the first 10 epochs, gradually increasing the learning rate from
0 to the initial value in order to make the training procedure more stable. The
batch size is set to 32. Input data are preprocessed following [32], and cross-
entropy loss is employed.

4.3 Ablation Studies

We analyze the individual components and their configurations in the final archi-
tecture. The performance is reported as Top-1 and Top-5 classification accuracy
on the Cross-Subject benchmark of NTU RGB+D 60 using only the joint data.

Table 1. Comparison of the accuracy when gradually adding STA-GC and only adding
SA-GC or TA-GC on the X-Sub of NTU RGB+D 60.

Methods Params Top-1 (%) Top-5 (%)

Baseline 1.44 88.1 98.2
+ 1 STA-GC 1.30 88.7 98.0
+ 2 STA-GC 1.36 89.1 98.4
+ 3 STA-GC 1.38 89.3 98.4
STA-GCN with SA-GC only 1.21 88.7 98.0
STA-GCN with TA-GC only 1.21 89.0 98.3
STA-GCN 1.40 89.5 98.4

Effectiveness of STA-GC. To verify the effectiveness of the proposed STA-
GC block, we build up the model incrementally with its individual modules.
We employ ST-GCN [40] as the baseline for controlled experiments. For a fair
comparison, we add residual connections in ST-GCN and replace its temporal
modeling module with temporal convolution described in Section 3.6. The ex-
perimental results are shown in Table 1. We first gradually add STA-GC into the
baseline. For a fair comparison, we halved the original ten stages in the baseline
to five after adding STA-GC to control for parameters, and this also alleviates
the over-smoothing problem caused by adding the new graph convolution. We
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observe that accuracies increase steadily, and the accuracy is substantially im-
proved after each graph convolution has been added with the STA-GC module,
which validates the effectiveness of STA-GC. Then we validate the effects of the
SA-GC and the TA-GC respectively by adding either of them into the base-
line. We observed performance raise of 1.4% and 0.4% respectively, indicating
that our proposed SA-GC and TA-GC can effectively extract features in spa-
tial and temporal dimension respectively. Moreover, the SA-GC and TA-GC are
complementary and their combination can promote each other to achieve better
performance for effective motion feature learning.

Table 2. Comparison of the accuracy when STA-GCN applies the fixed topology or
the adaptive topology on the X-Sub of NTU RGB+D 60.

Spatial topology Temporal topology Top-1 (%) Top-5 (%)

Fixed Fixed 86.6 97.7
Adaptive Fixed 88.0 97.8

Fixed Adaptive 87.7 98.0
Adaptive Adaptive 89.5 98.4

Effectiveness of TAE. To verify the effectiveness of our proposed TAE, we
keep the backbone of the STA-GCN and apply the adaptive topologies generated
by TAE or the fixed parameterized topologies in SA-GC and TA-GC respectively.
As shown in Table 2, the models only using TAE in the spatial dimension or tem-
poral dimension outperform the model using only the fixed topologies, and the
model applying TAE both in spatial and temporal dimensions achieves the best
results. It demonstrates that TAE can effectively generate appropriate spatial
topology and temporal topology for robust feature learning.

Table 3. Comparison of the accuracy when STA-GCN applies different topology adap-
tive methods on the X-Sub of NTU RGB+D 60.

Methods Top-1 (%) Top-5 (%)

2s-AGCN[29] 88.9 97.9
Dynamic-GCN[41] 80.0 95.4

TAE 89.5 98.4

Comparison with Other Topology Adaptive Methods. To validate the
effectiveness of our TAE, we also compare the performance of different topology
adaptive methods in Table 3. Specifically, we keep the backbone of the STA-
GCN and only replace the topology adaptive method in graph convolution for a
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fair comparison. From Table 3, we observe that TAE outperforms other topol-
ogy adaptive methods from 2s-AGCN and Dynamic-GCN, proving that TAE is
effective in generating adaptive typologies..

Table 4. Comparison of the accuracy when STA-GCN applies shared or unshared
topology generation strategy on the X-Sub of NTU RGB+D 60.

Spatial topology Temporal topology Top-1 (%) Top-5 (%)

Shared Shared 88.6 98.1
Unshared Shared 89.0 98.3
Shared Unshared 88.8 98.2

Unshared Unshared 89.5 98.4

Shared Topology vs Unshared Topology. We also verify the topology un-
shared strategy of TAE. Specifically, we keep the backbone of the STA-GCN and
compare the model’s performance when TAE uses shared or unshared topology
generation strategies. The topology-unshared strategy means that TAE gen-
erates a specific topology for each skeleton or trajectory in each action sam-
ple, while the topology-shared strategy represents that TAE generates the same
topology for all poses or trajectories in each action sample. As shown in Table 4,
the topology-unshared strategy achieve better performance than the topology-
shared strategy, indicating the importance of generating a specific topology for
each skeleton or trajectory.

Table 5. Comparisons of the Top-1 accuracy (%) on actions with large changes in pose
on the X-Sub of NTU RGB+D 60.

Methods
Actions

throw stand up hopping pick up falling down

ST-GCN[40] 88.3 96.8 97.1 92.8 97.1
STA-GCN 91.0 98.5 98.6 95.2 99.6

Performance for Recognizing Actions with Large Changes in Pose.
To further verify that the proposed STA-GCN can recognize actions with large
pose changes more effectively, we compare with ST-GCN on several actions. For
a fair comparison, we added additional residual connections and applied the same
temporal convolution module to the ST-GCN. The results are shown in Table 5,
our method outperforms ST-GCN in Top1 accuracy on five poses (throw, stand
up, hopping, pick up, and falling down), demonstrating that our approach can
effectively identify actions with large changes in pose.
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Table 6. Comparisons of the Top-1 accuracy with the state-of-the-art methods on the
NTU RGB+D 60 and NTU RGB+D 120 datasets.

Methods
NTU RGB+D 60 NTU RGB+D 120

X-Sub (%) X-View (%) X-Sub (%) X-Set (%)

ST-GCN[40] 81.5 88.3 - -
AS-GCN[17] 86.8 94.2 - -
2s-AGCN[29] 88.5 95.1 - -
AGC-LSTM[30] 89.2 95.0 - -
DGNN[28] 89.9 96.1 - -
PL-GCN[11] 89.2 95.0 - -
NAS-GCN[25] 89.4 95.7 - -
SGN[44] 89.0 94.5 79.2 81.5
Shift-GCN[7] 90.7 96.5 85.9 87.6
MS-G3D[22] 91.5 96.2 86.9 88.4
DC-GCN+ADG[6] 90.8 96.6 86.5 88.1
PA-ResGCN-B19[31] 90.9 96.0 87.3 88.3
Dynamic-GCN[41] 91.5 96.0 87.3 88.6
MST-GCN[5] 91.5 96.6 87.5 88.8
EfficientGCN-B4[32] 92.1 96.1 88.7 88.9
CTR-GCN[4] 92.4 96.8 88.9 90.6

STA-GCN(J) 89.5 95.6 85.0 86.2
STA-GCN(B) 90.2 95.4 85.5 87.1
STA-GCN(JM) 88.3 94.3 82.9 84.0
STA-GCN(BM) 88.6 94.1 83.1 84.9
2s-STA-GCN(J, B) 91.6 96.2 88.1 89.6
3s-STA-GCN(J, B, JM) 92.7 96.9 89.2 90.6
4s-STA-GCN(J, B, JM, BM) 92.8 97.0 89.4 90.8

4.4 Comparisons with SOTA Methods

For fair comparisons, we follow the same multi-stream fusion strategy as [7, 41,
4]. Specifically, we use four modality streams, i.e., joint stream (J), bone stream
(B), joint motion stream (JM), and bone motion stream (BM). A simple score-
level fusion strategy is adopted to obtain the fused score. The 1-stream model
uses the individual stream of four modalities as input data. The 2-stream model
fuses the joint and bone stream. The 3-stream model fuses the joint, bone, and
joint motion stream. The 4-stream model fuses all four modality streams.

We compare our models with the state-of-the-art methods on NTU RGB+D
60, NTU RGB+D 120, and Kinetics Skeleton in Table 6 and Table 7 respectively.
On NTU RGB+D 60 and NTU RGB+D 120, our STA-GCN using three modality
streams outperforms the previous state-of-the-art methods using four modality
streams (i.e., CTR-GCN[4] and MST-GCN[5]). Our final 4s-STA-GCN achieves
new state-of-the-art performance. On Kinetics Skeleton, our model with four
streams fusion outperforms current state-of-the-art MST-GCN[5] by 2.1% and
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2.7% on Top-1 and Top-5 accuracy respectively. All these experimental results
demonstrate the superiority of the STA-GCN.

Table 7. Comparisons of the Top-1 and Top-5 accuracy with the state-of-the-art meth-
ods on the Kinetics dataset.

Methods
Kinetics Skeleton

Top-1 (%) Top-5 (%)

ST-GCN[40] 30.7 52.8
AS-GCN[17] 34.8 56.5
2s-AGCN[29] 36.1 58.7
DGNN[28] 36.9 59.6
NAS-GCN[25] 37.1 60.1
MS-G3D[22] 38.0 60.9
MST-GCN[5] 38.1 60.8

STA-GCN(J) 36.0 58.5
STA-GCN(B) 34.9 57.3
STA-GCN(JM) 33.1 56.4
STA-GCN(BM) 33.6 56.6
2s-STA-GCN(J, B) 38.5 61.5
3s-STA-GCN(J, B, JM) 40.0 63.0
4s-STA-GCN(J, B, JM, BM) 40.2 63.5

5 Conclusion

In this work, we present a Spatial-Temporal Adaptive Graph Convolutional Net-
work (STA-GCN) to capture robust motion patterns for skeleton action recog-
nition. The STA-GCN is composed of spatial adaptive graph convolution (SA-
GC) and temporal adaptive graph convolution (TA-GC). The SA-GC module is
designed to extract spatial features by modeling the spatial adaptive joint de-
pendencies. The TA-GC module is designed to learn temporal features by cap-
turing the direct long-range joint dependencies in the temporal dimension. Both
SA-GC and TA-GC have a critical embedded component: Topology Adaptive
Encoder (TAE). The TAE is adopted to generate spatial adaptive topology and
temporal adaptive topology for learning the discriminative features. Extensive
experimental results demonstrate the effectiveness of the proposed modules. On
three large-scale skeleton action recognition datasets, the proposed STA-GCN
achieves the state-of-the-art performance.
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