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Abstract. This paper studies the task of conditional Human Motion
Animation (cHMA). Given a source image and a driving video, the model
should animate the new frame sequence, in which the person in the source
image should perform a similar motion as the pose sequence from the
driving video. Despite the success of Generative Adversarial Network
(GANs) methods in image and video synthesis, it is still very challeng-
ing to conduct cHMA due to the difficulty in efficiently utilizing the
conditional guided information such as images or poses, and generating
images of good visual quality. To this end, this paper proposes a novel
model of learning to Quantize, Scrabble, and Craft (QS-Craft) for condi-
tional human motion animation. The key novelties come from the newly
introduced three key steps: quantize, scrabble and craft. Particularly, our
QS-Craft employs transformer in its structure to utilize the attention ar-
chitectures. The guided information is represented as a pose coordinate
sequence extracted from the driving videos. Extensive experiments on
human motion datasets validate the efficacy of our model.

1 Introduction

The task of conditional Human Motion Animation (cHMA) has attracted in-
creasing attention in the vision community, as it can be utilized in many in-
dustrial applications such as computer games, advertisement, and animation
industry [4, 17, 18]. In this work, we aim to solve the cHMA problem by trans-
ferring driving videos to animate the humans in the source. Particularly, given
a source image and a driving video, the cHMA model should animate the new
frame sequence, in which the person in the source image should perform similar
motion as pose sequence from the driving video.

? corresponding author
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Fig. 1. Left: Examples of cHMA task. Right: idea illustration of our QS-Craft. Our
method learns to quantize source image, scrabble quantized representation conditioned
on driving video, and finally craft the synthesis of target images. Notice that when pose
misalignment occurs (left-top), FOMM [27] fails to generate realistic motion transfer
images, while our method accomplishes the task well and preserves finer details. Two
histograms (right-bottom) indicate quite similar visual features of the source and tar-
get, producing intuition to play the Scrabble game.

To tackle this task, some classical approaches [3, 5, 30] are very domain-
specific and rely on parametric models to represent humans. Generative models,
such as Variational Auto-Encoders (VAE) [14, 29] and Generative Adversarial
Networks (GANs) [2, 19, 21, 23], have shown good capacity on the image gen-
eration task, which could be the alternative ways to address our cHMA task.
Unfortunately, these models typically demand expensive training from large col-
lection of data in an unconditioned manner. On the other hand, motion flow
based approaches [27, 26, 28] have received more and more attention due to its
remarkable performance. The key idea of these methods is to learn motion flows
between the source image and the driving frames, such that the target image fea-
tures can be synthesized by wraping. For cHMA, authours [26, 28, 27] proposed
to use keypoints to produce flow maps, but these works additionally require
modules to map the flow from sparse to dense. This is not only difficult to be
learned but also may introduce lots of artifacts. For example, the misalignment
of human motion in [27] in the source image and the first driving video frame
may lead to an unreasonable animated result as shown in the left of Fig. 1.

In this paper, we advocate the way of motion flow yet from a different and
novel perspective. As illustrated in Fig. 1, we propose to generate the target
image by only rearranging the order of patches in the source image, on account
of the observation that the source and the target images have very similar dis-
tribution. This is similar to a game of ‘Scrabble’ using the same letters to spell
different words but following different rules. So, the key question is how to learn
the rule of Scrabble? We argue that it should satisfy three requirements: (i)
rules should be objective and independent of input; (ii) the order of patches
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should be reasonable, including the texture of background and the identity of
foreground; (iii) obviously it should be conditioned on the driving videos. To this
end, we present a novel paradigm of learning to Quantize, Scrabble and Craft
for conditional human motion animation (cHMA), thus dubbed QS-Craft.

Formally, given the input source image and the driving video, our QS-Craft
model should have the following three key steps, as illustrated in the right of
Fig. 1. (1) Quantize. Train an encoder to get the latent feature of the source image
and then quantize it to produce a bag of discrete feature pixels by referring to
the global codebook, which is trained in an end-to-end manner. (2) Scrabble.
Conditioned on motion information from driving video, our QS-Craft trains a
decoder-only transformer to rearrange the feature pixels computed in (1) to
produce the corresponding feature pixels for the targets. By virtue of such a way,
we can effectively exploit the distribution of visual features, to help synthesize
the latent features of the target images. (3) Craft4. Finally, the reordered feature
pixels will be passed to a decoder layer to produce the animated target images.
Extensive experiments on benchmarks validate the efficacy of our model, and
the quantitative and qualitative results show that our method outperforms the
state-of-the-art competitors.
Contributions. The main contribution of this paper is to propose a novel
paradigm for the conditional human motion animation: learning to Quantize,
Scrabble and Craft (QS-Craft). The quantize step is first introduced to encode
the input source image and driving videos into a discrete representation. Next, we
employ transformer to learn to scrabble by mixing up pixel distributions and ex-
ploiting the known distribution of the source image to fit those in driving videos.
The reordered feature pixels are decoded to craft the human motion animation.
Based on this novel model framework, we can not only address motion transfer
when pose misalignment occurs (in Fig. 1) but achieve better quantitative scores
in video reconstruction compared to other state-of-the-art methods.

2 Related Works

Image Animation. Image animation and video re-targeting have drawn at-
tention of computer vision researchers in recent years. Some of the previous ap-
proaches [5, 30, 3] are heavily domain-specific, which means they can only tackle
animation of human faces, etc. When transferred to other situations, these meth-
ods might fail and are ineffective. Recycle-GAN [1] incorporates Spatio-temporal
cues into a conditional GAN architecture to translate from one domain to an-
other. However, it has to be trained with a strong prior of specific domains and
cannot be generalized to even another individual. Similarly, the model in [33]
aiming to address the motion transfer task is also exposed to the same prob-
lem. Compared to these works, our method does not need any prior during the
training phase and can be domain-agnostic in the inference time.

X2Face [34] employs reference poses to warp a given image and obtain the
final transferred video. It does not require priors but is better to face anima-

4 The name of Craft is inspired by the game of Minecraft.
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tions than cHMA. Siarohin et al. introduced Monkey-Net [26]. This network can
indeed animate arbitrary objects guided by detected key points, but it is only
effective on lower resolution images. The authors in [27] and [28] proposed an
affine transformation and a PCA-based motion estimation respectively to trans-
fer driving motions into the target images with higher resolution. Note that both
of them are based on warping motion flow in order to encode images in feature
space then decoding to get the targets. It suggests that the latent feature in
target images has to be encoded from scratch whilst our proposed model can
rearrange the quantized feature sequences conditioned on driving videos for the
motion transfer task. This discretization method ensures better quality of our
generated images. Moreover, the main structure of our model is transformer,
which is quite different from other methods mentioned above. And both the
quantitative and qualitative results show the efficacy of this prominent block.
Visual Transformer. Since the introduction of the self-attention module [32],
many transformer-based methods have achieved impressive performance in nu-
merous Natural Language Processing (NLP) and vision tasks [24, 10, 11, 8, 16].
Autoregressively generating pixels by transformer can only be applied to low-
resolution images due to costly computation and huge memory footprint [9, 15].
Many recent works, such as dVAE [25] and VQ-VAE [20], attempt to model
discrete representation of images to reduce the total sequence length. Besides,
VQ-GAN [12] added Generative Adversarial Networks (GANs) into VQ-VAE to
improve training efficiency. Both VQ-VAE and VQ-GAN quantize an image ac-
cording to a global codebook. In the second stage of [12], its transformer module
has to look up in the whole codebook to generate latent features of targets, which
may lead to accumulated errors and unreasonable generated results. Hence con-
structing a local dynamic codebook for each conditions-target pair can enhance
the searching ability of the transformer; and thus the target images generated by
the decoder will be more realistic. To achieve this goal, we propose to quantize
one image twice to rearrange conditions for the target one. And this scrabbling
also speed up convergence of the model.

3 Methodology

The purpose of this paper is to animate the human in a source image xs ∈
RH×W×3 conditioned on the motion in a driving video. For the target image xt ∈
RH×W×3, it should be semantically consistent with the source image, including
the information of background and the content of the human texture. More
importantly, it demands natural and realistic motion changes, which are guided
by a series of driving frames (i.e., the condition c). Following our inspiration,
we assume that the target image xt can be generated by reordering the latent
features zs of the source image in spatial dimensions, which can be expressed as,

xt = G (T (zs, c)) = G (T (E (xs) , c)) (1)

where E (·) and G (·) denote the encoder and the decoder layer; T (·) means
the operation of ‘scrabble’, i.e., putting latent features zs together following a
specific rule.
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Fig. 2. The overall pipeline of QS-Craft. We first train an encoder-decoder based frame-
work to quantize both source and target images. Then, a conditional transformer is
designed to learn the scrabble game under the given driving videos. Finally, the decoder
crafts the reordered features as output.

The overall of our framework is illustrated in Fig. 2, which is composed of
three steps, Quantize, Scrabble and Craft. First, we perform the vector quan-
tization mechanism [20] on the encoded latent features zs of the source image,

resulting in a bag of feature pixels
{

z
(i,j)
s

}h,w

i,j=1
, where h and w indicate the

height and width of the latent features, respectively. Then, we play a Scrabble
game by selecting pixels from the bag and mixing them together, ẑt = T (zs, c).
This process must be meaningful and also be conditioned on the motions from
driving videos. Finally, the patchwork ẑt is fed to the decoder to craft the image,
which is realistic with natural motion changes.

Considering that T (·) is operated on index-based representation, we divide
the training procedure of our model into two stages, image reconstruction with
scrabble and learning scrabble rules with transformer. For the rest of this section,
we will follow these two training stages to elaborate our framework in Sec. 3.1
and Sec. 3.2, respectively. The objective functions will be elaborated in the
supplementary material.

3.1 Image Reconstruction with Scrabble

In the first stage, we aim to teach the decoder G to generate a natural target
image xt from a known patchwork ẑt. We first utilize the encoder E to extract
latent features from both source and target images, denoted as zs and zt. Con-
sidering the correlations between each feature pixel in zs, we adopt one more
step of vector quantization before fitting them together. Specifically, a learnable
codebook q ∈ Rm×cq is introduced, where m and cq are the number and dimen-
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Fig. 3. Index distribution of a random sample pair zs and zt.

sion of codes, respectively. For each pixel
{
z
(i,j)
s

}h,w

i,j=1
, we do quantization Q (·)

by replacing it with the closest codebook entry qk in q 5,

zs = Q (zs) := arg min
qk∈q
‖z(i,j)s − qk‖ (2)

where zs ∈ Rh×w×cq . After that, we obtain a bag of quantized feature pixels{
z
(i,j)
s

}h,w

i,j=1
.

In order to reconstruct the target image xt, we utilize the latent feature zt
as a reference to play scrabble with pixels (words) in zs. More concretely, we
compute the distance between feature pixels in zt and zs, and select the closest
ones to fit a patchwork ẑt ∈ Rh×w×cq . The formulation can be written as,

xt = G (ẑt) , ẑt := arg min
zk∈zs

‖z(i,j)t − zk‖ (3)

To encourage the fidelity of the synthesized images, we reverse the generation

flow in Eq. 3, that is, using a bag of quantized target feature pixels
{

z
(i,j)
t

}h,w

i,j=1

to fit a patchwork of the source ẑs. Furthermore, we also introduce a perceptual
loss [35, 31] and a Discriminator D [36, 17] to highly maintain the perceptual
quality during training. Details of structures about the Encoder E, the Decoder
G and the Discriminator D can be found in the supplementary.
Remark. Different from Eq. 2, Eq. 3 is much more important here. A straight-
forward explanation of Eq. 3 is to narrow down the search space in Eq. 2. Ex-
periments in Sec. 4.2 empirically show that this constraint will not degrade the
expressive power of the representation ẑs or ẑt. Even better, it is efficient and
keeps more fidelity in background and foreground. Furthermore, to simply val-
idate our explanation, we randomly choose a sample pair and plot their index
distribution in Fig. 3. As we can see, the index distribution of zs and zt are
quite similar; therefore, by scrabbling the indices in the source, we are able to
reconstruct the target image.

5 We refer the readers to [12] for details of the codebook learning.
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3.2 Learning Scrabble Rules with Transformer

Through the process described in Sec. 3.1, the Decoder G now can synthesize
realistic images according to the given patchwork. Nevertheless, the patchwork
is generated with the reference of target image, which is not available during
inference. To this end, we propose learning the rule of Scrabble, such that the
desired patchwork ẑt can be successfully produced only with a bag of source
feature pixels zs and the condition motion information c.

Here, the condition c refers to the information of pose coordinates. We claim
that directly utilizing RGB images as condition may cause the information leak-
age [6] when both the source and driving frames are from the same video. Em-
pirical results in Sec. 4.3 suggest that pose coordinates can not only provide
effective and straightforward condition, but also save lots of computational costs
compared with using pose image [12]. More precisely, an off-the-shelf open pose
detector is applied to detect and localize n keypoints of an object. Each point
is represented by x-y coordinates. If a point is occluded or undetectable, we set
x = y = −1 for indication. Then, we attach three fully-connected layers with
ReLU activation to encode the 2D pose coordinates p ∈ Rn×2, which can be
expressed as,

c = F (p) ∈ Rn×nc (4)

where F (·) denotes the stacked fully-connected layers, nc means the output
dimension. We flatten the pose condition c as a sequence {ci}ni=1, which is further
incorporated with our transformer.

Speaking of the transformer, we adopt a decoder-only structure6 and first
convert the feature representation of zs ∈ Rh×w×cq and ẑt ∈ Rh×w×cq to the
sequence of index representation, i.e., {si}li=1 and {ti}li=1, where its value ranges
from 0 to m − 1, indicating the index of each feature pixel in the codebook q,
and l = h×w. Two embedding layers with the dimension of nc are subsequently
followed for {si} and {ti}, respectively 7. During training phase, we concatenate
the source embedding {si} and the condition sequence {ci} as input. Note that

the previous ground-truth target embedding {ti}j−1i=1 are progressively attached
to the input to predict the likelihood of the next target index tj . The overall
formulation can be written as,

p (t|s, c) =

l∏
j=1

p
(
tj |s, c, t[s], t<j

)
(5)

where t[s] ∈ R1×cq denotes a learnable start token, which is added after the
condition sequence for the case of predicting the first target index t1, as shown in
Fig. 2. For inference, we use the previously predicted index to replace the ground-
truth ones. With regard to the multi-head self-attention in the transformer, we
design a new attention mask M with four sub-masks,

6 Please refer to the supplementary for the transformer structure.
7 We reuse the symbols of {si} and {ti} after embedding for simplicity.
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M =

[
A B
C D

]
=

[
1 0
1 Mtril

]
(6)

where B ∈ R(l+n)×(l) is a zero matrix, A ∈ R(l+n)×(l+n) and C ∈ Rl×(l+n) are
all-ones matrices, designed to learn the relationship among the source embedding
{si}, the conditional information {ci} and the target embedding {ti}; Mtril ∈
Rl×l means a standard lower triangular matrix filled with 1, so that the next
target index can be deduced from the previous known information.

Recall the key idea of ‘Scrabble’ in the transformer, a patchwork ẑt is acquired
only with feature pixels from zs, thus we apply a mask constraint to the output
of index probabilities. Specifically, denote the output of the j-th target index
from transformer as vj ∈ Rm, we mask out some elements if their indices are

out of the bag of source index {si}li=1,

vkj = − inf if k /∈ {si}li=1 (7)

where k ∈ [0,m− 1] and vkj indicates the k-th element in vj . We feed masked
vj into Softmax operation to obtain final probability of the j-th target index.
Furthermore, in order to improve the fidelity and consistency of the synthe-
sized images, especially for the foreground objects, we encourage the model to
learn more correlations between target indices by re-weighting the loss of each
predicted index. Since we intuitively strengthen the learning of the foreground
area, we call this strategy as RoI (regions of interest) weight. Formulations are
elaborated in the supplementary materials.

4 Experiments

Datasets. We evaluate our model on two widely-used benchmarks. (1) Tai-
Chi-HD, collected from YouTube following [31], is a dataset of human bodies
performing Tai Chi actions, consisting of 252 videos for training and 28 videos
for testing. Following MRAA [28] preprocessing method, we finally obtain 3, 049
and 285 video chunks for training and testing. All video frames are resized to
256 × 256. (2) Penn Action (PA) dataset [37] contains 2, 326 video sequences of
15 action classes. All video frames are resized to 256 × 256 after preprocessing.
Metrics. In our experiments, we use the following metrics to provide an in-depth
comparisons with other competitors. (1) Average Keypoint Distance (AKD),
which means the average distance between the detected keypoints of the ground
truth image sequences and the generated ones. For both two datasets, we em-
ploy the human-pose estimator in [7] (2) Missing Keypoint Rate (MKR), An-
other metric evaluating the difference between the poses in the real images and
the reconstructed, is the proportion of keypoints detected in ground truth but
missing in the reconstruction. (3) Fréchet Inception Distance (FID) [13], which
measures the quality of generated images. In this paper, we concentrate more on
the foreground area (i.e., human bodies) to evaluate the fidelity and consistency.
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Fig. 4. Visualization of image animation on Tai-Chi-HD. Given the source image and
driving videos, our animated images are better than those from competitors. Best
viewed in color and zoom in.

Implementation Details. On all datasets, we train our model in two stages. (1)
for the reconstruction training, our generative model is finetuned on ImageNet
datasets [12]. In each training iteration, we randomly select 2 frames from the
same video for training. Adam optimizer is applied with β1 = 0.5, β2 = 0.9, batch
size 2 and the initial learning rate of 5e-5. We drop the learning rate by half for
every 70K steps. The total training iteration for the first stage is about 210K. (2)
For the transformer training, we use Adam optimizer with β1 = 0.9, β2 = 0.95
and batch size 12. We do not change the initial learning rate but add the warmup
strategy within the first 10K steps. The learning rate is linearly decayed to 0
gradually. We train the second stage 280K for Tai-Chi-HD and 270K for PA.
Competitors. Several related models are listed as competitors. For Tai-Chi-
HD dataset, we compare our QS-Craft with three state-of-the-art models for
animating, namely, Monkey-Net [26], FOMM [27] and MRAA and report both
qualitative and quantitative results. For PA dataset, as for its complexity and
variety of human motions, it is not suitable for the animation task whereas tends
to be a dataset of pose-guiding. Hence, we compare with four pose-guided gen-
erative models, including PG2 [17], PATN [38], PN-GAN [22] and MR-Net [35].

4.1 Qualitative Results

Note that the objective metrics used in our cMHA task can only reflect the
general quality of synthesized images, while it is difficult for these metrics to
directly evaluate whether the synthesized images are mimicking the human mo-
tion sequences from driving video. In that case, qualitative evaluations are much
more important in cMHA task to directly reflect whether our model works well.
Human Animation. Figure 4 and 5 show animation results on Tai-Chi-HD
dataset. It can be noticed that our method can generate more realistic images
with accurate motion according to driving videos on the four randomly selected
samples. As these competitors all highly rely on flow information and warping
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Fig. 5. More animation results on Tai-Chi-HD. Best viewed in color and zoom in.

Table 1. Video Reconstruction Results
on Tai-Chi-HD.

Methods
Tai-Chi-HD

AKD ↓ MKR ↓ FID ↓
Monkey-Net [26] 13.77 0.061 32.223
FOMM [27] 7.02 0.031 25.910
MRAA [28] 5.73 0.025 35.794

Ours 4.61 0.017 25.064

Table 2. Quantitative ablation study for
pose-guided generation on PA dataset.

Methods
Penn Action

AKD ↓ MKR ↓ FID ↓
w/o Scrabble 31.878 0.326 42.721
w/o RoI weight 17.819 0.121 33.066

Full Model 16.358 0.121 30.136

operations, once the source image is not aligned with the first frame of the given
driving video, it will introduce either wrong poses or twisted human bodies in
the following generated animation results. For example, in the left subfigure of
Fig. 4, results of Monkey-Net in the first row indicate the failure of motion
animation: it only copies the source image. In contrast, our QS-Craft introduces
the Scrabble step to rearrange the discrete pixel representations from the source
image conditioned on the driving motion, thus facilitating the large human poses
between the source and driving videos. Moreover, FOMM can sometimes capture
action information in the driving but collapses in most cases. For MRAA, it can
indeed generate the animated human bodies with roughly correct poses but
details such as “raising left foot” are missing. It should be emphasized that
FOMM tends to fail in the case of misalignment between human motion in the
source image and the first frame of driving video, which has been discussed in
the limitation of its original paper. As for MRAA, it alleviates the misalignment
problem to a certain extent but at the cost of losing a lot of details. Compared
to these methods, our proposed QS-Craft can transfer source images accurately
as well as retain most important details. More results about face animation can
be found in the supplementary materials.

Pose Guidance. We further provide results on PA dataset, which is a more
challenging and large dataset. The qualitative results are present in Fig. 7. We
compare the competitors of PG2, PATN, PN-GAN and MR-Net. Particularly, we
show that PG2 tends to generate blur results in most cases. Besides, PN-GAN

2689



QS-Craft for Conditional Human Motion Animation 11

Table 3. Pose-guided Generation Results on PA dataset.

Methods
Penn Action

AKD ↓ MKR ↓ FID ↓
PG2[17] 20.577 0.279 78.615
PN-GAN[22] 19.637 0.167 47.096
PATN[38] 19.288 0.267 51.583
MR-Net[35] 13.663 0.169 58.796

Ours 16.358 0.121 30.136

Fig. 6. Visualization of pose-guided generation on PA dataset. Our method is better
than the competitors.

is inclined to copy the source image as target ones. Human body parts in results
of PATN are twisted, resulting in unreasonable artifacts. For MR-Net, the area
around the human is blurred, making the synthesized images unrealistic. Com-
pared to these models, our QS-Craft demonstrates its efficiency in generating
the accurate human poses guided by conditions.

4.2 Quantitative Results

We also give the general measurement of the image quality. Thus we compare
the quantitative results on PA dataset of our proposed QS-Craft and other com-
petitors in Tab. 3. As for Tai-Chi-HD dataset, since there is no ground truth
according to the animation results to get quantitative scores, a sanity check by
video reconstruction is conducted to demonstrate the effectiveness of our QS-
Craft. Here we employ three metrics described above, Average Keypoint Distance
(AKD), Missing Keypoint Rate (MKR) and Fréchet Inception Distance (FID)
to measure the quality of generated results.

Note that for Monkey-Net, FOMM, and MRAA are not designed to tackle
the complex images from PA dataset; and thus there is no available model for
the direct comparison. Thus, the methods of PG2, PATN, PN-GAN and MR-
Net are compared here. We note that our QS-Craft outperforms all the baselines
in AKD, MKR and FID. This intuitively reflects that our QS-Craft can deal
with the complicated background with human motion, producing visually good
synthesized results.
Sanity check by video reconstruction. We take this task as the sanity
check of our model, as it is designed for animation in transferring settings. That
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Table 4. Ablation study on different usages
of pose conditions (report w/o RoI weight).

Methods
Tai-Chi-HD

AKD ↓ MKR ↓ FID ↓
Pose Flow 22.939 0.065 70.117
Pose Image 10.676 0.025 32.324
Pose VQ 19.194 0.052 56.285
Pose Coord 6.289 0.020 25.629

Table 5. User study results on Tai-
Chi-HD: user preferences in favour
of our approach.

Methods
Tai-Chi-HD

Test 1 Test 2

FOMM [27] 19.87% 25.29%
Ours 80.13% 74.71%

Fig. 7. Qualitative results in ablation study on PA dataset

is, source image and driving video are different. In particular, we give results
of video reconstruction in Fig. 10. Image frames reconstructed by Monkey-Net
suffer from the wrong motion compared against the ground truth. Furthermore,
FOMM and MRAA can capture the general motion information whilst ignoring
some body parts such as hand movements in the third column. In a word, our
reconstructed images demonstrate the superiority to the quality and detailed
texture, which highly supports the efficacy of our QS-Craft framework in ad-
dressing the cMHA task. The quantitative results on Tai-Chi-HD dataset are
shown in Tab. 1. We observe that our QS-Craft outperforms other methods in
all metrics, which indicated the superiority of our method.

User study. To complete our evaluation, a user study is conducted on Tai-
Chi-HD dataset. We provide 32 users with two test sets of randomly selected
animation results and ask them to select the most realistic and reasonable gen-
eration. Specifically, both test sets contain 25 different image animations, each
of which involves one source image, one driving video and two animated genera-
tions. Results in Tab. 5 show that our QS-Craft is preferred over the competitor.

4.3 Ablation Study

Generalizablity of Model. The first ablation study is to To evaluate the
generalizablity of our method. We download some online videos to be the tar-
get driving. These online videos have complete novel driving poses, which are
quite different from Tai-Chi-HD dataset. Qualitative results of this experiment
demonstrate our method generalizes well in Fig. 8. Even for such challenging
cases, Our method can still get good results, clearly beats MRAA.
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QS-Craft

MRAA

Source 
image

Driving 
video

QS-Craft

MRAA

Source 
image

Driving 
video

Fig. 8. Online driving videos with source Tai-Chi-HD images.

Fig. 9. Qualitative comparisons of image reconstruction with different conditions.

Variants of Pose Conditions. In our framework, we particularly use pose
coordinates, encoded by multilayer perceptrons, as conditional features. In or-
der to verify the effectiveness of this design (termed Pose Coord), we conduct
three variants: (1) Pose Flow : we follow [26] to build a motion net with five
convolution layers to encode flow information. Differently, the flow features are
further applied as a sequence in our transformer model, rather than warping
source features [26]. (2) Pose Image: Similar to other studies [22, 35, 17], we use
pose skeleton RGB images as condition information. Pose image features are ex-
tracted with five convolution layers. (3) Pose VQ : We use pose images to train
a VQ-VAE model [20] and then the quantized pose embeddings are applied as
conditions, which is the same as [12].

As illustrated in Fig. 9, the results achieved by our QS-Craft are apparently
more natural than other variants. Particularly, our results are authentic with
richer accurate motion information from the driving videos. Besides, quantitative
results in Tab. 4 also validate the same conclusion. For all the metrics, our Pose
Coord outperforms others apparently.
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Monkey-Net

QS-Craft

MRAA

FOMM

Ground-Truth Ground-Truth

Fig. 10. Reconstruction results on Tai-Chi-HD. The synthesized results are compared
among different methods.

Efficacy of the proposed modules. We further conduct studies to demon-
strate the effectiveness of our proposed Scrabble step and RoI weight in Fig. 7
and Tab. 2. As we can find in Fig. 7, model trained without Scrabble step fails
to generate reasonable target images with accurate pose information as it do
not take into account the strong connection between the source and target and
then accumulates prediction errors in inference. Additionally, model lack of RoI
weight pays less attention to foregrounds compared to QS-Craft so it is inclined
to generate blurred human motion or different clothes colors. And quantitative
results of our QS-Craft in Tab. 2 outperform other variants, which indicates the
superiority of our full model.

5 Conclusion

In this paper, we propose a novel method to animate objects conditioned on driv-
ing videos through three phases: Quantize, Scrabble and Craft. This transformer-
based model can effectively generate semantically consistent and realistic results
as we demonstrate above. Besides, especially compared to other methods, our
QS-Craft do not need the source given to be aligned with the first frame of the
driving video as the simple pose keypoints are enough for QS-Craft.

Limitation. Our QS-Craft also encounters some challenges, including smooth-
ness in video animation, since no temporal information are involved. Besides, we
utilize information in the source to generate the target which may cause failure
in some extreme cases. For example, when the person’s body is frontal in the
source and another person is back to camera in the driving, we cannot gener-
ate accurate faces according to the identity in the source. Hence involving more
information about the source person is pretty important.
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