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Abstract. The scene text removal (STR) is a task to substitute text
regions with visually realistic backgrounds. Due to the diversity of scene
text and the intricacy of background, earlier STR approaches may not
successfully remove scene text. We discovered that different networks
produce different text removal results. Thus, we present a novel STR
approach with a multi-branch network to entirely erase the text while
maintaining the integrity of the backgrounds. The main branch preserves
high-resolution texture information, while two sub-branches learn multi-
scale semantic features. The complementary erasure networks are inte-
grated with two ensemble learning fusion mechanisms: a feature-level
fusion and an image-level fusion. Additionally, we propose a patch at-
tention module to perceive text location and generate text attention
features. Our method outperforms state-of-the-art approaches on both
real-world and synthetic datasets, improving PSNR by 1.78 dB in the
SCUT-EnsText dataset and 4.45 dB in the SCUT-Syn dataset.

1 Introduction

The text information that appears in natural scene images is referred to as scene
text [16]. Scene text such as license plate numbers and phone numbers may be
captured inadvertently when taking a picture [10]. With the development of
text detection and recognition technology, such sensitive information could be
easily gathered when posting scene images on the Internet. Concealing sensitive
information is in high demand to reduce the danger of privacy disclosure. Recent
deep learning-based text detection and recognition approaches require a huge
number of training data, but manual labeling is time-consuming as well as costly.
To fill this gap, the STR is used to generate a synthetic scene text dataset by
erasing the text in the image and swapping it for the new text with new content.
It might be viewed as a novel method to produce high-quality synthetic datasets
for scene text detection and recognition.

Numerous STR techniques in deep learning have been proposed and demon-
strated promising performance in recent years (see Sec. 2), yet there still exist
multi-scale text inexhaustive erasure problem and the background texture ex-
cessive erasure problem in real-world text removal. For example, tiny scene texts
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(a) Image (b) Ground-Truth (c) EraseNet 28.00 dB (d) MBE 31.92 dB

(e) Image (f) Ground-Truth (g) EraseNet 28.02 dB (h) MBE 37.10 dB

Fig. 1: Examples of text removal in the wild. Qualitative comparisons and quan-
titive results of PSNR (higher is better) given by the Erasenet [18] and the MBE
are shown in the last two columns. Best view with zoom-in.

are difficult to be removed, and symbolic patterns may be deleted incorrectly
(see Fig. 1c and Fig. 1g). We analyze previous methods to identify the bot-
tlenecks that restrain the performance. To begin with, a large number of STR
methods [2, 16, 28, 37] employ a two-stage paradigm that divides the procedure
into a text detection phase and a text removal phase. The divide-and-conquer
idea is straightforward, but the two-stage model is vulnerable in a long-range in-
ference. Any mistake that appeared in the text detection process would directly
influence the text removal results in the second stage. Second, one STR network
is insufficient to capture all text variance in natural scenarios, since different
scenes have texts with different fonts, sizes, colors, and illuminations.

To ameliorate the above-mentioned issues, we present a novel framework
called Multi-Branch Network with Ensemble Learning (MBE). Rather than di-
viding the STR into two cascaded steps (text detection stage and text removal
stage), we build an ensemble learning model that consists of three parallel STR
branches to generate complementary erasure results. The main branch contains
a feature fusion high-resolution network (FFHRNet) for retaining complex back-
ground texture and the two sub-branches work on hierarchical patch pictures for
learning multi-scale semantic features using a U-Net framework. The visualiza-
tion output of the main branch in Fig. 2d demonstrates that the FFHRNet is
capable of keeping high-resolution backgrounds but leaves rough text sketches.
The two sub-branches are prone to entirely erasing the text region, but the
non-text patterns are also erased (in Fig. 2b and Fig. 2c).
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(a) Input (b) Sub-branch 1 (c) Sub-branch 2 (d) Main branch (e) Fused output

Fig. 2: Visualization of intermediate and final results from the MBE. The sub-
branch network which extracts multi-scale semantic features is prone to exces-
sively erase non-text regions. The main branch leaves the remains of rough text
sketches. The fused result achieves the best performance in erasing scene texts
and maintaining the integrity of non-text areas.

Intuitively, combining the complementary outputs from all branches can in-
crease the MBE’s stability and performance, resulting in better text-removed
results. To do this, we propose two fusion procedures that utilize the strengths
of all branches. First, we propose an implicit fusion technique called crossing
branch feature fusion (CBF) for fusing multiple branches at the feature level.
In terms of CBF, one branch combines several semantic features from other
branches. The multi-scale semantic features can enhance the text erasure per-
formance at various font sizes. The patch attention module (PAM) can perceive
text locations through a simple segmentation and generate text attention fea-
tures. Second, a convolutional LSTM module (CLSTM) is proposed as an explicit
fusion method to fuse the text-erased results at the image level. The CLSTM
can preserve the correct text erasure regions in all outputs while discarding the
broken background (refer to Fig. 2e).

Extensive experiments are conducted on both the real-world dataset, SCUT-
EnsText [18] and the synthetic dataset, SCUT-Syn [39]. Our MBE outperforms
the state-of-the-art method in PSNR by 1.78 dB and 4.45 dB on the two datasets,
respectively. The contributions are summarized as follows:

– We propose a multi-branch network with ensemble learning (MBE) for STR,
that employs ensemble learning to train three STR branches to learn com-
plimentary erasure outcomes and merges all STR branches via an elaborate
fusion process to improve the overall model’s reliability and performance.

– The three branches are designed to produce complementary outputs for the
model ensemble. The main branch preserves high-resolution information, and
two sub-branches learn multi-scale semantic features on patch-level images.

– We propose two fusion strategies to fully exploit the inherent advantages
of three branches. An implicit fusion approach assists one branch in fusing
semantic and attention features from another branch. An explicit fusion
approach combines all branches’ suboptimal outputs into the final results.
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– The quantitative and qualitative results on both the SCUT-EnsText [18]
and the SCUT-Syn [39] datasets indicate that our method outperforms the
previous state-of-the-art STR method by a large margin.

2 Related Work

Traditional text concealment approaches use image processing to make the text
region hard to be detected and recognized. Frome i.e. [4] employ a Gaussian
filter to blur text region in Google Street View. Inai i.e. [10] submerge the
scene text by degrading the readability of characters. They use exemplar-based
image inpainting to damage the stroke structure. These traditional methods have
limitations on complex scenarios, e.g. complicated backgrounds, or perspective
distortion, and they fail to fill the text region with a plausible background.

Inspired by the notable success of deep learning, novel methods are proposed
to conceal the scene text. Nakamura i.e. [24] first design an automatic scene
text eraser that converts the text erasure problem into an image transformation
problem. They use neural networks to learn the transformation function between
the scene text images and non-text images without the annotations for the text
locations. EnsNet [39] uses a lateral connection structure to integrate high-level
semantics and low-level spatial information. Four loss functions are proposed to
improve the reality of filling backgrounds. The early methods are lightweight as
well as fast but often left noticeable text remnants.

A couple of two-step approaches decouple the scene text removal into two
sub-tasks: the text detection task and the text removal task [2, 16, 28, 37]. The
text position predicted in the first stage guides the second stage where to erase,
and the then text region is filled with a meaningful background. However, if
text detection is incorrect, it will degrade the text removal results by leaving
text remnants or breaking the integrity of the non-text region. Thus, two-stage
STR methods might cause apparent drawbacks and generate low-quality text-
removed images. Benefiting from the development of generative adversarial net-
work (GAN) [6, 15, 22], image restoration methods achieve significant improve-
ment in generating local textures. Erasenet [18] proposes a coarse-to-fine gener-
ator network with a local-global discriminator network. In [2], they connect two
GAN-based frameworks to refine text removal results at the stroke level. Though
the GAN-based methods might improve the erasure quality, the training process
is not stable and heavy.

3 Multi-Branch Network with Ensemble Learning

3.1 Overall Architecture

The motivation of our method is that different STR branches can produce com-
plementary text removal results, and it is reasonable to combine them for a better
text-removed image. To acquire complementary results, we propose three text
removal branches in our method. The main branch (FFHRNet) preserves fine

1336



MBE 5

Fig. 3: An overview of our model. The black bold arrows represent the main
branch, sub-branch 1, and sub-branch 2, respectively. Sub-branch 1 uses two non-
overlapping patch images as input and sub-branch 2 uses four non-overlapping
patch images as input. The red arrows represent the crossing branch feature
fusion. AF : Attention Feature. EF : Encoder Feature. DF : Decoder Feature.

textures from the original resolution image. The sub-branches operate on patch-
hierarchical images for learning multi-scale semantic features via an encoder-
decoder architecture. Following that, we combine the three branches with the
CFB as a feature fusion module and the CLSTM as an image fusion module for
the model ensemble.

3.2 Main Branch Network

Exiting STR approaches [2, 18, 32, 39] almost follow the U-Net framework. Due
to the repetitive usage of scale variation procedures in U-Net, the text-erased
results are prone to damage the integrity of the background and details of local
texture from the original picture. Thus, our main branch employs the feature fu-
sion high-resolution network (FFHRNet), which is inspired by HRNet [5,27] and
the channel attention mechanism [40], to retain high-resolution representations.
A high-resolution branch (the black bold arrow in the Fig. 4) and three downsam-
pling branches make up the FFHRNet. The high-resolution branch includes no
downsampling or upsampling operations to generate texturally-enriched repre-
sentations and gradually adds low-resolution feature representations from lower
branches to fuse multi-scale information. To adaptively re-calibrate the feature
map in the channel dimension, channel attention blocks [40] have been imple-
mented in the high-resolution branch.
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Fig. 4: The feature fusion high-resolution network (FFHRNet). The red-bold
arrows illustrate how and where to fuse features from sub-branch 1.

Attention features (AF1), encoder features (EF1) and decoder features (DF1)
from sub-branch 1 are gradually transferred to the FFHRNet, according to the
crossing branch feature fusion process (see Sec. 3.4). The AF1, which carries text
location information, is concatenated with feature maps in the high-resolution
branch after being scaled by a convolution block. The EF1 and DF1 are fused
with FFHRNet in the same way.

3.3 Sub-Branch Network

Encoder-Decoder network. The two sub-branch networks, which mainly con-
tain an encoder-decoder network [25] and a PAM, capture the text in scene im-
ages and wipe them as precisely as possible. Scene text in the wild has varied
scales, which may give rise to failures in text detection, so we separate the input
image into several non-overlapping patches to develop a multi-patch hierarchy
learning model, which is akin to [26, 36, 38]. The patch-level inputs compared
to the original image considerably lighten the sub-branch network and naturally
provide multi-scale semantic information. We also utilize the skip connection
technique [19] in the encoder-decoder network to link the downsampling layer
and the upsampling layer to reduce information loss. In the U-Net module, the
patch images first map to low-resolution representations and then progressively
recover to the original resolution by applying several reverse mappings. Anno-
tations for text location are not available in the model inference phase, thus we
train another decoder module [18] after the encoder module of U-Net to deter-
mine text positions. The binary masks (Mask1 and Mask2) roughly segment
scene texts and non-text background (0 for text and 1 for background), which is
supervised by dice loss Eq. (3). The PAM then uses the text mask to compute
the attention feature.

Patch Attention Module (PAM). The goal of PAM is to enhance the text
position response in the feature map. As illustrated in Fig. 5, we element-wise
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Fig. 5: The architecture of patch attention module (PAM).

multiply the input decoder feature DF ∈ RH×W×C from early encoder-decoder
network with the binary mask M ∈ RH×W×1 where H, W denotes the height
and width dimension of feature map, and C is the number of channel. Then, the
new feature map containing both multi-scale semantic features and text location
information is added to the original input X as a residual part to obtain the text
removal output Yb in the sub-branch. To get the attention feature AF , we import
the output Yb to a convolution layer followed by the sigmoid activation, and then
we element-wise multiply the activated feature map with the previous feature
map as an attention-guided residual, which is added back to the previous feature
map. The attention mechanisms could suppress the less informative features and
only retain the useful parts. Finally, the attention feature representation AF will
be passed to other branches for information fusion.

3.4 Crossing Branch Feature Fusion (CBF)

The CBF is presented as a method for implicitly fusing three STR branches at
the feature level. From the main branch (top) to the sub-branch (bottom), the
input image is gradually split into smaller patches, and we fuse the features in
a down-top pathway to merge low-resolution, semantically strong features with
high-resolution, semantically weak features. The red arrows in Fig. 3 indicate two
paths of feature transmission: from sub-branch 2 to sub-branch 1 ( CBF1), and
from sub-branch 1 to the main branch (CBF2). The attention feature AF2 from
sub-branch 2 concatenates with the patch-level input image X1 after convolution
block resizing, and the encoder and decoder feature EF2, DF2 are imported as
supplementary inputs into the U-Net in sub-branch 1. We transmit the feature
maps from all encoder layers and decoder layers in the U-Net of sub-branch
2, which means EF2 = {EF2a, EF2b, EF2c}, DF2 = {DF2a, DF2b, DF2c}. In
CBF1, the multi-scale semantic features from sub-branch 2 are progressively
imported to the same-scale encoder-decoder layers in sub-branch 1 to improve
the scene text erasure performance at any text size. In CBF2, the encoder and
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decoder features EF1, DF1 and the attention feature AF1 from sub-branch 1
are transmitted to the main branch following the same setting in CBF1.

The method of feature fusion across all STR branches has several advantages.
First, it reduces the vulnerability of the feature by repeated use of up- and down-
sampling operations in the encoder-decoder network, and the results are more
robust when the model confronts information loss due to various interferences.
Second, the feature of one branch containing multi-scale semantic information
and text location information can help enrich the feature of the other branches.
Third, the network optimization procedure becomes more stable as it eases the
flow of information, thereby allowing us to train three complementary STR net-
works and the CLSTM successfully without a model collapse. Additionally, the
ablation experiment in Sec. 4.3 demonstrates the effectiveness of CBF in text
erasing performance.

3.5 Convolutional LSTM module (CLSTM)

The CLSTM module [9, 35] is another fusion mechanism to explicitly merge
multiple branches at the image level. We stack the text removal results from three
branches into a sequence pattern, and the CLSTM could predict the next images
of the sequence data as our fused output. Due to the gate cell mechanism, the
fused outputs can retain correct erasure results from complementary branches
while discarding the incorrect erasure sections.

3.6 Train Strategy

For training our MBE, we use the scene text image X, text-removed ground-
truth Igt, and text mask ground-truth M as inputs. We optimize our method
with the Charbonnier loss [3, 21], Edge loss, and Dice loss. The details of our
loss functions are as follows.

Because of the multi-branch framework, the Charbonnier loss and Edge loss
penalize all branch outputs. The subscript i (from 1 to 3) in Eq. (1) and Eq. (2)
denotes the main branch, sub-branch 1, and sub-branch 2, respectively. The
Charbonnier loss is defined as:

LChar =
3∑

i=1

√
‖Yi − Igt‖2 + ε2 (1)

where Yi represents the text-erased outputs from different branch networks. The
Charbonnier loss has a constant parameter ε, which is set to 10−3 in our exper-
iments.

The Edge loss is defined as:

LEdge =

3∑
i=1

√
‖4Yi −4Igt‖2 + ε2 (2)

where 4 denotes the Laplacian operator. ε is set to 10−3 in our experiments.
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Table 1: Ablation study on different components of the proposed MBE on SCUT-
EnsText. FFHRNet: feature fusion high-resolution network. SB1: sub-branch
network 1. SB2: sub-branch network 2. CBF1: crossing branch feature fusion
(SB2 to SB1). CBF2: crossing branch feature fusion (SB1 to FFHRNet). PAM:
patch attention module. CLSTM: convolutional LSTM module.

FFHRNet SB1 SB2 CBF1 CBF2 PAM CLSTM PSNR(↑) MSSIM(↑) AGE(↓) pEPs(↓) pCEPs(↓)

! % % % % % % 31.2012 0.9575 2.8951 0.0235 0.0162

! ! ! % % % % 34.2082 0.9690 2.1542 0.0146 0.0098

! ! ! ! % % % 34.3908 0.9699 2.1129 0.0140 0.0094

! ! ! ! ! % % 34.5285 0.9684 2.1059 0.0142 0.0094

! ! ! ! ! ! % 34.6652 0.9705 2.0835 0.0139 0.0094

! % ! ! ! ! ! 34.7209 0.9708 2.0877 0.0134 0.0090

! ! % ! ! ! ! 34.7084 0.9710 2.1162 0.0136 0.0093

! ! ! % % ! ! 34.2236 0.9698 2.1854 0.0147 0.0107

! ! ! ! % ! ! 34.3568 0.9705 2.1235 0.0135 0 0092

! ! ! % ! ! ! 34.7896 0.9730 2.0594 0.01239 0.0083

! ! ! ! ! % ! 34.2552 0.9686 2.2819 0.0153 0.0106

! ! ! ! ! ! % 34.6652 0.9705 2.0835 0.0139 0.0094

! ! ! ! ! ! ! 35.0304 0.9731 2.0232 0.01282 0.0088

The Dice loss in Eq. (3) is proposed for mask segmentation to learn the text
location. It measures the proportion of correctly predicted pixels to the sum
of the total pixels of both prediction and ground truth. The Dice loss can be
formulated as:

LDice = 1−
2
∑

x,y(Sx,y)× (Mx,y)∑
x,y(Sx,y)2 +

∑
x,y(Mx,y)2

(3)

where S represents the predicted mask from the decoder module and M repre-
sents the text mask ground-truth. Sx,y and Mx,y denote the pixel value at point
x, y.

Finally, we sum three loss functions together to form the total loss of our
MBE, which is defined as Eq. (4):

LTotal = LChar + λLEdge + µLDice (4)

where the λ is set to 0.05 and µ is set to 0.105.

4 Experiments and Analysis

4.1 Datasets and Evaluation Protocol

Datasets. We use the images from SCUT-EnsText [18] and SCUT-Syn [39]
dataset to train our method. These two datasets are widely applied in previous
STR methods, and we test our approach by following the same method in [18].
The SCUT-EnsText is a real-world dataset including 2,749 training images and
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Table 2: Quantitative comparison of our method and start-of-the-art methods
on SCUT-EnsText and SCUT-Syn datasets. The Best and second best scores
are highlighted and underlined, respectively.

Methods
SCUT-EnsText SCUT-Syn

PSNR(↑) MSSIM(↑) AGE(↓) pEPs(↓) pCEPs(↓) PSNR(↑) MSSIM(↑) AGE(↓) pEPs(↓) pCEPs(↓)

Bain [2] 15.9399 0.5706 24.8974 0.3282 0.2123 20.83 0.8319 10.5040 0.1021 0.5996
Pixel2Pixel [11] 26.6993 0.8856 6.0860 0.0480 0.0337 26.67 0.9108 5.4678 0.0473 0.0244
SceneTextEraser [24] 25.4651 0.9014 6.0069 0.0532 0.0296 25.40 0.9012 9.4853 0.0553 0.0347
EnsNet [39] 29.5382 0.9274 4.1600 0.0307 0.0136 37.36 0.9644 1.7300 0.0069 0.0020
Zdenek [37] - - - - - 37.46 0.9810 - - -
MTRNet [29] - - - - - 29.71 0.9443 - - -
MTRNet++ [28] 24.6145 0.8990 11.3669 0.1459 0.0869 34.55 0.9845 - - -
EraseNet [18] 32.2976 0.9542 3.1264 0.0192 0.0110 38.32 0.9765 1.5982 0.0048 0.0004
PERT [32] 33.2492 0.9695 2.1833 0.0136 0.0088 39.40 0.9787 1.4149 0.0045 0.0006

MBE (Ours) 35.0304 0.9731 2.0594 0.01282 0.0088 43.85 0.9864 0.9356 0.0013 0.00004

813 test images, and the SCUT-Syn is a synthetic dataset containing 8000 train-
ing images and 800 test images with a size of 512×512. A scene text image is
processed into a 1-2-4 multi-patch model for multi-branch input shown in Fig. 3.
The notation 1-2-4 indicates the number of non-overlapping image patches from
the coarsest level to the finest level.

Evaluation Protocol. We adopt the same evaluation metrics in [18, 39]
to comprehensively evaluate the text erasure performance, which includes peak
signal to noise ratio (PSNR), multi-scale structural similarity (MSSIM) [33], an
average of the gray level absolute difference (AGE), percentage of error pixels
(pEPs) and percentage of clustered error pixels (pCEPS).

4.2 Implementation Details

The MBE is an end-to-end trained model implemented in Pytorch. Vertical and
horizontal flips are randomly applied as data augmentation. We use the Adam
optimizer [17] with an initial learning rate of 2 × 10−4 and apply the cosine
annealing strategy [20] to steadily decrease the learning rate to 1× 10−6.

4.3 Ablation Study

In this subsection, we investigate the effect of each component in our proposed
MBE step by step. The number of branch networks, the cross branch feature
fusion (CBF), the patch attention module (PAM), and the convolutional LSTM
module (CLSTM) are the focus of our study. Evaluations are performed on the
real-world SCUT-EnsText dataset. The quantitative results are shown in Tab. 1
which demonstrates that the MBE outperforms all inferior models.

Number of branch networks. This subsection identifies the number of
branch networks that perform optimally. We gradually increase the number of
sub-branches from 0 to 3. The sub-branch 3 takes eight non-overlapping patch
images as input. By integrating sub-branch 1 and sub-branch 2 into the FFHR-
Net, our model achieves a higher performance than the previous model demon-
strated in the Tab. 1. When the sub-branch 1 or sub-branch 2 modules are
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Fig. 6: PSNR vs. Number of branch networks and MSSIM vs. Number of branch
networks. Our method achieves the best performance when we set three branches.

removed from our final model, the inferior model’s PSNR performance decreases
from 35.03 dB to 34.72 dB and 34.70 dB, respectively. However, when we con-
tinue to insert the sub-branch into the overall model, both PSNR and MISSM
deteriorate (Fig. 6). This demonstrates that we cannot fuse branch networks in-
finitely to enhance the model’s performance. Excessive branches would obstruct
the ensemble model and need extra calculations during training. Because a net-
work with a large number of branches is hard to train as a multi-task learning,
the entire model is not stable during optimization. As a result, the generated
outcomes are worse than before. In brief, our method employs a single main
branch and two sub-branches.

Cross Branch Feature Fusion. To demonstrate the effect of our proposed
CBF on model fusion, we divide the CBF into two components (CBF1 and
CBF2) and test them separately. CBF1 combines the features of sub-branch 1
with features of sub-branch 2, and CBF2 combines the features of the main
branch with the features of sub-branch 1. The ablation research in Tab. 1 shows
that the PSNR climbs from 34.20 dB to 34.39 dB and subsequently to 34.52 dB
when we gradually add the CBF1 and CBF2 module to the model. When either
CBF1 or CBF2 is removed from our final model, the inferior model performs
poorly on most of the criteria. The two ablation studies demonstrate that both
the two feature fusion mechanisms can significantly improve STR performance.

PAM and CLSTM. We remove the PAM in both sub-branches to verify
the effectiveness of text location information for text removal. In the Tab. 1, we
observe that the previous model produces better results after adding the PAM
and the MBE model decreases by a large margin when the PAM is removed. The
CLSTM combines text-erased outputs from all branch networks. Our model with
CLSTM has a considerable improvement of 0.36 dB in PSNR compared to the
model without it. The visualization results in Fig. 2d show that the fused output
contains both the text-erased results in the sub-branch outputs and the integrity
of the background in the main branch output.
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(a) Input (b) GT (c) MTRNet++ (d) EnsNet (e) EraseNet (f) Ours

Fig. 7: Examples of text erased image on SCUT-EnsText of comparing MBE
with previous methods. Best viewed with zoom-in.

4.4 Comparison with State-of-the-Art Methods

In this section, we verify the effectiveness of MBE by comparing our method
against recent state-of-the-art approaches on the SCUT-EnsText and the SCUT-
Syn datasets. The results are shown in Tab. 2. The MBE almost achieves the
best performance in all metrics on two datasets. Compared to the current best
STR method, PERT [32], we obtain a performance gain of 1.78 dB on the SCUT-
EnsText dataset and 4.45 dB on the SCUT-Syn dataset in PSNR.

Fig. 7 illustrates visualization results to compare our MBE with other meth-
ods. MTRNet++ [28] and EnsNet [39] cannot exhaustively remove text with
arbitrary orientations or irregular fonts, and cause the outputs with rough text
sketches. EraseNet [18] has higher text removal performance than MTRNet++
and EnsNet, but some non-text patterns are wiped because of failures in text de-
tection. In addition, small-size texts can not be perfectly removed. Our method
alleviates the aforementioned problems. Scene texts in various scales are re-
moved, and the complex backgrounds are reserved.

4.5 The Effectiveness of Complementary Multi-Branch Network

The three branches in MBE are designed for learning complementary text-
removal functions so that the final fused results achieve the best performance
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Table 3: Ablation study on different
modules in multi-branch network.
Multiple Branch Framework PSNR(↑) MSSIM(↑)

ResNet-101 + UNet + UNet 34.2614 0.9657
FFHRNet + ResNet101 + UNet 34.4316 0.9711
FFHRNet + UNet + ResNet-101 33.5561 0.9678
ResNet-101+ResNet-101+ResNet-101 32.1547 0.9452

FFHRNet + UNet + UNet 35.0304 0.9731

Table 4: Robustness study on SCUT-
EnsText with various degraded inputs.

Degradation
EraseNet [18] MBE

PSNR(↑) MSSIM(↑) PSNR(↑) MSSIM(↑)

Blur 25.92 0.80 26.04 0.82
Noise 23.91 0.70 24.85 0.78
Rain 27.51 0.87 28.04 0.90

compared to the output from the individual STR branch. To verify the effec-
tiveness of the complementary network mechanism, the FFHRNet in the main
branch and U-Net in the sub-branch are replaced with another strong bench-
mark, ResNet-101 [8] to form an irrelevant multi-branch network. We compare
four variations of the multi-branch framework: ResNet-101 in the main branch,
ResNet-101 in sub-branch 1, ResNet-101 in sub-branch 2, and ResNet-101 in all
branches.

Experimental results with various multi-branch networks are shown in Tab. 3.
We observe that the complementary framework in MBE achieves the best perfor-
mance compared to all variations of the multi-branch framework, even though
the ResNet-101 has a stronger performance than the U-Net. It implies that
simply fusing multiple modules instead of considering the relationship among
multiple branches can not enhance the text removal results. As a brief conclu-
sion, we use the FFHRNet and U-Net as a backbone to construct the multiple
complementary branches framework for ensemble learning.

4.6 Robustness Analysis

We demonstrate our method’s robustness in this experiment with three degraded
image approaches on the SCUT-EnsText: blurry image, noisy image, and rainy
image. To create blurry photos, we use a Gaussian filter with a kernel size of
5×5. We add Gaussian noise with a mean of 0.5 and a variation of 0.1 to generate
noisy photos. To create rainy images, we multiplied the length of Gaussian noise
by 10 and rotated them 45 degrees to simulate the direction of rain in nature.

As shown in Tab. 4, it demonstrates our method achieves higher performance
in both PSNR and MSSIM than EraseNet. This proves that the ensemble learn-
ing in our method can improve the model’s robustness when facing interference
factors and information loss.

4.7 Synthetic data via STR for Scene Text Recognition

Since MBE can provide reliable performance on text removal, we extend it to
generate a synthetic dataset via replacing the background inpainting module in
the SRNet [34] with MBE (SR-MBENet). The SRNet can replace a text in the
source image with another one while retaining the styles of both the background
and the original text. We collect 50000 real-world data from [13, 14, 23, 30] as
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Table 5: Scene text recognition accuracy results on 4 benchmark test datasets.
We train DTRB with three synthetic datasets.

Model Train Data IC13 [14] IC15 [13] IIIT [23] SVT [31]

DTRB [1] MJSyn [12]+SynText [7] 93.6 77.6 87.9 87.5
DTRB [1] Synth-data 1 (SRNet) 87.2 64.0 84.6 77.1
DTRB [1] Synth-data 2 (SR-MBENet) 93.1 78.2 89.5 86.7

style images and generate 20 text-swapped images from a single style image
to construct our synthetic dataset via SR-MBENet. We train the scene text
recognition [1] with three synthetic datasets to analyze the effect of our method
by the recognition performance and follow the same evaluation protocol in [1].

In Tab. 5, we find that the synthetic dataset generated by SRNet might
decrease the model performance compared to the baseline (MJSyn [12] +SynText
[7]). The reason for it might be that the texts with rare font shapes failed to
transfer to new text or the complex text structures are hard to erase leading
to noise labels. The SR-MBENet can improve the quality of synthetic datasets
by alleviating the second problem. Thus, the model trained with our proposed
dataset achieves the highest performance on two benchmarks.

5 Conclusion

We propose a novel method for the STR task by training multiple complementary
STR models and combining them for a better result with ensemble learning to
solve the multi-scale text erasure problem and background destruction problem.
Combining a diverse set of individual STR models can also improve the stability
of the overall model, leading to more reliable results than individual models.
To ensure synergy between reciprocal branches, we propose a crossing branch
feature fusion guideline to help features flow in all branches. The intermediate
outputs from different branches are fused in a fusion module for final results.
Our model achieves significant performance gains compared to previous STR
methods on both the real-world dataset and the synthetic dataset. In the future,
we will extend the MBE to a novel scene text editing method that can swap text
in scene images with another one while maintaining a realistic look. We believe
the new synthetic dataset can fill the gap of shortage in a reliable, large-scale
scene text dataset.
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