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Abstract. Tracking multiple athletes in sports videos is a very chal-
lenging Multi-Object Tracking (MOT) task, since athletes often have the
same appearance and are intimately covered with each other, making a
common occlusion problem becomes an abhorrent duplicate detection.
In this paper, the duplicate detection is newly and precisely de�ned as
occlusion misreporting on the same athlete by multiple detection boxes
in one frame. To address this problem, we meticulously design a novel
transformer-based Duplicate Detection Decontaminator (D3) for train-
ing, and a speci�c algorithm Rally-Hungarian (RH) for matching. Once
duplicate detection occurs, D3 immediately modi�es the procedure by
generating enhanced box losses. RH, triggered by the team sports sub-
stitution rules, is exceedingly suitable for sports videos. Moreover, to
complement the tracking dataset that without shot changes, we release
a new dataset based on sports video named RallyTrack. Extensive exper-
iments on RallyTrack show that combining D3 and RH can dramatically
improve the tracking performance with 9.2 in MOTA and 4.5 in HOTA.
Meanwhile, experiments on MOT-series and DanceTrack discover that
D3 can accelerate convergence during training, especially saving up to
80 percent of the original training time on MOT17. Finally, our model,
which is trained only with volleyball videos, can be applied directly to
basketball and soccer videos, which shows the priority of our method.
Our dataset is available at https://github.com/heruihr/rallytrack.

Keywords: Multi-Athlete Tracking · Multi-Object Tracking · Trans-
former.

1 Introduction

Sports video analysis possesses wide application prospects and is currently re-
ceiving plenty of attention from academia and industry. Scene understanding
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(a) (b)

Fig. 1. A labeled sample in RallyTrack and the duplicate detection problem occurred
in a TransTrack model: (a) a labeled sample with heavy occlusions, label_7 is totally
covered by label_0 in the left dash box; (b) red box shows duplicate detection, the
same individual is detected by two queries with two IDs.

in sports video can be utilized for data statistics[13], highlight extraction[30],
tactics analysis[21]. Multi-Athlete Tracking (MAT)[20] is a basic task in sports
video-based scene understanding, which occupies a pivotal position.

Unlike general Multi-Object Tracking (MOT)[29,9], in MAT, di�erent ath-
letes generally share a high similarity in appearance and they often have a di-
versity of action changes and abrupt movements. The former di�culty, from our
observation, turns a common occlusion problem in MOT to duplicate detection
in sports video, which is de�ned in this paper as occlusion misreporting on the
same object by multiple predictions in the same frame. The latter one leads to
objects detetion missing, which often accompany with duplicate detection. In
contrast to general person-based MOT, Figure 1(a) displays the di�culties with
two yellow dash boxes. These two main di�culties make MAT a challenging task.

Then Figure 1(b) illustrates duplicate detection with a red box, which may
be caused by two possibilities. One is that all athletes are detected, and an
athlete being repeatedly detected is treated as occluding an additional invisi-
ble athlete. The other is that not all athletes are detected, some detections are
missing while someone is repeatedly detected. To address this issue, we design a
Duplicate Detection Decontaminator (D3) , which can keep watch on the train-
ing procedure. Once a duplicate detection occurs, D3 can generate additionally
enhanced self-GIoU[35] losses during training. Then the losses will be gradually
backpropagated to force the duplicate detecting boxes to keep away from each
other. When duplicate detection disappears, D3 would not produce loss any-
more. We also o�er a speci�c matching algorithm called Rally-Hungarian (RH)
algorithm for MAT, which is triggered by the substitution rule in team sports
like volleyball.

What is more, to make up for the lack of shot change, a new dataset namely
RallyTrack is annotated, which is based on a scene of sports videos, and Figure
1(a) is a labeled sample. Unlike videos commonly used in the scienti�c research of
MAT, live sports videos include shot changes as sports video streaming always
uses multiple cameras. Although all athletes remain on the scene after each

143



D3: Duplicate Detection Decontaminator 3

shot change, the association becomes challenging as it is hard to predict the
trajectories of athletes. However, there are a considerable amount of sports videos
available online. Making use of those massive data can help improve athletes'
competitiveness, e.g., using live sports videos for tactical analysis. Therefore,
building a MAT dataset with shot changes is both signi�cant academically and
practically.

Intensive experimental results on RallyTrack demonstrate the e�ciency of
D3 and RH. During our experiments, we discover that duplicate detection is not
only a prominent problem in MAT but also an unnoticed barrier hidden in MOT,
which makes a model converge slowly. Experimental results on MOT17[29] show
D3 can save up to 80 percent of original training time. More experiments on
MOT16[22], MOT20[9], and DanceTrack[37] also con�rm the priority of D3.

The main contributions of this study are as follows. (i) We design a Dupli-
cate Detection Decontaminator (D3) which supervises the training procedure
to optimize detection and tracking boxes. (ii) We design a matching algorithm
called Rally-Hungarian (RH) for MAT to further improve tracking result. (iii)
We annotate a new dataset named RallyTrack, which is based on scenes of sports
videos, to make up for the lack of videos without shot change. (iv) We perform
extensive experiments to demonstrate and verify that the proposed method im-
proves the tracking performance on MAT with a total enhancement of 9.2 for
MOTA and 4.5 for HOTA, and D3 can accelerate training convergence on MOT.

2 Related Work

2.1 Multiple Object Tracking Datasets

Human-based Datasets. Concentrating on variant scenarios, a large num-
ber of multiple object tracking datasets have been collected, and human track-
ing datasets accounted for a big proportion. PETS [11], MOT15 [22], MOT17
[29] and MOT20 [9] datasets become popular in this community. MOT datasets
mainly contain a handful of pedestrian videos, which are limited to regular move-
ments of objects and distinguishable appearances. As a consequence of that,
multiple object tracking could be easily achieved with the association by pure
appearance matching [31]. More recently DanceTrack [37] is proposed as being
expected to make research rely less on visual discrimination and depend more on
motion analysis. However, the background in DanceTrack is usually identical to
the foreground so detecting is easy and tracking is hard. Collected from real and
noisy sports videos, our dataset is both challenging in detecting and tracking.

Diverse Datasets. Besides, WILDTRACK [6] , Youtube-VOS [45], and
MOTS [41] are proposed for diverse objectives. With the development of au-
tonomous driving, KITTI [12] is interested in vehicles and pedestrians. Then
larger scale autonomous driving datasets BDD100K[48] and Waymo[36] are pub-
lished. Limiting by lanes and tra�c rules, the motion patterns of objects in these
datasets are even more regular than moving people. What is more, some datasets
broaden their horizon on more diverse object categories, such as ImageNet-Vid
[10] and TAO [8].
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2.2 Object Detection in MOT

Tracking by detection. Object detection [24,33,34] develops so vigorously that
a lot of methods would like to utilize powerful detectors to pursue higher track-
ing performance. RetinaTrack [26] and ChainedTracker [32] apply the one-stage
object detector RetinaNet [24] for tracking. For its simplicity and e�ciency, Cen-
terNet [54] becomes a popular detector adopted by CenterTrack [53] and Fair-
MOT [51] . The YOLO series detectors [33] are also put to use by TransMOT
[7] due to their excellent balance of accuracy and speed. Single image tracking is
easy for these methods. However, as is pointed out by [39], when occlusion hap-
pens, missing and low-scoring detections would in�uence the quality of object
linking. Therefore, the information of the previous frame is usually leveraged to
enhance the video detection performance. Recently, Versatile A�nity Network
(VAN) [23] is proposed to handle incomplete detection issues, a�nity computa-
tion between target and candidates, and decision of tracking termination. [16]
presents an approach injecting spatiotemporally derived information into convo-
lutional AutoEncoder in order to produce a suitable data embedding space for
multiple object tracking.

Joint-detection-and-tracking. Achieving detection and tracking simulta-
neously in a single stage is the destination of the joint-detection-and-tracking
pipeline. Some early methods [7] utilize single object tracking (SOT) [3] or
Kalman �lter [19]to predict the location of the tracklets in the following frame
and fuse the predicted boxes with the detection boxes. Then by combining the
detection boxes and tracks , Integrated-Detection [52] boosts the detection per-
formance. Recently, Tracktor [1] directly regress the previous frame tracking
boxes to provide tracking boxes on the current step. From a shared backbone,
JDE [42] and FairMOT [51] learn the object detection task and appearance em-
bedding task in the meantime. Di�erent from CenterTrack [53] localizing objects
by tracking-conditioned detection and predicting their o�sets to the previous
frame, ChainedTracker [32] chains paired bounding boxes estimated from over-
lapping nodes, in which each node covers two adjacent frames. More recently,
transformer-based [40] detectors like DETR [5,55] are adopted by several meth-
ods, such as TransTrack [38],TrackFormer [28] , and MOTR [49] . Our method
also follows this structure to utilize the similarity with tracklets to strengthen
the reliability of detection boxes.

2.3 Data Association

Tracking by matching appearance. Appearance similarity is useful in long-
range matching and serves as a linchpin in many multi-object tracking meth-
ods. DeepSORT [43] adopts a stand-alone Re-ID model to extract appearance
features from the detection boxes. POI [47] achieves excellent tracking perfor-
mance depending on the high-quality detection. Recently, because of their sim-
plicity and e�ciency, joint detection and Re-ID models, such as RetinaTrack
[26], QuasiDense (QDTrack) [31], JDE [42], FairMOT [51], become more and
more prevalent.
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Fig. 2. In the training stage, a matrix LSelf_GIoU is constructed according to the
detected boxes of the input frame t by Self-GIoU Loss (SGL) function. Then D3 will
set a Lower Bound (LB) to check LSelf_GIoU . Values lower than LB in the matrix will
be regarded as duplicate detection. The values are output and added to the boxes loss
LBoxes as a total boxes loss LTotal_Boxes to be backpropagated. If there is no duplicate
detection, D3 will do nothing.

Tracking with motion analysis. Tracking objects by estimating their mo-
tion is a natural and intuitive idea. SORT [4] �rst adopts Kalman �lter [19] to
predict the location of the tracklets in the new frame, and then by Hungarian
algorithm [46] computes the IoU between the detection boxes and the predicted
boxes as the similarity for tracking. STRN [44] presents a similarity learning
framework between tracks and objects. Tracking by associating almost every
detection box instead of only the high score ones, for the low score detection
boxes, ByteTrack [50] utilizes their similarities with tracklets to recover true
objects and �lter out the background detections. Recently attention mechanism
[40] can directly propagate boxes between frames and perform association im-
plicitly. TransTrack [38] is designed to learn object motions and achieves robust
results in cases of large camera motion or low frame rate.

3 Duplicate Detection Decontaminator and

Rally-Hungarian Algorithm

In this section, the working mechanism of Duplicate Detection Decontaminator
(D3) and Rally-Hungarian (RH) matching algorithm will be introduced in detail
respectively. In a transformer-based joint-detection-and-tracking model, objects
in an image are detected by harnessing learned object queries, which is a set of
learnable parameters trained together with all other parameters in the network.
While training a model, duplicate detection appears and D3 will unroll its power
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then. Then RH, a box IoU matching method, is utilized to obtain the �nal
tracking result by associating object queries and tracking queries.

3.1 Duplicate Detection Decontaminator

At training stage as shown in Figure 2, denote B = {bi|i = 1, · · · , N} as the
boxes set of individuals in the middle output of input frame t, where bi =
(x1

i , y
1
i , x

2
i , y

2
i ) indicates the top-left corner (x1

i , y
1
i ) and bottom-right corner

(x2
i , y

2
i ) of ith individual. Then applying the concept of Generalized Intersec-

tion over Union (GIoU) [35], we get Self-GIoU from B, where the element in
GIoU(B,B) is formulated as follows:

GIoU(bi,bj) =
|bi ∩ bj |
|bi ∪ bj |

− |V \ (bi ∪ bj)|
|V |

= IoU(bi,bj)−
|V \ (bi ∪ bj)|

|V |
(1)

where V is the smallest convex hull that encloses both bi and bj , IoU means
Intersection over Union. Then a matrix LSelf_GIoU is constructed by Self-GIoU
Loss (SGL) function as follows:

LSelf_GIoU = SGL(B) = 1−GIoU(B,B) (2)

LSelf_GIoU is a symmetric matrix in which the elements on the diagonal of the
matrix are all 0, as painted white in Figure 2. Then D3 will set a Lower Bound
(LB) to check LSelf_GIoU . Once a value of the element in LSelf_GIoU is lower
than the LB, which means duplicate detection happens, D3 will output the value
and add it to the detected boxes loss as a total boxes loss to be backpropagated.
If there is no duplicate detection, D3 will do nothing. The mechanism of D3 is
as follows:

LD3 = D3(LSelf_GIoU ) =
1

2

N∑
i=1

N∑
j=1

lij , lij < LB (3)

LTotal_Boxes = LBoxes + LD3 (4)

where lij is an element located at ith row and jth column in LSelf−GIoU . lij
is equal to lji in a symmetric matrix so the output of D3 should be divided by
two. When the model is equipped D3, duplicate detection may be within limits.
However, in sports video, the quality of MOT could go a step further while
making use of some special rules of sports, which pedestrian video is not in the
possession of.

3.2 Rally-Hungarian Algorithm

Although the Hungarian algorithm can still work, its limitation is shown when
applied to sports videos. So Rally-Hungarian (RH) algorithm is provided and its
overview is shown in Figure 3. RH models the substitution rule of team sports.
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Fig. 3. Through a tracking model, detection boxes of frame t and track boxes of frame
t − 1 are acquired. Then detection boxes are split into Lineup and Substitution. A
rally of constructing matching cost matrix by computing GIoU loss from Lineup and
track boxes, getting matching pairs by applying Hungarian algorithm on the matrix,
replacing the bad matching item with Substitution to form new Lineup is executed,
which is called Rally-Hungarian (RH).

The players who are on the court are called Lineup, and the others from the same
team are called Substitution. Usually, if a Lineup player performs not good, he
or she will be replaced by a Substitution player. Then RH is introduced in detail.

Through a tracking model, detection boxes of frame t which are denoted as
Bdet = {bn|n = 1, · · · , N}, in which the elements are sorted in descending order
by detection score, and track boxes of frame t−1 as Btrack = {bj |j = 1, · · · ,M}
are acquired, as the de�nition of boxes set applied in Section 3.1. According to
the substitution rule, we split detection boxes set Bdet to Blineup and Bsub. The
top K elements in Bdet are regarded as Lineup Blineup = {bi|i = 1, · · · ,K}
and the rest elements as Substitution Bsub = {bk|k = K + 1, · · · , N}. We
provide a mathematical explanation of setting limitation K in RH, please refer
to supplementary 1. Then we construct matching cost matrix C ∈ RK×M by
computing GIoU loss from Blineup and Btrack as follows:

C = 1−GIoU(Blineup, Btrack) (5)

where GIoU is the same as equation (1). Then utilizing Hungarian Algorithm
on C, we could acquire a set of matching indices pairs P = {(i, j)|i ∈ [1,K]; j ∈
[1,M ]} as follows:

P = Hungarian(C) (6)

P are labeled by check marks in Figure 3. If bi and bj belong to one individual,
item cij in C should be a relatively small value as the light color square shows,
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which means an individual is tracked. However, if an abnormality is chosen, as
marked in red, a row where the abnormality is occupying should be replaced.

Here, we explain why rows with abnormalities can be replaced. In Figure
3, according to the Hungarian algorithm, a abnormality aij in C at row i and
column j is the best match. It means that in C, of all the mismatched columns
si· in row i, the value is the minimum, which can be written as:

aij = min{si·} (7)

It is also not considered a new target in sports video. Two inferences can then
be drawn. First, some duplicate detections are not eliminated by D3. Then there
must be a value miq smaller than the abnormality that exists among all the
matching columns in the row i,

miq < aij (8)

and the smaller value does not match. That is to say, in column q, two similar
values exist in row i and another row p,

miq ≈ cpq (9)

which means row i is duplicate detection and can be replaced. Secondly, this
abnormality is exactly the minimum value of this row, indicating a bad quality of
the matching. As a consequence, a row, or a detection box, with an abnormality
could be replaced.

Then the bad matching detection box in Blineup, regarded as Bbad, could be
replaced by a substitution in Bsub, and a new lineup set Bnew is composed as
follows:

Bnew = (Blineup \Bbad) ∪Bsub = (Blineup \ bi) ∪ bk (10)

Looping equations (5), (6), (10) as the dash arrows until each Cij becomes
acceptable or the Bsub is empty. In the end, we get a better match pair set. In
the �eld of volleyball, a rally means a round will not stop until the ball touch
�oor, like a loop. So we name our matching strategy as Rally-Hungarian (RH)
algorithm, and �R� may have a dual meaning of �Replace�.

4 RallyTrack Dataset

There are plenty of MOT Datasets as we have mentioned in Section 2.1. However,
there are few datasets for MAT. Driven by this observation, a question arises:
Is anything di�cult while exploring MAT? To discover the mystery in MAT, we
annotate a RallyTrack dataset based primarily on sports videos for the MAT
task as shown in Figure 4. In this section, RallyTrack Dataset will be introduced
in detail and our labeling method is provided in our supplementary material 2.

In RallyTrack, videos are from di�erent views, broadcast or �xed, and di�er-
ent gender, men or women, of volleyball games. To guarantee training data and
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(a) (b) (c)

Fig. 4. Some samples in RallyTrack: (a) broadcast view of men's game; (b) �xed view
of men's game; (c) broadcast view of women's game.

Table 1. Datasets comparison between MOT17 and RallyTrack. F/V means frames
per video. O/F means objects per frame. T/V means tracks per video.

Dataset Subset Videos Frames F/V Objects O/F Tracks T/V

MOT17
Train
Test
Total

7
7
14

5316
5919
11235

759.4
845.6
802.5

85828
-
-

16.1
-
-

546
-
-

78
-
-

RallyTrack
Train
Test
Total

10
10
20

8104
9757
17861

810.4
975.7
893.1

68449
91126
159575

8.5
9.3
8.9

122
126
248

12.2
12.6
12.4

test data are not crossed, only will games from di�erent Series be set as train
and test. For example, if both games come from Rio 2016 Olympic Games, they
should be put into a train set or test set together, even if each team is di�erent.
Some details of RallyTrack are then displayed in Table 1. All of our data are
labeled in MOT17 annotation format. As the test set's ground truths of MOT17
are not published, only the train set is calculated. In this table, column F/V
refers to the number of frames showing more frames in RallyTrack than in each
MOT17 video. Column O/F means objects per frame which show that individ-
uals in RallyTrack are less than MOT17. Column T/V means tracks per video
which show that trajectories in RallyTrack are also less than MOT17. However,
given the overall situation of O/F and T/V, O/F is closer to T/V in RallyTrack
than in MOT17, suggesting that RallyTrack has a longer personal trajectory
than MOT17.

5 Experimental Results

5.1 Experimental Setup

We evaluate D3 on benchmarks: RallyTrack, MOT17, MOT16, MOT20, and
DanceTrack. Following previous practice [53,38], we split all the training sets
of the MOT-series into two parts, one for training and the other for validation.
The operation is samely applied on RallyTrack where half of the train set will
be used and the whole test set will be tested. The widely-used MOT metrics set
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Table 2. Experiments on RallyTrack. Our method makes an amazing 9.2 promotion
on MOTA, 7.0 on IDF1 and 4.5 on HOTA to baseline TransTrack (TT). Best in bold.

Model MOTA↑ IDF1↑ MOTP↑ MT↑ FP↓ FN↓ IDS↓ HOTA↑ DetA↑ AssA↑

TT [38] 59.5 28.8 77.8 70.6 15370 19489 2049 27.9 51.9 15.2
TT+RH 62.0 33.3 77.8 66.7 12557 20310 1788 30.2 52.3 17.7
TT+D3 66.4 29.7 78.1 78.6 13676 14848 2107 29.2 55.8 15.5
TT+D3+RH 68.7 35.8 78.1 77.0 11359 15350 1847 32.4 56.3 18.9

[2] is adopted for quantitative evaluation where multiple objects tracking accu-
racies (MOTA) is the primary metric to measure the overall performance. What
is more, the higher order tracking accuracy (HOTA) [27,18], which explicitly
balances the e�ect of performing accurate detection, association and localiza-
tion into a single uni�ed metric for comparing trackers, is also applied. While
evaluating RH, only RallyTrack is used.

For a fair comparison, we maintain most of the settings in TransTrack [38],
such as ResNet-50 [15] network backbone, Deformable DETR [55] based trans-
former structure, AdamW [25] optimizer, batch size 16. The initial learning rate
is 2e-4 for the transformer and 2e-5 for the backbone. The weight decay is 1e-
4. All transformer weights are initialized with Xavier-init [14]. The backbone
model is pre-trained on ImageNet [10] with frozen batch-norm layers [17]. Data
augmentation includes random horizontal, random crop, scale augmentation, and
resizing the input images whose shorter side is by 480-800 pixels while the longer
side is by at most 1333 pixels. When the model is trained for 150 epochs, the
learning rate drops by a factor of 10 at the 100th epoch.

5.2 Experiments on RallyTrack and Others

Our models are evaluated on RallyTrack as shown in Table 2. In this table, the
original TransTrack (TT) [38] model based on Deformable Transformer [55] is
regarded as a baseline, Rally-Hungarian (RH) algorithm and Duplicate Detection
Decontaminator (D3) could be evaluated respectively or jointly. In this table, TT
with both D3 and RH gets a stunning 9.2 rating on MOTA, 7.0 on IDF1 and
4.5 on HOTA to baseline. The results show that our methods are not only good
at detecting multiple athletes but also associating them. It is mainly caused
by decontaminating the duplicate detections and many athletes are correctly
detected and tracked.

MOT17 is another dataset mainly used to measure the e�ectiveness of D3 as
shown in Table 3. In this dataset, the main function of our approach is to reduce
training time. The hyperparameters in the �rst column mean Lower Bound (LB)
in D3. LB is chosen according to di�erent self-GIoU losses from di�erent datasets.
Di�erent self-GIoU losses are caused by di�erent resolutions of videos. In this
table, by actively eliminating duplicate detection, D3 can save 80 percent of TT's
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Table 3. Experiments on MOT17, MOT16, MOT20, and DanceTrack. Our method
converges faster. Best in bold.

D3 Epoch MOTA↑ IDF1↑ MOTP↑ MT↑ FP↓ FN↓ IDS↓ HOTA↑ DetA↑ AssA↑

w/o 150 65.1 63.6 81.9 36.8 1918 16440 438 52.6 54.0 51.7
0.010 150 65.3 62.9 82.2 38.3 1849 16358 457 53.0 54.4 52.1
w/o 30 64.9 62.6 82.0 36.3 1862 16537 477 52.1 53.9 50.7
0.010 30 65.3 63.6 82.2 38.6 1833 16398 480 53.4 54.5 52.8

mot16

w/o 30 64.1 61.3 81.8 40.7 2434 16186 544 50.9 53.6 48.9
0.011 30 65.3 61.6 81.8 40.7 2578 15328 601 52.3 55.0 50.3

mot20

w/o 30 72.5 63.2 82.9 51.6 12882 153K 2978 52.4 59.4 46.3
0.017 30 73.2 64.6 82.9 53.4 12831 149K 2808 53.6 60.1 47.9

DT

w/o 50 76.5 39.4 85.2 70.7 19087 29130 4795 38.9 66.8 22.9
0.012 50 76.3 37.4 84.8 68.5 19432 28947 5026 37.1 66.4 21.0
w/o 25 76.6 37.6 85.2 70.0 18710 29348 4685 38.1 67.1 21.8
0.012 25 76.5 39.4 84.9 67.8 18518 29557 4808 38.7 66.2 22.9

training time, making the model converge faster from 150 down to 30 epochs.
Instead, too many training epochs can lead to over�tting. We then demonstrated
the priority of our approach by experimenting directly with MOT16 and MOT20
in the same setting as MOT17 for only 30 epochs. DanceTrack (DT) dataset is
also measured with training on train set and testing on val set. As shown in
Table 3 only trained in 50 epochs could our method save 50 percent of the
original training time and almost maintain the basic performance.

Datasets and solutions are massive for MOT after long-term development
while it is not for MAT. We hope to provide a paradigm for MOT methods to
easily extend to MAT. So D3 is proposed as a connection between them. D3

retains an almost complete structure of TT, allowing TT to expand for MAT
(Table 2) while maintaining the original MOT capabilities (Table 3).

5.3 Ablation Study

In this section, we conduct a comprehensive ablation study for the proposed D3

and RH.
What is the Shortest Training Time and the Best Lower Bound of

D3? Training epochs and lower bound (LB) are two key factors for D3 networks.
During training, short training time leads to non-convergence and long training
time leads to over�tting. Then a small LB has little e�ect and a large LB leads to
the elimination of non-duplicate detection. We verify the impact in training with
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Table 4. Training Time and Lower Bound. Best in bold.

Model LB Epoch MOTA↑ IDF1↑ MT↑ FP↓ FN↓ IDS↓ HOTA↑ DetA↑ AssA↑

TT - 150 59.4 28.7 69.8 15520 19426 2052 28.1 51.9 15.4
TT+D3 0.010 150 61.9 29.2 73.0 15393 17166 2164 28.9 53.4 15.9
TT+D3 0.011 150 66.3 29.5 78.6 13806 14750 2109 29.2 55.8 15.5
TT+D3 0.012 150 61.8 29.0 74.6 15954 16540 2309 28.8 53.0 16.0
TT - 40 59.5 28.8 70.6 15370 19489 2049 27.9 51.9 15.2
TT+D3 0.011 40 66.4 29.7 78.6 13676 14848 2107 29.2 55.8 15.5

Table 5. Age L, Top K and Replacement of RH.

L K Replace MOTA IDF1 HOTA

TT+D3 32 - No 66.4 29.7 29.2
TT+D3 80 - No 66.3 32.2 30.3
TT+D3+RH 32 12 No 67.7 30.9 30.3
TT+D3+RH 80 12 No 67.7 33.2 31.0
TT+D3+RH 80 12 Yes 68.7 35.8 32.4

di�erent training epochs and LB settings. Table 4 shows that using 40 training
epochs and 0.011 LB brings the best performance in terms of MOTA, IDF1, and
HOTA. On one hand, D3 makes more correct predictions shown by FP and FN
with a desirable gap. On the other hand, LB in D3 should be carefully set to
determine whether duplicate detection exists.

What is the Best Age L of RH? Should RH Set Top K and Con-

duct Replacement? First, age L means that if a tracking box is unmatched, it
keeps as an �inactive� tracking box until it remains unmatched for L consecutive
frames. Inactive tracking boxes can be matched to detection boxes and regain
their ID. Following [38], we choose L=32 and then lengthen L to 80. Because
in sports videos individuals who are always on the court will reappear in an
image. Second, we set top K=12 as the data are based on volleyball videos. Fi-
nally, whether replace with substitution is also evaluated. Tabel 5 shows that
using age L=80, setting a limitation K=12, and conducting replacement bring
the best performance.

What is the Best Replacing Strategy of RH? Di�erent replacing strate-
gies (RS) may lead to di�erent tracking performances. So 5 di�erent RS of the
RH algorithm are examined as shown in Table 6. In this table, we assume that
there are p to-be replaced items in Bbad and q items in Substitution. Delete No.
means the number of removed items in Bbad, and �1st Bad� means deleting the
�rst item in Bbad. Replace No. means the number of being replaced items in
Bsub. As the elements in Bsub are already sorted in descending order by detec-
tion score, the �rst one has the highest detection score in Bsub, which is marked
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Table 6. Replacing Strategies of RH.

Delete No. Replace No. Complexity MOTA IDF1 HOTA FPS

RS1 p 1 (1st Score) O(p) 67.5 31.9 30.4 6.41
RS2 p 1 (1st Good) O(pq) 67.5 31.8 30.2 6.43
RS3 p min{p, q} O(p ·min{p, q}) 67.6 32.2 30.4 6.33
RS4 1 (1st Bad) 1 (1st Score) O(1) 68.4 35.5 32.5 6.52
RS5 1 (1st Bad) 1 (1st Good) O(q) 68.7 35.8 32.4 6.44

Table 7. Experiments on basketball and soccer.

Basketball MOTA↑ IDF1↑ MOTP↑ MT↑ FP↓ FN↓ IDS↓ HOTA↑ DetA↑ AssA↑
TT [38] 39.7 12.5 72.9 20.0 3995 3396 636 14.8 43.1 5.2
TT+RH 45.1 14.4 73.0 20.0 3079 3680 593 15.9 44.6 5.7
TT+D3 53.2 12.5 74.7 20.0 2450 3205 605 15.2 48.6 4.8
TT+D3+RH 54.4 16.8 74.7 20.0 2166 3420 520 17.4 48.0 6.3

Soccer

TT [38] 60.1 21.2 79.3 33.3 1232 4205 327 23.2 51.4 10.5
TT+RH 59.2 24.0 79.4 42.9 1287 4260 354 24.1 50.9 11.4
TT+D3 55.7 19.3 78.9 33.3 1156 4868 381 20.8 48.2 9.0
TT+D3+RH 57.9 21.4 78.8 28.6 1175 4907 395 22.0 47.9 10.2

as �1st Score�. When a bad item is replaced by a high score substitution, it is
also able to get a bad match. So all the items in Bsub could be replaced to �nd a
good match, and the �rst item composing a good match is marked as �1st Good�.
Then time complexity of each strategy is also analyzed. In this table, the total
q is set 3, so the FPSes are close.

5.4 Details of basketball and soccer videos

Additionally, extending the RallyTrack dataset to other sports, we labeled 1484
frames of basketball and 1422 frames of soccer and tested them as shown in Table
7. 13384 objects are in basketball and 14802 objects in soccer. Results indicate
that our method can be directly applied to basketball videos rather than soccer
videos. The scene in basketball is more similar to volleyball than that in soccer,
and occlusion is not serious in soccer mainly because the background is easily
distinguishable and larger, as visualized in Figure 5.

5.5 Visualization

We visualize two examples tracked by four di�erent tracking models as shown
in Figure 5. In 5(a), heavy duplicate detections happen and an object is missing
while using a base model TT; then in 5(b), with RH, some duplicate detections
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(a) TT (b) TT+RH (c) TT+D3 (d) TT+D3+RH

(e) TT (f) TT+RH (g) TT+D3 (h) TT+D3+RH

(i) TT (j) TT+RH (k) TT+D3 (l) TT+D3+RH

(m) TT (n) TT+RH (o) TT+D3 (p) TT+D3+RH

Fig. 5. Visualization of frame No.942 in test_0100017 and frame No.715 in valida-
tion_0160025 tracked by four di�erent tracking models, and the models are directly
applied to basketball and soccer videos.

disappear; moreover in 5(c), when equipped D3, the missing object is found;
�nally in 5(d), combining D3 and RH could get the best and the clearest tracking
result. Then the best model is directly applied to basketball by setting N = 15,
K = 10, q = 5 in RH, and soccer by N = 20, K = 15, q = 5 for the court of
soccer is so large that usually not all individuals are visible.

6 Conclusion

In this paper, to address duplicate detection in MAT, we design a Duplicate
Detection Decontaminator (D3) which supervises the training procedure.Then
we design a Rally-Hungarian (RH) matching algorithm to go a step further on
MAT. Experiments on our labeled RallyTrack show the priority of our methods.
D3 could also be utilized for saving training time on MOT17, MOT16, MOT20,
and DanceTrack. Moreover, our model trained with volleyball data can be di-
rectly applied on other team sports videos like basketball or soccer, which may
encourage more research exploring MAT applications.
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