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Abstract. From traditional handcrafted priors to learning-based neural
networks, image dehazing technique has gone through great development.
In this paper, we propose an end-to-end Semantic Guided Network (SG-
Net1) for directly restoring the haze-free images. Inspired by the high
similarity (mapping relationship) between the transmission maps and the
segmentation results of hazy images, we found that the semantic infor-
mation of the scene provides a strong natural prior for image restoration.
To guide the dehazing more effectively and systematically, we utilize the
information of semantic segmentation with three easily portable modes:
Semantic Fusion (SF), Semantic Attention (SA), and Semantic Loss (SL),
which compose our Semantic Guided (SG) mechanisms. By embedding
these SG mechanisms into existing dehazing networks, we construct the
SG-Net series: SG-AOD, SG-GCA, SG-FFA, and SG-AECR. The out-
performance on image dehazing of these SG networks is demonstrated
by the experiments in terms of both quantity and quality. It is worth
mentioning that SG-FFA achieves the state-of-the-art performance.

Keywords: Image dehazing · Semantic attention · Perception loss.

1 Introduction

As a representative task with lots of application value in low-level computer
vision, image dehazing has attracted the interest of many researchers in recent
years. Like other similar tasks such as image denoising, image deraining, etc.,
image dehazing can be summarized as an image restoration problem. The atmo-
sphere scattering model [17,19] is formulated as:

I(x) = J(x)t(x) + A(1− t(x)) (1)

where I(x) and J(x) are the degraded hazy image and the target haze-free
image respectively. A is the global atmosphere light, and t(x) is the medium
transmission map. Moreover, we have t(x) = e−βd(x) with β and d(x) being the
1 Codebase page: https://github.com/PaulTHong/Dehaze-SG-Net
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(a) Hazy image (b) GT (c) Transmission (d) Segmentation

Fig. 1. Visualization of a sample from NYUv2. We can observe the high similarity
(mapping relationship) between the transmission map and the segmentation result,
which inspires our exploration on semantic guidance for image dehazing.

atmosphere scattering parameter and the scene depth, respectively. Since the
transmission map t(x) and the atmosphere light A are often unknown in real
scenarios, image dehazing is an ill-posed problem. Therefore the core challenge
is to estimate t(x) and A properly, then we can restore the haze-free image as:

J(x) =
I(x)−A

t(x)
+ A (2)

We can divide dehazing methods into two classes, traditional prior-based
methods and learning-based methods. Classic traditional methods include DCP [11],
BCCR [18], CAP [35], etc. With the rise of deep learning, many neural network
methods are successively proposed, such as DehazeNet [3], MSCNN [21], AOD-
Net [13], GCA-Net [4], -FFANet [20], AECR-Net [31]. Driven by the supervised
data, these networks are well designed to fulfill the dehazing task, each with pros
and cons.

Fig. 1 displays one sample from NYUv2 [25]. As we can see, the transmission
map and the semantic segmentation [10] result of this hazy image are highly
related. From formula (1) we know that the transmission map t(x) is dependent
on the scene depth d(x), while one object in the segmentation result often has
similar d(x). The ideal estimated maps of haze-free images shall be smooth in
the regions of the same object and only discontinuous across the boundaries
of different objects. The semantic segmentation information of images seems to
provide a relatively accurate prior for this requirement, by building a mapping
relationship with the transmission map. Cheng et al. firstly clarified to use se-
mantic information to resolve image dehazing, but calling ordinary convolutional
feature maps as semantic module and color module [9] is far-fetched. Song et al.
proposed a multi-task network for semantic segmentation and dehazing [26],
while it is not very targeted and requires a higher resource consumption. Ren
et al. proposed to incorporate global semantic priors as input to regularize the
transmission maps for video dehazing [22], whose effectiveness is partly due to
the coherent similarity between video frames. This work enlightens us to migrate
to image dehazing and fulfill semantic guidance more abundantly. Zhang et al.
proposed a semantic-aware dehazing network with adaptive feature fusion [34],
but this approach requires the ground-truth semantic label.

2764



SG-Net: Semantic Guided Network for Image Dehazing 3

Raw
Input

(a) SF

Raw
Input

(b) SA

Dehazed

Haze
free

Semantic
Loss

(c) SL

Conv ReLU
Semantic

Segmentation
Network

Concat Element-wise
Product

Sigmoid

Fig. 2. Semantic Fusion (left), Semantic Attention (middle) and Semantic Loss (right).
Note that the module in the red dotted rectangle is shared in one network.

Therefore the key challenge is how to fit the mapping relationship from se-
mantic segmentation to haze transmission with accurately guided tools, rather
than negative interference. Apart from feature fusion, attention is considered to
be an effective mechanism for neural network learning to be in line with human
learning. The attention mechanism [32,28,29] has been researched in detail in the
design of neural networks, and is widely applied in Natural Language Processing
and Computer Vision. The FFA-Net proposed a feature attention module, which
combines the Channel Attention (CA, the gated fusion module of GCA-Net is
just a kind of CA) and Pixel Attention (PA) in channel-wise and pixel-wise fea-
tures, respectively. The excellent performance of FFA-Net inspires us the great
potential of attention for integrating semantic information. Furthermore, based
on the reconstruction loss between dehazed and haze-free images, we propose a
new kind of semantic perception loss to regularize their feature maps through
semantic segmentation, resulting in finer dehazed results.

Elegantly combining semantic information with attention mechanism, per-
ception loss, etc., we propose a comprehensive Semantic Guided Network, i.e.
SG-Net, from two perspectives: network structure and learning course. We mainly
adopt three operation modes to fulfill semantic guidance, whose schematics are
shown in Fig. 2. SF plus SA improves the network structure, while SL facilitates
the optimization process.

– Semantic Fusion (SF): Incorporate feature maps of semantic segmenta-
tion as new branches into current dehazing networks. Fusion makes shallow
features propagation more directional and effective.

– Semantic Attention (SA): Directly transfer the feature maps of semantic
segmentation as attention. Refine high-level features more specifically at the
pixel level.

– Semantic Loss (SL): Impose constraints on the perception loss between
the semantic segmentation feature maps of dehazed and haze-free images.
Optimize towards a more semantic-aware direction.
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In the experiments, we choose four representative networks as baselines, i.e.
AOD-Net, GCA-Net, FFA-Net and AECR-Net, respectively. For the first three
networks, the dehazing effect gradually increases in order, while the inference
time consumption also gradually increases. After adding our SG mechanisms,
we get a stronger SG-Net series, named SG-AOD, SG-GCA, SG-FFA and SG-
AECR, respectively.

The main contributions of our work are as follows:

– We propose a novel end-to-end network to restore haze-free images, outper-
forming existing methods both in quantity and quality, of which SG-FFA
gets the state-of-the-art performance.

– We elaborately design SF, SA, and SL to give full play to the guidance of
semantic information. With the detailed exploration of cooperative strate-
gies, these operation modes aggregate dehazing effects from different scales
and levels.

– Our simple but efficient SG mechanisms can be embedded into the existing
network series at will, improving accuracy while only adding a little extra
time consumption.

2 Related Work

2.1 Image Dehazing

As introduced in the previous section, image dehazing has evolved from tradi-
tional prior-based methods to learning-based methods. The dark channel prior
(DCP) [11] is a brilliant discovery. Moreover, the boundary constraint and con-
textual regularization (BCCR) [18] and color attenuation prior (CAP) [35] are
successively proposed.

As for neural network methods, they usually adopt an encoder-decoder struc-
ture to learn restoration. AOD-Net [13] directly generates the clean image through
a lightweight CNN, named All-in-One Dehazing Network. GCA-Net [4] means
Gated Context Aggregation Network, which adopts the smoothed dilation con-
volution [30] to help remove the gridding artifacts, and leverages a gated sub-
network to fuse the features from different levels. As for FFA-Net [20], i.e. Fea-
ture Fusion Attention Network, it combines Channel Attention with Pixel Atten-
tion mechanism. AECR-Net [31] proposes a contrastive regularization built upon
contrastive learning to exploit both the information of hazy images and clear im-
ages as negative and positive samples, respectively. And Chen et al. proposed
a Principled Synthetic-to-real Dehazing (PSD) framework [8], i.e. a synthetic
data pre-trained backbone, followed by unsupervised fine-tuning with real hazy
images. In addition to the synthetic hazy image pairs, Yang et al proposed a
disentangled dehazing network to generate realistic haze-free images only using
unpaired supervision [33], which leads to a new challenge. In this paper, we focus
on dehazing with supervised mode.
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2.2 Semantic Segmentation

Semantic segmentation aims to cluster image pixels of the same object class
with assigned labels. The general semantic segmentation architecture can be
considered as an encoder-decoder network. The encoder is usually a pre-trained
classification network, like ResNet [12]. And the task of the decoder is to se-
mantically project the discriminable features (lower resolution) learned by the
encoder into the pixel space (higher resolution) to obtain a dense classification.

The classic development path of semantic segmentation networks includes
FCN [16], U-Net [23], DeepLab series: v1 [5], v2 [6], v3 [7], RefineNet [15], and
MTI-Net [27] etc. We adopt RefineNet as the semantic segmentation branch
unless otherwise specified.

3 Proposed Method

For dehazing task, the hazy image and the haze-free image are usually denoted
as I and J . Denoting the whole dehazing network as D, then in general it is
optimized towards

min L (D(I), J) (3)

where L is the defined restoration loss function.
Our semantic guidance works on network D in the form of SF and SA, and

works on loss L in the form of SL, respectively. Combining the power of design-
ing network constructures and loss functions, our SG-Net series takes advantage
of semantic information to perform well in image dehazing.

3.1 Semantic Fusion and Semantic Attention

To illustrate SF and SA in detail, we can refer to Fig. 2. Feed the raw hazy
input to the pretrained semantic segmentation network (denoted as S), then
it exports the semantic feature maps (S(·) stands for the output logits of the
last layer). Note that in one whole network, all the SG branches share the same
S, therefore we just need to generate the semantic feature maps once and then
impose different operations on them.

Denote the convolution layer, ReLU activation function, Sigmoid activation
function as Conv, δ, σ, and denote the operation of concatenation, element-wise
sum, element-wise product as ∪, ⊕, ⊗, respectively. Besides, denote the middle
feature maps from the baseline network branch as F (size C ×H ×W ), then we
can fulfill SF and SA function by operation ∪ and ⊗, as shown below, where SF
and SA are generated feature maps from the corresponding SG mechanisms.

Semantic Fusion
SF = δ(Conv(S(I))) (4)

F̌ = F ∪ SF (5)
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Let the size of F and SF be C1×H ×W and C2×H ×W respectively, then the
size of F̌ is (C1 + C2) ×H ×W . If the size H ×W of F and SF are different,
we only need to add an upsampling or downsampling in the SF branch, so as
the SA branch. Removing all other elements and only leaving the concatenation
will degenerate SF into an ordinary skip-layer connection.

Semantic Attention
SA = σ(Conv(δ(Conv(S(I))))) (6)

F̃ = F ⊗ SA (7)

The size of SA is 1×H ×W . Note that the size of Channel Attention (CA) and
Pixel Attention (PA) in FFA-Net [20] are C×1×1 and 1×H×W , respectively.
And the formula of PA can be expressed as:

PA = σ(Conv(δ(Conv(F )))) (8)

F̃ = F ⊗ PA (9)

The key difference between SA and PA is the source of attention. Generating
attention through the pretrained semantic segmentation network fully excavates
the semantic prior information, leading the dehazing networks to learn the trans-
mission map more specifically. It can be seen from the visualization analysis in
Section 4.5 that after a relatively deep stage of feature propagation, the PA only
focuses on the local edges of objects, while our SA still has an accurate grasp of
the global contour.

As for the general usage strategy of SG mechanisms, we recommend adopt-
ing SF for shallow feature maps and SA for deep feature maps. SF
and SA could be considered as guiding from channel-wise (coarse) and pixel-
wise (fine) levels, respectively. Since the S(I) is more matched with shallow
F , so concatenating them with high-level deep F at the back layer is not very
appropriate. In that case, the element-wise product provides accurate and effi-
cient semantic guidance at pixel-level to make up for deep F . In addition, we
recommend adopting SF at a relatively low-resolution scale if there is a
downsampling operation in the networks. We infer that a low-resolution scale
could alleviate the mismatches between SF and F , especially for the object edges.
More specifically quantified, we recommend placing one or two SF in the front
and center (denoting the number of whole layers as n, then we may consider the
layer of [n2 ], where [] is a rounding operation), and placing one SA in the back
(e.g. n − 3). A more detailed exploration on the design of SG mechanisms can
refer to Section 4.4, including multi-branch strategy, fusion position, etc.

3.2 Semantic Loss

For the common reconstruction loss of image dehazing, we adopt residual learn-
ing rather than directly learning the haze-free images since the former learning
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Fig. 3. SG-AOD network architecture.

method is more effective. Hence, the restoration loss function is calculated be-
tween the network output D(I) and residual J − I.

r = J − I
r̂ = D(I)

Lrec = ||r̂ − r||1
(10)

where || · ||1 is the L1 norm. Through the experiments, we discover that L1
loss performs better than L2 loss, especially when comparing SSIM (Structural
Similarity) metrics.

What’s more, we propose a new kind of semantic perception loss. To strengthen
the semantic relationship between haze-free and dehazed images, we apply a reg-
ularization on their feature maps through the pretrained semantic segmentation
network, i.e. S(D(I)) and S(J):

Lsem = ||S(D(I))− S(J)||1 (11)

where S(·) could be considered to be substituted by features Si(·) from different
stages i.

Then, we can combine the reconstruction loss and semantic loss to get our
final loss function as

L = Lrec + λsemLsem (12)

where λsem is an adjustable positive weight. Note that the AECR-Net has also
adopted an extra contrastive loss Lcon [31], thus our SG-AECR loss composes
of three parts:

L = Lrec + λconLcon + λsemLsem (13)

where λcon is also a positive weight. The experiments indicate that our semantic
loss brings a significant promotion, especially on SSIM metrics. For more detailed
results, please refer to Section 4.4.
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Fig. 4. SG-GCA network architecture.

3.3 SG-Net Series

Firstly, we take AOD-Net as an example to give a detailed introduction of SG-
AOD, as shown in Fig. 3. Then we can easily master the other members of
SG-Net series: SG-GCA, SG-FFA and SG-AECR. They are shown in Fig. 4 and
Appendix, respectively. Each of them can be considered as a combination of the
baseline network and the SG module.

SG-AOD Embedding our proposed SG module into the baseline AOD-Net, then
the SG-AOD network architecture can be seen in Fig. 3 (SL is not presented, the
same as below). Dividing this network into two parts, the lower part is the base-
line AOD-Net (grey background), and the upper part is the SG module (green
background). Focusing on the SG module, the red cube represents the seman-
tic segmentation network. The SG module has two different kinds of branches,
which exactly correspond to the two different semantic guided modes: 2 SFs and
1 SA, as shown in the blue and green dotted rectangle, respectively.

SG-GCA Speaking of the SG-GCA, the baseline GCA-Net adopts the smoothed
dilated convolution and a downsampling-upsampling framework. On the basis
of it, we add an SF branch and an SA branch at the downsampling scale as the
SG module, then SG-GCA is constructed.

SG-FFA As for the SG-FFA, the baseline FFA-Net fully adopts the CA and PA
modules. In addition to the final CA and PA, every block in the group structure
contains a pair of CA and PA (3 groups contain 19 blocks). We add 2 SF branches
in front of the G-1 and G-2 modules. Besides, we update the last PA and the
PA of G-3 to SA, as indicated by the red dotted line.

SG-AECR The baseline AECR-Net consists of autoencoder-like downsampling-
upsampling framework and contrastive regularization, and the former includes
6 FA blocks, 1 DFE module, and 2 adaptive mixup operations. We add an SF
branch after the 3rd FA block and add an SA branch after the DFE module.
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4 Experiments

4.1 Dataset and Evaluation Metrics

The image dehazing benchmark universally adopted nowadays is RESIDE [14],
which contains synthetic hazy images in both indoor and outdoor scenarios. We
adopt ITS (Indoor Training Set, generated from NYUv2 [25] which contains the
scene depth d(x)) and OTS (Outdoor Training Set) for training respectively, and
SOTS (Synthetic Objective Test Set) for test. ITS contains 1399 clean images and
13990 (1399 × 10) synthetic hazy images, and OTS contains 2061 clean images
and 72135 (2061× 35) synthetic hazy images. SOTS contains 500 indoor images
and 500 outdoor images. The synthesis method is setting different atmosphere
light A and scattering parameter β within a certain range.

To further evaluate the robustness of dehazing models in the real-world scene,
we also adopt two challenging real-world datasets: Dense-Haze [1] and NH-HAZE
(Non-Homogeneous HAZE) [2]. The haze of Dense-Haze is very heavy and the
haze of NH-HAZE is not uniformly distributed. These two datasets both contain
55 1200× 1600 size images, consisting of 45 training images, 5 validation images
and 5 test images. Following the division of AECR-Net, the size of training set
and test set are 40 and 5 for Dense-Haze, while 45 and 5 for NH-HAZE.

As for the evaluation metrics, we adopt the common PSNR (Peak Signal to
Noise Ratio) and SSIM (Structural Similarity).

4.2 Implementation Details

We finish the experiments on NVIDIA GPU (Tesla V100) by PyTorch frame-
work. The configuration of our SG-Net series that does not appear in the detailed
description (please refer to the Appendix) is just the same as the baseline net-
works. All the SG-Nets adopt Adam as optimizer with momentum β1 = 0.9, β2 =
0.999. Unless otherwise specified, our utilized semantic segmentation model is
RefineNet: RF-LW-ResNet-50. As for the loss weight λsem, we adjust it so that
the reconstruction loss and weighted semantic loss are about at the same level.

4.3 Quantitative and Qualitative Evaluation

As Table 1 shows, we choose the classic DCP method and four representative
networks, i.e. AOD, GCA, FFA, AECR, to make comparisons. For a certain
type of network, from the baseline network to our SG-Net, PSNR and SSIM
both gradually get varying degrees of improvement, which strongly demonstrates
the effectiveness of our proposed SG mechanisms. During our research, the in-
vestigated state-of-the-art methods are FFA-Net on RESIDE, and AECE-Net
on Dense-Haze and NH-HAZE, respectively. Our SG-FFA still gets some break-
throughs to reach a new state-of-the-art performance. After increasing the train-
ing batch from 2 to 5 with the same iteration, FFA gets further promotion on
(PSNR, SSIM) for indoor SOTS: (38.61, 0.9913) of FFA-Net and (39.18, 0.9932)
of SG-FFA. It should be noted that the performance on dataset ITS is almost
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Table 1. Quantitative comparisons on different datasets for different dehazing meth-
ods.

Methods Indoor SOTS Outdoor SOTS Dense-Haze NH-HAZE

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DCP 16.62 0.8179 19.13 0.8148 - - - -

AOD-Net 21.30 0.8251 25.78 0.9293 - - - -
SG-AOD 23.33 0.8707 26.18 0.9362 - - - -

GCA-Net 27.79 0.9452 28.39 0.9500 - - - -
SG-GCA 29.78 0.9621 29.15 0.9593 - - - -

FFA-Net 36.39 0.9886 31.69 0.9800 - - - -
SG-FFA 37.56 0.9915 32.11 0.9791 - - - -

AECR-Net 33.34 0.9824 - - 14.43 0.4450 18.50 0.6562
SG-AECR 33.67 0.9832 - - 14.91 0.4641 18.68 0.6609

the same as the reported performance in the original paper of FFA-Net, but the
performance on OTS drops a lot. So we have to take the run result as the real
baseline and then adopt SG modules on it for a fair comparison. Similarly, with
the open-source code from the authors of AECR-Net [31], we are still not able
to reach the best level reported in the paper. So we need to reproduce the code
as a baseline to make a comparison, and would not claim the outperformance
as new state-of-the-art performance. Our SG-AECR beats the AECR-Net on
all three datasets, which once again reveals the effectiveness of semantic guid-
ance for image dehazing. Dense-Haze and NH-HAZE are far more challenging
than RESIDE, thus common networks such as AOD-Net behave not well on
them. Thanks to the power of contrastive regularization, AECR-Net could get
relatively better results.

Furthermore, we display the qualitative comparisons for different dehazing
methods here. In Fig. 5, the top 2 rows correspond to the ITS-trained models,
while the bottom 4 rows correspond to the OTS-trained models. We can observe
that DCP suffers from severe color distortion because of their underlying prior
assumptions. AOD-Net is often unable to entirely remove the haze and tends
to output low-brightness images. GCA-Net is unsatisfactory at processing high-
frequency detail such as textures and edges. Compared to the baseline series,
our SG-Net series is superior in detail maintenance and color fidelity, such as
the sky region. Concentrating on the last pumpkin image, our SG-FFA has the
most obvious dehazing effect, especially on the ground surface. And zooming
in on the red wall area of the first image, the white haze of SG-FFA is the
weakest, close to nothing. Some visualization results of SG-AECR are shown in
Fig. 6. We can observe the superiority of our SG-AECR over AECR-Net, for
example, the string ‘OUTDOOR’ on the ping pong table in the 3th column of
images. More quantitative and qualitative results (including training curve, etc.)
are demonstrated in the supplementary material.
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Hazy DCP AOD SG-AOD GCA SG-GCA FFA SG-FFA GT

Fig. 5. Qualitative comparisons on SOTS (the top 2 rows for indoor and the middle
2 rows for outdoor) and real-world hazy images (the bottom 2 rows, without corre-
sponding ground truth images) for different dehazing methods. Zoom in on the green
rectangle area for more details.

Hazy

AECR-Net

SG-AECR

GT

Fig. 6. Qualitative comparisons on indoor SOTS, Dense-Haze and NH-HAZE (corre-
sponding in column order, two columns each) for our SG-AECR. Zoom in on the green
rectangle area for more details.

4.4 Ablation Study

To further analyze the function of SG mechanisms, we make a comprehensive
ablation study as shown in Table 2. Without any mechanism corresponds to
the baseline models, and including SA module means replacing PA with SA.
Taking SG-AOD and SG-GCA on ITS as examples, SA and SF both bring
promotion and the appropriate combination of them with SL achieves better
performance. From PA to SA, the more specific guidance of semantic feature
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Table 2. Ablation analysis with different SG mechanisms on indoor SOTS.

SA X X X
SF X X X
SL X

SG-AOD PSNR 21.30 22.07 23.14 23.24 23.33
SSIM 0.8251 0.8360 0.8432 0.8468 0.8707

SG-GCA PSNR 27.79 28.28 28.98 29.06 29.78
SSIM 0.9452 0.9475 0.9493 0.9531 0.9621

Table 3. Ablation analysis of different SF positions on indoor SOTS for SG-AOD.

SF Position none c1+r1 c1+r3 cr+r3+r7 c2+r3+r7 r3+r7 r1+r3 r1+r3+r5

PSNR 21.30 23.23 23.14 22.93 22.60 22.40 23.02 22.27
SSIM 0.8251 0.8585 0.8432 0.8322 0.8403 0.8260 0.8312 0.8271

maps and their superiority as attention are fully embodied. Moreover, the flexible
transplantation of SG mechanisms is worth mentioning.

And we briefly introduce the design details of SG mechanisms here. For
SA, we increase the convolutional layer from 1 to 2 (with a 0.81 increase of
PNSR in a set of AOD-ITS comparative experiments, abbreviated as PSNR
↑ 0.81, the same as below). For SF, if a multi-branch strategy is adopted, we
add independent SF branches instead of sharing the same SF parameters (PSNR
↑ 0.26). These modifications bring positive effects because the fitting capacity of
the network has been further strengthened. Besides, the concatenation position
of SF is carefully explored. For SG-AOD, adding another SF branch after the
7th ResBlock brings a negative effect (PSNR ↓ 0.21). For SG-GCA, embedding
SF branch before downsampling does not perform better than embedding after
downsampling (PSNR ↓ 0.39). These phenomena reflect that the semantic fusion
is more suitable for shallow feature maps and relatively low-resolution scales,
which is consistent with our inference. Denoting the layers of SG-AOD as c1-c2
(convolution layer), r1-r7 (residual layer) in order, a more detailed exploration
is shown in Table 3 (without SA and SL). We can see the superiority of front c1
over back r7, etc.

On the other hand, we have mentioned that we set the SL weight λsem to
satisfy that the reconstruction loss and weighted semantic loss are about at
the same order of magnitude. Therefore, the network will take into account the
guidance of these loss functions with nearly equal importance when training.
Following this simple and effective selection principle, we have already achieved
good results. As for different semantic weights λsem, we make a simple study
on ITS for SG-AOD. From Table 4 we can see that our semantic loss has a
significant promotion on dehazing effect, especially on SSIM metrics.
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Table 4. Ablation analysis of different SL weights on indoor SOTS for SG-AOD.

SL Weight 0 0.0005 0.001 0.003 0.005

PSNR 23.24 22.82 22.81 23.33 23.20
SSIM 0.8468 0.8540 0.8639 0.8707 0.8747

no-SF-e no-SF-c PA-e PA-c

SF-e SF-c SA-e SA-c

SL-SF-e SL-SF-c SL-SA-e SL-SA-c

Fig. 7. Visual comparisons on middle feature maps between AOD-Net (top) and our
SG-AOD (middle without SL and bottom with SL). The feature map of SF is from the
first convolution module after SF module, and PA is equivalent to no-SA. For a clearer
observation, e and c mean histogram equalization and colormap, respectively.

4.5 Visualization Analysis

As Fig. 7 shows, still taking the demo image in Fig. 1 as an example, we display
the middle feature maps from the same position for comparison, with or without
semantic guidance (results of SG-GCA are in the Appendix). The feature maps
with SG mechanisms contain more details and fit the contour of objects better,
thus generating more smooth and accurate dehazed results. We have also tried to
implement a visual explanation with Grad-CAM [24], which uses the Gradient-
weighted Class Activation Mapping to produce a coarse localization map to
highlight the important regions. Yet the results is not as ideal as in Fig. 7. We
infer that the dehazing task is not like a classification task which only focuses
on partial saliency regions.

4.6 Segmentation Model

We mainly adopt the RF-LW-ResNet-50 trained on NYUv2 dataset as the se-
mantic segmentation model. On ITS, from NYU-Res50 to the relatively stronger
NYU-Res152, there is not much difference in the dehazing metrics. We infer that
the improved dehazing effect is mainly due to our proposed SG mechanisms, that
is, how to better impose semantic guidance, while the impact of segmentation
models is relatively slight. Though the images of OTS do not seem to be very
consistent with NYUv2-trained segmentation model, their segmentation results
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Table 5. Time (training and inference) and parameter analysis.

Methods AOD GCA FFA AECR

Base SG Base SG Base SG Base SG

Train (h) 3.2 4.1 22.6 25.3 193.4 181.2 40.1 47.2
Infer (s) 0.16 0.19 0.30 0.32 0.47 0.49 0.39 0.46

#Params (M) 0.62 0.66 0.71 0.72 4.46 4.49 2.61 3.93

still play a good role in the SG-Nets. Moreover, substituting PASCAL_VOC-
trained model (21 classes) for NYUv2-trained model partially improves the de-
hazing metrics on OTS, because PASCAL_VOC is more consistent with outdoor
images. For more details on the exploration of segmentation models such as the
superiority of soft logits over hard outputs, please refer to the Appendix.

4.7 Efficiency Analysis

Finally, we give simple comparisons of training time (on ITS), inference time
(per image on average, on SOTS), and parameters between our SG-Nets and the
baseline series, as shown in Table 5. Note that the time consumption corresponds
to 1 GPU, and the parameters of pretrained semantic segmentation model are not
counted. We can see that the efficient SG mechanism does not bring a lot of extra
time and space consumption, which are mainly dominated by the segmentation
model. Thus pre-storing the semantic segmentation feature maps of the training
data can save the training time if needed. And it is worth noting that the training
time of SG-FFA is less than FFA-Net. This is due to that we replace many SAs
with PAs, while the input channel numbers of SA’s 2 layers are less than PA’s,
[40, 5] versus [64, 8].

5 Conclusion

In this paper, we have proposed an end-to-end Semantic Guided Network for
image dehazing. Semantic guidance is fulfilled with three simple yet effective
designs: Semantic Fusion, Semantic Attention and Semantic Loss. The outper-
formance over existing methods is demonstrated both in quantity and quality.
And our SG mechanisms could be flexibly embedded into a certain network so
that a better tradeoff between accuracy and speed would be sought. In future
work, it is worth studying to further explore the explanation of semantic mech-
anism (similar function of field depth or edge contour) and extend it to other
low-level vision tasks.
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