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Abstract. Image-to-image translation is a classic image generation task
that attempts to translate an image from the source domain to an analo-
gous image in the target domain. Recent advances in deep generative net-
works have shown remarkable capabilities in translating images among
different domains. Most of these models either require pixel-level (with
paired input and output images) or domain-level (with image domain
labels) supervision to help the translation task. However, there are prac-
tical situations where the required supervisory information is difficult to
collect and one would need to perform truly unsupervised image trans-
lation on a large number of images without paired image information or
domain labels. In this paper, we present a truly unsupervised image-to-
image translation model that performs the image translation task with-
out any extra supervision. The crux of our model is an embedding net-
work that extracts the domain and style information of the input style
(or reference) image with contrastive representation learning and serves
the translation module that actually carries out the translation task.
The embedding network and the translation module can be integrated
together for training and benefit from each other. Extensive experimental
evaluation has been performed on various datasets concerning both cross-
domain and multi-domain translation. The results demonstrate that our
model outperforms the best truly unsupervised image-to-image transla-
tion model in the literature. In addition, our model can be easily adapted
to take advantage of available domain labels to achieve a performance
comparable to the best supervised image translation methods when all
domain labels are known or a superior performance when only some do-
main labels are known.

1 Introduction

Image-to-image translation (I2I) is a classic image generation task [25] that at-
tempts to translate an image from the source domain to an analogous image
in the target domain while preserving the content representations. I2I has at-
tracted extensive attention nowadays due to its wide range of applications in
many computer vision and image processing tasks such as image synthesis, im-
age style transfer, human pose estimation, etc. Thanks to the rapid development
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Fig. 1. Different levels of supervision. (a) Pixel-level supervision consists of training
examples {x(i)

A , x
(i)
B }Ni=1, where x

(i)
A and x

(i)
B have matching content. (b) Domain-level

supervision consists of a source set XA = {x(i)
A }Ni=1 of images from domain A and a

target set XB = {x(j)
B }Nj=1 of images from domain B, with no information provided

as to which x
(j)
B matches each x

(i)
A . The multi-domain translation scenario is similar.

(c) A truly unsupervised instance simply consists of a set of images X where neither
matching image pairs nor domain information are provided.

of deep neural networks especially generative adversarial networks, image-to-
image translation has achieved remarkable progress in the past few years. Isola
et al . [13] first used a conditional Generative Adversarial Network (cGAN) [23]
to perform image-to-image translation with pixel-level supervised input-output
image pairs. But the applicability of this method seems to be restricted in many
real situations, including image synthesis and style transfer, where such match-
ing image pairs are not available. Therefor, some unsupervised image-to-image
translation models such as CycleGAN [35] and UNIT [19] have been proposed
to deal with image translation between two domains (i.e., cross-domain image
translation) without pixel-level supervision. In addition to cross-domain image
translation, many multi-domain image translation models [12, 5, 20, 28, 18, 31]
have been developed in the last few years. Though these models are generally
called unsupervised in contrast to the pixel-level supervised methods [13, 27],
they are actually not truly unsupervised, since they implicitly assume that the
domain labels of the training images are given a priori. However, this assumption
may be hard to satisfy in practice when the number of domains and samples in-
creases. In particular, when we are given a large number of images from unknown
sources (FFHQ [15]), it might be expensive and difficult to figure out the domain
of each image, especially because some of the domain boundaries may be vague.
So, the truly unsupervised image-to-image translation problem (where neither
pixel-level paired images nor domain labels are available) has been introduced by
Kyungjune et al . [2] recently. As described in [2], it can help reduce the effort of
data annotation for model training and provide robustness against noisy labels
produced by a manual labeling process. More importantly, it may also serve as a
strong baseline for developing semi-supervised image translation models. Here,
we are given two images xA (the source or content image) and xB (the reference
or style image) and our goal is to translate xA to an analogous image in the
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same domain as xB while preserving its original content. See Fig. 1 for a more
detailed illustration of three levels of supervision in image translation. Though a
solution to this problem was proposed in [2], it suffers from some serious issues
such as the content loss issue discussed in COCO-FUNIT [28]. Since there is no
supervision, it is difficult to control what parts of the input style image should be
incorporated or transferred into the input content image. Ideally, the transferred
information should only include style, such as fur texture and color in animal
images. In reality, other types of information such as the pose of objects often get
in as well. Hence, how to construct a proper embedding of the reference image is
a critical step in truly unsupervised image translation. COCO-FUNIT [28] tried
to reduce the style embedding (or code) variance of different input image crops
to tackle this problem. More specifically, it utilizes the content embedding of
the input content image to normalize the style embedding of the input style im-
age, which helps to improve the translation performance but cannot completely
eliminate the confusions between content and style representations.

In this paper, we extend the work in [2] and present a general Contrastive
representation learning based truly UNsupervised Image-to-image Translation
model (CUNIT). Our overall method proceeds in three steps. First, we cluster
images into (pseudo) domains to create pseudo domain labels for each image.
Second, we extract the unique style embedding of the input style image. Finally,
we learn to translate images between pseudo domains with the guide of style em-
beddings and pseudo domain labels. The first two steps are realized by using a
style embedding network with two branches (or modules) that output the pseudo
domain label and style embedding respectively. Here, pseudo domain labels are
generated by a differentiable clustering method based on mutual information
maximization [14]. To create the style embedding, a Siamese network architec-
ture [4, 7], which is flexible with batch size and does not require negative samples,
is adopted to tackle the content-loss problem discussed in COCO-FUNIT [28].
We try to ensure that the style embedding of an input image is close to those
of its augmented versions (e.g., images obtained by RandomResizedCrop [3])
but far from those of other images by using a normalized L2 distance loss. The
clustering and style embedding modules share a common encoder in the style em-
bedding network so both can benefit from each other. To realize the last step of
our method, a cGAN is adopted to perform reference-guided image translation.
After integrating the style embedding network and cGAN together, our model is
able to separate image domains and perform image translation smoothly under
a truly unsupervised setting.

Extensive experimental evaluation has been performed on various datasets
concerning both cross-domain and multi-domain scenarios. The results demon-
strate that our model outperforms the best truly unsupervised I2I model in the
literature and is comparable or even superior to the supervised I2I models when
the domain labels are fully or partially provided. The major contributions of
our work include: (1) We extend the work in [2] and present a general model
for truly unsupervised image-to-image translation without requiring any explicit
supervision (at neither the pixel-level nor domain-level). (2) We adopt a new
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contrastive representation learning architecture to control the style embedding
so as to help deal with the style code variance problem [28] and extract better
style features. We also introduce a new reconstruction loss to better preserve con-
tent features. The superior performance of our model in extensive experiments
over the state-of-the-art (SOTA) image-to-image translation methods demon-
strate the effectiveness of both above techniques. (3) Our model could easily
be adapted to take advantage of available domain labels to perform comparably
to the best supervised image translation methods when all domain labels are
known or significantly better when only some domain labels are known.

2 Related Work

Generative adversarial networks. Image generation and synthesis have
been widely investigated in recent years. Different from auto-encoder architec-
tures like VAE [17], generative adversarial networks (GANs) [6] play a zero-sum
game and is composed of two parts: a generator G and a discriminator D. The
generator G is trained to generate samples that are closed to real data from
a random variable and D is trained to distinguish whether a sample is gener-
ated by G or from real data. Mehdi and Simon proposed conditional GANs [23]
(cGANs) to generate data based on a particular condition. To address the sta-
bility issues in GANs, Wasserstein-GAN (WGAN) [1] was proposed to optimize
an approximation of the Wasserstein distance. To further improve the vanish-
ing and exploding gradient problems of WGAN, Gulrajani et al . [8] proposed
WGAN-GP that uses gradient penalty instead of the weight clipping to deal
with the Lipschitz constraint in WGAN.
Pixel-level supervised I2I. Isola et al . first proposed Pix2Pix [13] that utilizes
a cGAN to do the image translation based on pixel-level supervised input-output
image pairs. Following this seminal work, a sequence of I2I models have shown
remarkable performance. For example, Wang et al . proposed pix2pixHD [32]
to learn a mapping that converts a semantic image to a high-resolution photo-
realistic image. Park et al . proposed SPADE [27] to further improve pix2pixHD
on handling diverse input labels and delivering better output quality.
Domain-level supervised and truly unsupervised I2I. Apart from the
above pixel-level supervised I2I, many unsupervised I2I methods have been in-
troduced in the past few years. These so-called unsupervised methods do not
need matching image pairs but still explicitly require the image domain infor-
mation. Here, we call them domain-level supervised methods as opposed to our
truly unsupervised setting. Zhu et al . proposed CycleGAN [35] to deal with
cross-domain I2I with a cycle consistency loss. UNIT [19] tries to learn a one-
to-one mapping between two visual domains based on a shared latent space
assumption. MUNIT [12] further learns a many-to-many mapping between two
visual domains. In MSGAN [21], a simple yet effective regularization term was
proposed to address the mode collapse issue in cGANs that improved image di-
versity without loss of quality. Inspired by few-shot learning, Liu et al . proposed
FUNIT [20] to learn a style-guided image translation model that can generate
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translations in unseen domains. COCO-FUNIT [28] further improved FUNIT
with a content-conditioned style encoding scheme for style code computation.
Note that these methods all require image domain labels for training. Wang et
al . [33] tried to utilize the noise-tolerant pseudo labeling scheme to reduce the
labeling cost at the training process. Recently, Kyungjune et al . introduced the
first method TUNIT [2] for performing the truly unsupervised I2I task.
Contrastive representation learning and unsupervised clustering. Un-
supervised representation learning aims to extract informative features for down-
stream tasks without any human supervision. Self-supervised learning repre-
sented by contrastive learning has demonstrated its effectiveness and remark-
able performance in unsupervised representation learning recently. Different
from generative-based models such as the auto-encoder, contrastive learning is
a discriminative-based scheme whose core idea is to attract different augmented
views of the same image (positive pairs) and repulse augmented views of dif-
ferent images (negative pairs). Based on contrastive learning, SimCLR [3] used
very large batch sizes and MoCo [9] built a dynamic dictionary with a queue and
a moving-averaged encoder to deal with the memory bank problem [34]. They
both require high-quality negative samples to achieve a good performance. In-
terestingly, subsequent work BYOL [7] suggested that negative samples are not
necessary for contrastive learning, and Simsiam [4] claimed that simple Siamese
networks can learn informative representations without using negative sample
pairs, large batches or momentum encoders. These results have become the new
SOTA self-supervised visual representation learning methods. On the other hand,
IIC [14] utilized mutual information maximization in an unsupervised manner
so that the model clusters images while assigning the images to clusters evenly.
In this paper, we integrate both the unsupervised clustering and representation
learning methods to deal with the truly unsupervised I2I downstream task.

3 Method

3.1 Overview

Let X be a dataset consisting of images from K(≥ 2) different domains. Suppose
that K is unknown and for each image xi ∈ X, its domain label yi is also
unknown. We use K̂ to denote the estimated value of K and treat K̂ as a
hyper-parameter in training. The goal of (truly) unsupervised image-to-image
translation model is to translate a ‘content’ image xA from some domain A to
an analogous image of some domain B as specified by a reference ‘style’ image
xB (i.e., the domain that contains xB), while preserving the content information
of xA. Our model consists of three components: a style embedding network, a
conditional generator and a multi-task domain-specific discriminator (as shown
in Fig. 2). The style embedding network is the key component that outputs the
pseudo domain label yB and style embedding sB of the input reference image xB .
Then style embedding sB is fed into the conditional generator as a ‘condition’ to
guide the translation. The pseudo domain label yB is fed into the domain-specific
discriminator that forces the generator to generate an image with the style (e.g .

2650
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Fig. 2. An overview of the proposed CUNIT framework. The style embedding network
E takes a reference image xB as the input and estimates its pseudo domain label yB
and style embedding sB . The pseudo domain label yB is then used to train the domain-
specific discriminator D. The style embedding sB and the gradient feedback from D
help the generator network G to translate the input content image xA to the analogous
image xAB in the domain of xB while preserving the content information of xA.

fur texture and color in animal images) of xB and content (e.g . object pose)
of xA. In general, we regard the features of an image that are not affected by
various augmentation operations (such as cropping and affine transformations)
as its styles while the others as its content. This is reflected in the choice of the
loss function for training the contrastive style embedding module Es (described
below).

3.2 The style embedding network

The style embedding network E consists of two branches (or modules) Ey and
Es that output the pseudo domain label y and style embedding s respectively.
Unsupervised domain estimation Ey. The domain information, necessary
for the subsequent domain-specific discriminator in our model, is unfortunately
not available during training. To resolve this issue, we employ an unsupervised
clustering approach to produce pseudo domain labels. Many methods have been
proposed to deal with unsupervised image clustering with impressive perfor-
mance in the past few years. Here, we adopt a differentiable clustering method
called IIC [14] that maximizes the mutual information (MI) between feature
vectors of two images. Given an image x, define p = Ey(x) as the output of Ey,
where p represents the probability vector of x over K̂ domains. Similarly, we
define x+ and p+ as the augmented versions of x and p. The mutual informa-
tion between p and p+ is thus I(p, p+) = H(p) − H(p|p+). The value I(p, p+)
reaches its optimum when the entropy H(p) is maximized and the conditional
entropy H(p|p+) is minimized. By maximizing the mutual information, Ey is
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encouraged to distribute all images as evenly as possible over K̂ domains while
assigning paired images (x, x+) to the same domain. The module Ey is trained
via the following objective function:

LMI = −I(p,p+) = −I(P ) = −
K̂∑
i=1

K̂∑
j=1

Pij ln
Pij

PiPj
,

s.t. P = Ex+∼T (x)|x∼pdata(x)
[Ey(x) · Ey(x

+)T ]

(1)

where T is a composition of random augmentations such as random cropping
and affine transformations. Pi = P (p = i) denotes the K̂-dimensional marginal
probability vector, and Pij = P (p = i,p+ = j) denotes the joint probability.
(See [14] for more details of this objective function.) Here, the pseudo domain
label y = argmax(Ey(x)) is generated as a one-hot vector to be fed to the
domain-specific discriminator.
Contrastive style embedding Es. To perform reference-guided image
translation, a style embedding of the reference image is required for the genera-
tor. Inspired by [7, 4], we use contrastive learning based on a Siamese architecture
to learn the style embedding. As mentioned in the last paragraph of section 2,
such a model can learn informative representations without using negative sam-
ple pairs, large batches or momentum encoders. The Siamese architecture here
is composed of an encoder f , a projector g, and a predictor q. During contrastive
learning, the reference image xB is randomly augmented by two transformations
t and t′ sampled from a transformation family T (as shown in Fig. 2) to generate
two views vB and v′B . The transformation family includes widely used augmen-
tations [3], such as RandomResizedCrop, RandomFlip, GaussianBlur, etc. The
views vB and v′B are encoded by the encoder f to obtain the style embeddings
sB and s′B . Then, the projector g and predictor q are applied to sB or s′B sequen-
tially. For these two augmented views, denote the output of the projector g as
zB ≜ f(sB) and z′B ≜ f(s′B) and the output of q as pB ≜ q(zB) and p′B ≜ q(z′B).
We force pB to be similar to z′B and p′B to be similar to zB by minimizing the
symmetric loss:

LE
co =

1

2
||p̃B − z̃′B ||

2
2 +

1

2
||p̃′B − z̃B ||22 (2)

where ·̃ ≜ ·
||·||2 and ||·||2 denotes the l2 norm. Here, zB and z′B are detached from

the computational graph before calculating the loss such that the gradient would
not back-propagate through zB and z′B . In our experiments, the contrastive
style embedding module significantly improves the quality of unsupervised image
clustering compared to using only IIC [14] due to the shared encoder f between
the two modules. A similar phenomenon has also been observed in [2].

3.3 The image translation module

As shown in Fig. 2, the image translation module is in fact a conditional gener-
ative adversarial network (cGAN) [23]. It takes both the original source domain

2652



8 Z. Hong et al.

image xA and the style embedding sB of the reference image xB as the input to
generate xAB that should have the same target domain label yB as xB . The style
embedding sB is fed to the decoding layers of G using a multi-scale AdaIN [11]
technique. The discriminator D is a multi-task domain-specific discriminator [22]
and it takes the pseudo domain label yB as the input to guide the generator G
to produce more realistic images. To train the entire image translation model,
three loss functions are adopted. (a) The GAN loss is used to produce more re-
alistic images in the target domain. (b) A style contrastive loss is used to further
improve the quality of the generated images and prevent style corruption. (c)
An image reconstruction loss is used to help the generated images preserve more
content information (i.e., domain-invariant features).
GAN loss. Given the content image xA, reference image xB , pseudo domain
label yB , and style embedding sB , the GAN is trained with the following objec-
tive function:

Ladv = ExB∼pdata(x)[logDyB
(xB)] + ExA,xB∼pdata(x)[log(1−DyB

(G(xA, sB)))] (3)

where DyB
(·) denotes the logits from the domain-specific (yB) discriminator.

Note that there is no direct gradient backward propagation here from the dis-
criminator D to style embedding network E because yB is a one-hot vector only
used to determine which head of the multi-task discriminator D to use.
Style contrastive loss. In order to prevent degenerate solutions where the
generator ignores the given style embedding sB and synthesizes a random image
of domain B, we impose a style contrastive loss to the generator:

LG
style = ExA,xB∼pdata(x)[− log

exp(sAB · sB)∑N
i=0 exp(sAB · s−i /τ)

] (4)

where sAB = Es(xAB) = Es(G(xA, sB)) denotes the style embedding of the
translated image xAB and s−i denotes the negative style embeddings (i.e., style
embeddings of other samples in the same mini-batch). This loss forces the gen-
erated image xAB to have a dissimilar style to images other than the reference
image xB . It also prevents the encoder from mapping all images to the same
style embedding.
Reconstruction loss. To better preserve the domain-invariant features (i.e.,
the content information) of the content image xA, an improved image recon-
struction loss with a new term is introduced. The loss is composed of two parts,
the self-reconstruction loss Lself_rec and the cross-reconstruction loss
Lcross_rec (new term, similar to the work in [35]), as follows:

Lrec = ExA∼pdata(x)[||xA −G(xA, sA)||1] + ExA,xB∼pdata(x)[||xA −G(G(xA, sB), sA)||1] (5)

where Lrec = Lself_rec+Lcross_rec is intended to minimize the total l1 distance
between the source image xA and its self-reconstructed image G(xA, sA) and
between xA and its cross-reconstructed image xABA = G(G(xA, sB), sA). The
reconstruction loss encourages G to preserve the domain-invariant information
(e.g ., object pose).
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3.4 Overall training

In our experiment, the unsupervised clustering module Ey and style embedding
module Es share a common encoder f in the style embedding network E so both
can benefit from each other. The clustering module may obtain rich features ac-
quired by contrastive representation learning in the style embedding module and
improve its accuracy in generating pseudo domain labels. The style embedding
module can also extract more domain-specific features and prevent the entire
model from collapsing with the help of the clustering module. Once the embed-
ding network E has been sufficiently trained, it can be further refined with the
cGAN module jointly to perform image translation as follows. The generator G
takes the style embedding extracted from input style image as a reference to
translate the input content image to its analog that is expected to be in the
same domain as the reference style image. With the adversarial loss feedback
from the cGAN, the style embedding network E further improves its learned
domain-separating features and extracts style embeddings with richer informa-
tion that can help the generator G fool the domain-specific discriminator D.
After integrating the style embedding network and the cGAN module together,
our model is able to separate image domains and perform image-to-image trans-
lation successfully under a truly unsupervised setting.

The overall objective for above mentioned style embedding network E, gen-
erator G and discriminator D is given by

LD = −Ladv

LG = Ladv + λG
styleLG

style + λrecLrec

LE = LG + λMILMI + λcoLE
co

(6)

where λG
style, λrec, λMI , and λE

co are weights for balancing different loss terms.
More details about these parameters are given in the supplementary materials.

4 Experiments

In this section, we evaluate our model on both domain-labeled data and unla-
beled data under different experimental settings (i.e., cross-domain and multi-
domain). The performance of our method is compared both quantitatively and
qualitatively with that of the representative (and SOTA) published methods.
The experiments are grouped according to (1) truly unsupervised settings and
(2) semi-supervised settings when some (but not all ) domain labels are available.
We also perform ablation studies to assess the impact of the proposed objective
functions, training strategy and choice of domain numbers.
Datasets. To evaluate performance on multi-domain image translation, we
use the following three popular labeled datasets: AnimalFaces [20], Birds [30]
and Flowers [24]. Following the strategies in [2], we select ten classes from each
of the three dataset, referred to as AnimalFaces-10, Birds-10 and Flowers-10.
When these datasets are used in truly unsupervised image translation, their the
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Fig. 3. Truly unsupervised image-to-image translation results on different datasets.

domain labels are simply masked. For cross-domain image translation evaluation,
we use the dataset Summer2Winter and Dog2Cat from CycleGAN [35]. For data
without domain labels, a high quality AFHQ [5] dataset is adopted. AFHQ
involves roughly three groups of animals (cats, dogs and wild animals), where
each group consists of diverse breeds/species with different styles but the exact
domain labels are not provided.
Evaluation metrics and compared methods. We consider the following
three metrics, Inception Score (IS) [29], the mean of class-wise Fréchet Inception
Distance (mFID) [10] and Translation Accuracy (Acc) [20] in our experiments.
The IS and mFID scores have been widely used in GAN-based image analyses to
evaluate the generated image quality and diversity. The smaller an mFID score is,
the better the performance is, which is the opposite for IS scores. The Acc score is
used to evaluate whether a model is able to generate images of the same style as
the target domain. It is a percent number between 0 and 100%. For experiments
under truly unsupervised situation, we compare our model with TUNIT [2]. To
the best of our knowledge, TUNIT is the only method that has been proposed in
the literature to address the truly unsupervised I2I problem. For multi-domain
supervised or semi-supervised image translation (where some but not all domain
labels are given), we compare our model with COCO-FUNIT [28], SEMIT [33],
Kim et al . [16] and TUNIT. Note that both TUNIT and our model can be easily
adapted to take advantage of the available domain labels in their loss functions.
We also compare our model with CycleGAN [35], UNIT [19], MSGAN [21],
CUT [26] and COCO-FUNIT in cross-domain image translation task.

4.1 Truly unsupervised image-to-image translation

To verify that our proposed method is able to handle truly unsupervised image-
to-image translation well, we evaluate our model on the datasets AnimalFaces-10,
Birds-10, Flowers-10, and AFHQ. During the training, the domain labels of the
first three datasets are masked as mentioned before. However, the labels are used
later on for quantitative evaluation. Since AFHQ has three groups of images (cat,
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Table 1. Quantitative evaluation of our model under truly unsupervised setting on
different datasets with comparison to TUNIT [2]. The arrows indicate the directions
of more desired values.

Dataset Method mFID ↓ IS ↑ Acc ↑

AnimalFaces-10 TUNIT 47.9 26.6 84.2
CUNIT 45.2 28.9 88.3

Birds-10 TUNIT 82.3 73.8 62.2
CUNIT 74.6 78.4 67.5

Flowers-10 TUNIT 67.3 48.7 65.8
CUNIT 60.7 52.3 70.3

dog and wild), we train a separate model for each group. For all experiments on
truly unsupervised image translation, we use TUNIT as the baseline and we set
the number of clusters K̂ = 10 for all models as done in [2].

Fig. 3 and Table 1 show the visual results and quantitative evaluation of
CUNIT and TUNIT on the four datasets. From the images in Fig. 3, we observe
that CUNIT is able to capture more subtle style features (e.g . the fur textures
of cats and dogs and the color information of birds and flowers) than TUNIT.
More visual results can be found in the supplementary materials. Table 1 shows
that CUNIT outperforms TUNIT by 5.6%, 8.6% and 5% in terms of mFID, IS
and Acc, respectively, on AnimalFaces-10. On the datasets Birds-10 and Flowers-
10, CUNIT outperformed TUNIT by at least 6% with respect to all evaluation
metrics. Because the AFHQ dataset has no ground truth domain labels, we
are not able to provide the quantitative scores on AFHQ. In summary, these
experimental results suggest that our model outperforms TUNIT significantly
in truly unsupervised image-to-image translation.

4.2 Domain-level supervised or semi-supervised image translation

Cross-domain (supervised) image translation. Recall that Cycle-
GAN [35] adopts a cycle-consistency loss and UNIT [19] makes a shared-latent
space assumption to learn a mapping between two visual domains, and both are
representative models in cross-domain I2I. MSGAN [21] further improves the di-
versity of the generated images without loss of quality using a simple yet effective
regularization term and has achieved impressive performance on cross-domain
I2I. CUT [26] introduces contrastive learning to I2I successfully. COCO-FUNIT
is the SOTA multi-domain image translation model that could also be applied in
the cross-domain situation. We compare CUNIT with all above methods on the
Summer2Winter and Dog2Cat datasets. Table 2 shows that CUNIT outperforms
CycleGAN, UNIT, MSGAN, CUT, and COCO-FUNIT by 32% and 25%, 27%
and 19%, 19% and 10%, 8% and 7%, and 4% and 3% in terms of mFID on the
two datasets, respectively. Hence, CUNIT can generate images with more diver-
sity and better quality than the SOTA cross-domain image translation methods.
Some supportive visual results are given in supplementary Fig. S5.
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Table 2. Quantitative evaluation (based on mFID) of our model with comparison to
other methods in cross-domain image-to-image translation.

Method CycleGAN [35] UNIT [19] MSGAN [21] CUT [26] COCO-FUNIT [28] CUNIT (ours)

Summer2Winter 78.7 73.6 66.4 58.4 55.9 53.3
Dog2Cat 85.7 79.3 71.5 68.6 66.1 63.8

Table 3. Quantitative evaluation (based on mFID) in multi-domain semi-supervised
image-to-image translation with partial domain labels available during training.

Method AnimalFaces-10 Birds-10 Flowers-10

20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80%

COCO-FUNIT [28] 104.8 85.9 75.3 59.6 129.5 108.7 98.3 82.9 128.6 105.2 87.5 70.4
SEMIT [33] 53.3 52.1 50.5 49.7 87.4 85.2 83.9 82.6 73.1 71.3 69.8 68.5

Kim et al . [16] 47.3 46.1 45.4 44.7 79.1 77.4 75.8 74.6 64.9 63.3 62.4 61.2
TUNIT [2] 46.2 46.2 45.9 45.6 80.5 80.1 79.6 79.5 65.7 65.4 64.9 65.0

CUNIT (ours) 44.9 44.1 44.3 43.9 73.8 73.2 73.5 72.9 59.8 59.6 59.1 58.9

Multi-domain semi-supervised image translation with partial domain
labels. Since there are only two domains in cross-domain image translation,
it is relatively easy to separate the domains and extract style embeddings for
CUNIT. Now we evaluate the model’s performance on multiple domains and
compare it with the SOTA multi-domain image translation models COCO-
FUNIT [28] (supervised), Kim et al . [16] and SEMIT [33] (semi-supervised),
and TUNIT [2]. Recall that COCO-FUNIT is a domain-level fully supervised
model while CUNIT and TUNIT are truly unsupervised. However, the latter
two models can be easily modified to take advantage of the available labels as
detailed below. In many practical situations, there may be a large number of
images but only a few of them have domain labels. So, we also conduct a semi-
supervised experiment as in [2] to test how these models perform when partial
domain labels are provided.

The datasets AnimalFaces-10, Birds-10 and Flowers-10 are used in the exper-
iment. Let X be a (whole) dataset. We separate X into the labeled part Xlabeled

and unlabeled part Xunlabeled with a ratio α = |Xlabeled|/|X|. Under this semi-
supervised setting, we add an additional cross-entropy loss term to our model
between the ground truth domain labels and pseudo domain labels estimated by
the style embedding network on data Xlabeled. The ground truth domain labels
in Xlabeled are also used for training the domain-specific discriminator. A similar
modification is also applied to TUNIT. In this experiment, we set the ratio α
to 20%, 40%, 60%, and 80% as in [2]. The results are shown in Table 3. The
performance of COCO-FUNIT significantly decays quickly when α decreases
while CUNIT, TUNIT, Kim et al . [16] and SEMIT remain relatively stable. Al-
though the latter four methods are more robust, CUNIT still outperforms the
other three methods significantly in terms of mFID on all three datasets and
under all ratios of α. This experiment shows that CUNIT can be easily adapted
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Table 4. Ablation study on various components of CUNIT and training strategies
using the AnimalFaces-10 dataset.

Configuration mFID ↓ IS ↑ Acc ↑

CUNIT w\joint 45.2 28.9 88.3
CUNIT w\sequential 45.8 28.1 87.8
CUNIT w\o Lco 48.5 26.5 83.4
CUNIT w\o LG

style 47.6 27.4 86.3
CUNIT w\o Lrec 47.9 27.2 85.9
CUNIT w\o Lcross_rec 46.7 27.8 86.9

Table 5. Quantitative evaluation (based on mFID) of our model using different pseudo
domain numbers K̂ on AnimalFaces-10.

K̂ 1 4 7 10 13 16 20 30 50

mFID ↓ 91.4 62.3 51.4 45.2 46.6 47.5 48.5 50.7 54.3

to the semi-supervised image translation scenario when some domain labels are
available with a performance superior to the existing methods. Some supportive
visual results are given in supplementary Fig. S6.

4.3 Some analyses of the proposed model

In this section, we analyze the impact of our proposed objective functions, train-
ing strategy and choice of domain numbers on the performance of CUNIT.
Ablation study. In Table 4, we ablate various components of our model
and measure their impact on performance in truly unsupervised image-to-image
translation on the AnimalFaces-10 dataset. We observe that joint training of
the style embedding network and image translation network has a better per-
formance than training the two models sequentially. The loss Lco is the most
important one among the three loss terms (Lco, LG

style and Lrec), which im-
proved mFID by 3.3(6.8%), IS by 2.4(9%) and Acc by 4.9%. We also observe
that the mFID score of CUNIT without using the cross-reconstruction loss term
Lcross_rec in Equation 5 was 46.7 on the AnimalFaces-10 dataset (vs 45.2 with
the term), which clearly demonstrates the effectiveness of this new term. The
results indicate that CUNIT has benefited a lot from the jointly trained style
embedding network based on contrastive representation learning.
Sensitivity to K̂. The hyper-parameter K̂ (the number of pseudo domains
used in training) may influence how CUNIT clusters the images and hence its
performance in truly unsupervised I2I. We test CUNIT on the AnimalFaces-10
dataset with different values of K̂ and summarize its performance in Table 5. As
expected, the model achieves the best performance in terms of mFID when K̂ is
the same as the real domain numbers K (K = 10 in AnimalFaces-10). Moreover,
when K̂ slightly larger than K, the model still performed reasonably well. The
(simple) experiment suggests that CUNIT has a relatively robust performance as

2658



14 Z. Hong et al.

long as estimated K̂ is near or slightly larger than the true K. More discussions
concerning both K and K̂ can be found in supplementary section 2.
Limitation of CUNIT. The above results demonstrate that our model CU-
NIT performs very well in reference-guided image translation under truly un-
supervised, semi-supervised or even supervised settings when the number of
domains is not very large. It would be interesting to know if this advantage of
CUNIT remains true when the number of domains is very large. Supplementary
Table S1 shows a comparison of CUNIT, TUNIT and COCO-FUNIT on the
AnimalFaces dataset with various values of K, where CUNIT and TUNIT are
trained without domain labels and COCO-FUNIT is trained with full labels. On
AnimalFaces-10, CUNIT achieves a comparable performance as COCO-FUNIT
(45.2 vs 44.8 in mFID) and outperforms TUNIT (47.9) by 5.6%. However, on
AnimalFaces-149, the performance of both CUNIT and TUNIT drop signifi-
cantly (106.9 and 106.3, respectively) compared with COCO-FUNIT (92.4). Be-
cause mFID measures the difference in feature distributions between the gener-
ated images and training images, the results suggest that, as K increases, it is
very hard for the unsupervised methods to infer domain labels for images con-
sistent with the true domain labels. Hence, CUNIT is more suitable in image
translation applications where the domain numbers are not that large. More de-
tailed analysis on how the number of domains K affects the performance of our
model can be found in supplementary subsection 2.2 and Table S1.

5 Conclusion

Most of the existing I2I methods either require pixel-level or domain-level super-
vision to help the translation task. In this paper, we present a truly unsupervised
I2I model, CUNIT, to perform image translation without requiring any supervi-
sion. The model consists of a style embedding network that extracts the domain
and style information of the input style image with contrastive representation
learning and an image translation module based on cGANs that actually car-
ries out the reference-guided image translation. The embedding network and
translation module are integrated together for training and benefit from each
other, which enables CUNIT to successfully separate image domains and per-
form translation between these domains. Extensive experimental evaluation has
been performed on various datasets concerning both cross-domain and multi-
domain image translation. The results demonstrate that our model outperforms
the best truly unsupervised I2I model in the literature (TUNIT). In addition,
our model can be easily adapted to take advantage of the available domain labels
to achieve a performance comparable to the best supervised image translation
methods when all domain labels are known or a superior performance when only
some (but not all) domain labels are provided. Therefor, we believe that CUNIT
has great potentials in many practical image translation applications.
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