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Abstract. This paper tackles the large motion variation problem in the
single image dynamic scene deblurring task. Although fully convolutional
multi-scale-based designs have recently advanced the state-of-the-art in
single image motion deblurring. However, these approaches usually uti-
lize vanilla convolution filters, which are not adapted to each spatial
position. Consequently, it is hard to handle large motion blur variations
at the pixel level. In this work, we propose Decomposed Dynamic Fil-
ters (DDF), a highly effective plug-and-play adaptive operator, to fulfill
the goal of handling large motion blur variations across different spatial
locations. In contrast to conventional dynamic convolution-based meth-
ods, which only predict either weight or offsets of the filter from the
local feature at run time, in our work, both the offsets and weight are
adaptively predicted from multi-scale local regions. The proposed oper-
ator comprises two components: 1) the offsets estimation module and
2) the pixel-specific filter weight generator. We incorporate the DDF
into a lightweight encoder-decoder-based deblurring architecture to ver-
ify the performance gain. Extensive experiments conducted on the Go-
Pro, HIDE, Real Blur, SIDD, and DND datasets demonstrate that the
proposed method offers significant improvements over the state-of-the-
art in accuracy as well as generalization capability. Code is available at:
https://github.com/ZHIQIANGHU2021/DecomposedDynamicFilters

1 Introduction

Dynamic scene motion deblurring aims to rehabilitate an original sharp image
from a blurry image caused by camera shakes, moving objects, or low shutter
speeds. Blur artifacts significantly degrade the quality of captured images, which
is harmful to many high-level vision applications, e.g., face recognition systems,
surveillance, and autonomous driving systems. Therefore, the accurate and ef-
ficient technique of eliminating blurring artifacts and recovering sharp images
is highly desired. To handle the blind motion deblurring problem, many con-
ventional approaches attempt to estimate the blur kernel via some hand-crafted
priors [1–7]. However, estimating a satisfactory blur kernel remains a challenging
computer vision problem. Such hand-crafted priors can hardly generalize well to
complex real-world examples, which results in degraded performance. To address
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Fig. 1. The vanilla convolution and the proposed DDF. As for DDF, both the offsets
and filter weight are adaptively predicted from multi-scale local regions. The red squares
are the sampling positions and different colors of cubes indicate the spatially-varying
filters of DDF.

these challenges, many deep learning-based approaches [8–16] try to utilize the
neural network to deblur images in an end-to-end manner and significantly im-
prove the performance. In particular, among the architectures, the coarse-to-fine
scheme has been widely employed to restore the blurred image at either multiple
scales (MSs) [8–10,12] or multiple patch (MPs) levels [11,13–16]. However, these
methods usually employ a vanilla convolution filter as the base module, which
suffers from two main issues in motion deburring tasks:
1) It is difficult to handle large variations in motion magnitude. More specifically,
the identical geometric shape or receptive fields of vanilla convolution filters are
applied to different pixels of an image. However, the magnitude of motion blur
appears diversely in different regions (e.g., moving vehicle pixels vs. sky). To
tackle this problem, extremely deep networks and multi-scale architectures have
been exploited to enhance the generalization ability to solve the large variance of
motion problems. Consequently, this kind of approach suffers from ultra-heavy
computational complexity and is hard to be deployed on lightweight devices,
e.g., smartphones and self-driving cars.
2) The weights of the vanilla convolution filters are also content-agnostic as
shown in Fig. 1(a), regardless of the texture information of the local region. A
spatially shared filter could be sub-optimal for the task of extracting feature
across all pixels. In addition, once the network has been trained, the identical
filters are utilized across different images, leading to ineffective feature extraction
results.

To tackle the problems mentioned above, in this work, we focus on the design
of efficient and adaptive filtering modules, dubbed as Decomposed Dynamic
Filter (DDF), which is illustrated in Fig.1(b). DDF decouples a conventional
convolution filter into offsets and weights adaptive filters. The proposed DDF
consists of two major components:
1) The offsets estimation module, which could learn from local multi-scale fea-
tures, and generate the optimal filter offsets. The proposed module can be trained
end-to-end without explicit supervision. The deformable convolution [17,18] has
been proposed to adapt to local image geometry and enlarge the receptive field
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without sampling extra pixels. However, the offsets estimator of deformable con-
volution is merely a single-layer structure. Consequently, it does not perform well
in large motion situations, which frequently occur in dynamic scenes. To address
this issue, we propose a novel adaptive offsets estimation module, that can gen-
erate pixel-level representative offsets across the multi-scale spatial space. The
proposed offsets estimator naturally solves the large motion problem by captur-
ing long-range dependencies from multi-scale feature regions.
2) The pixel-specific filter weight generator. The weight of DDF is dynamically
reconstructed by a linear combination of filter basis with assembling coefficients.
Both the filter basis and the assembling coefficients are self-adaptively learned
from multi-scale local regions by lightweight sub-networks. In contrast to the
dynamic filter-based method [19, 20], which explicitly predicts all pixel-specific
filter weights from feature maps, our method achieves a better tradeoff between
performance and memory usage. Finally, the learned weight and offsets are com-
bined as a dynamic filter to extract the adaptive feature for the motion deblurring
task. Deploying the proposed DDF for the motion deblurring network enables
us to design a compact structure for the network, which a conventional net-
work [9,11,13] cannot achieve without stacking a large number of subnet blocks.
Overall, our contributions can be summarized as follows:

– We proposed a novel adaptive operator module DDF, which is capable of
learning the sampling positions and filter weights at the same time. Adap-
tively solve the motion variation problem. Moreover, the dynamic feature of
DDF enables us to design an effective network structure without sacrificing
accuracy.

– We conducted extensive ablation evaluations on multiple benchmarks and
confirmed that the spatial adaptability of DDF could empower various vanilla
networks e.g., U-Net [21], and achieve state-of-the-art performance.

– To consolidate the generalization capability of DDF, and verify its effec-
tiveness as a plug-and-play adaptive operator, we also plug it onto baseline
networks for the real image noise removal task, which significantly improves
the performance.

2 Related Works

2.1 Single-Scale Deep Image Deblurring

The single-scale approaches [22–24] aim to recover blurred images in an end-
to-end manner. For instance, DeblurGAN [22], the adversarial learning algo-
rithm, has been adopted with multiple residual blocks to restore the sharp im-
age. DeblurGAN-v2 [23] advanced the DeblurGAN [22] by employing a much
deeper architecture with an encoder-decoder architecture. However, the GAN-
based methods often introduce unexpected artifacts into the image and make
it hard to handle large motion situations. Yuan et al. [24] utilized optical flow
information to guide deformable convolutions [18] offsets generation process.
However, optical flow information is not always available for real-world applica-
tions.
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2.2 Multi-scale, Multi-patch-based Approaches

Multi-scale approaches have been verified to be an effective direction in image
restoration scenarios. The pioneering work, Nah et al. [8] proposed a multi-scale
deblurring network, which initiates from a coarse scale and then progressively
deblurs the image at a finer scale. Tao et al. [9] proposed SRN, a scale-recurrent
network responsible for aggregating features from different scales. The motion
information from the previous coarser scale can be utilized for the following
processing. Cho et al. [25] proposed MIMO-UNet, which employs a multi-scale
U-Net structure to deblur the image in a coarse-to-fine strategy. The approach
in [10] proposed a sharing method that takes a different level of blurs in each
stage into consideration. Zhang et al. [11] introduced a multi-patch hierarchical
scheme (DMPHN) to keep spatial resolution without any image down-sampling
operation. The MPRNet [13] combines the multi-patch hierarchical structure
with a global attention mechanism to further advance the state-of-the-art.
However, these methods usually adopt vanilla convolution kernels and consist of
multiple large subnetworks, which lead to a long process time. Recently, vision
transformer (ViT) with the ability of long-range dependency modeling, has
shown promising performance in image restoration tasks [26–28]. However, as
suggested in [29], the execution time of SwinIR [28] is approximately 1.99s on
GoPro dataset, which is unacceptable for real-time applications. In contrast, we
attempt to empower the lightweight network with pixel-adaptive ability, result-
ing in a lighter network for real-world applications.

2.3 Dynamic Filters

Image level dynamic filters predict filter weight based on input features at
the image level. In particular, DyNet [30], DynamicConv [31], and CondConv
[32] predict coefficients to combine several expert filters by employing attention
mechanisms. However, the dynamic weights are generated at the image scale,
making it hard to handle the motion deblur problem, which appears at pixel-
level.
Pixel level dynamic filters [17–20, 33–42] further extend the adaptiveness
to the spatial dimension by using a per-pixel dynamic filter. The filter weights
are dynamically predicted based on the input features. Deformable convolutions
[17,18] attempt to learn an offsets map at position level, to adapt to the geometric
variations, while fixing the weight in kernels. Su et al. [19] proposed to adaptively
generate pixel-specific [20] filters on an input image. CARAFE [33,34] proposed
an adaptive operator for feature map upsampling, where an auxiliary branch is
utilized to predict a 2D filter at each pixel. However, these channel-wise shared
filters are hard to capture cross-channel information leading to the sub-optimal
result. Furthermore, various dynamic filter-based methods have been applied
to facilitate computer vision tasks, such as video frame interpolation [35], video
denoising [36], super-resolution [37,38], semantic segmentation [39,40], and point
cloud segmentation [41,42].
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Fig. 2. The learning framework of DDF, which consists of two components: 1) The
offsets estimator and 2) the pixel-specific filter weight generator.

However, the abovementioned methods directly predict all the parameters of
dynamic filters, which require a large amount of memory for restoring the gra-
dient in the backpropagation process. In contrast, our method learns to predict
the dynamic pixel-adaptive convolution kernels in a memory-efficient manner
and also inherits merits of pixel adaptive paradigm, detailed comparison results
are in Chapter 3.4.

3 Our approach

3.1 Overview

The success of Dynamic Convs [17–20,33,34] suggests that adaptively predicting
the weight of filters at run-time improves the accuracy. However, it may lack the
ability to dynamically adapt to the geometric variations and local image patch
textures, at the same time. To this end, we propose DDF, such an operator
enjoys benefits from modeling both geometric variations and local textures. The
learning framework of DDF is shown in Fig. 2. In this section, we first revisit the
general concept of dynamic convolutions, and then we introduce the architecture
of the proposed DDF in detail.
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3.2 Decomposed Dynamic Filters

We initiate from introducing the vanilla convolutions to make the definition of
the proposed DDF. Let X ∈ RH×W×C denote the input feature map, where
H,W,C represent its height, width, and channel numbers, respectively. Xi,j ∈
RC is the feature vector inside X at position i-th row and the j-th column.
We also use Mδ

Xi,j ∈ Rδ×δ×C represents the size- δ square region centered at
i, j inside cube tensor X. Hence, the conventional vanilla convolution can be
expressed as

X′
i,j = F

(
Mδ

Xi,j
;Θ

)
, (1)

where we employ F to represent the convolution operation, X′ is the output
feature map, δ refers to the kernel size, and the convolution filter parameter Θ
remains the same across all the pixels over the image. In contrast, the proposed
pixel-adaptive operator DDF is conditioned on the corresponding local region of
feature map X, which is formulated as

X̂i,j = F
(
Mδ′

Xi,j
;ΘDDF | Mδ′

Xi,j

)
, (2)

where X̂ is the output feature map generated by DDF, the parameter ΘDDF

of DDF is composed of two indenpendent part: 1) the pixel-specific filter weight

D, which consists of a list of spatially-varying filters {Di,j} ∈ RK2×C , where

i ∈ {1, 2, . . . ,H}, j ∈ {1, 2, . . . ,W}; 2) the adaptive offsets S, {Si,j} ∈ RK2×2,
where i ∈ {1, 2, . . . ,H}, j ∈ {1, 2, . . . ,W}, and K is the kernel size. To handle
large motion variations for all the pixels and enable the DDF to see a larger region
of the corresponding feature area. We utilize a set of K ×K atrous convolution
filters {W r}nr=1 with dilated rate r to extract features for the following filter
predicting task. δ′ refers to the maximum receptive filed of atrous convolution
filters set {W r}nr=1, and calculated by δ′ = K+(K−1)(r−1). More specifically,
the proposed DDF is represented as

X̂i,j,k=
∑

(u,v)∈∆K

Di,j,u+⌊K/2⌋,v+⌊K/2⌋,kXi+u+∆x
u+⌊K/2⌋,v+⌊K/2⌋
i,j ,j+v+∆y

u+⌊K/2⌋,v+⌊K/2⌋
i,j ,k

,

(3)
where ∆K ∈ Z2 indicates the set of sampling positions for convolution op-
eration, written as ( × is Cartesian product) ∆K = [−⌊K/2⌋, · · · , ⌊K/2⌋] ×
[−⌊K/2⌋, · · · , ⌊K/2⌋], and {∆xi,j , ∆yi,j} ∈ Si,j are the learnable offsets at hor-
izontal and vertical directions, respectively. k is the channel index, since we use
depth-wise convolution each kernel in D has C channels, instead of Cin × Cout.
Our work aims to design a filtering operator with content-adaptive property. In
contrast to vanilla content-agnostic convolution operator, the proposed dynamic
filters leverage two meta branch modules to learn the parameter of Di,j and Si,j

from the local feature region, which is formulated as follows:

Di,j = Φ
(
Mδ′

Xi,j
; θD

)
(4)
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Si,j = Ψ
(
Mδ′

Xi,j
; θS

)
, (5)

whereΦ(·) andΨ(·) are the meta generation networks parameterized by θ, which
are responsible for the filter weight learning and offsets learning, respectively.
We will give more detailed information in the following sections.

3.3 The Offsets Estimation Module

The deformable convolution [17,18] merely employs a one-layer vanilla convolu-
tion with an identical receptive field to estimate the offsets map, for the entire
input feature. However, the same receptive field cannot handle large motion
variation for all the pixels, leading to sub-optimal offsets estimation results.
Furthermore, the meaningful context information is hard to be captured with
the limited receptive field. To address this issue, we propose a multi-scale dy-
namic offsets estimator, which enables the DDF to see a larger region of the
corresponding feature area and generate the optimal offsets. Our offsets estima-
tor Ψ(·) is composed of two parts: the offsets extractor and the offsets refiner
arranged in sequence.
The Offsets Extractor
The atrous convolution has been verified to be a powerful operator for enlarging
receptive field. To this end, our offset estimator Ψ(·) first utilize a set of K ×K
atrous convolution filters {W r}nr=1with dilated rate r to extract n set corre-

sponding multi-scale offset Ŝ =
{
Ŝ0
i,j , . . . , Ŝ

n−1
i,j | Ŝij ∈ RK×K×2

}
along with

the modulation scalar ∆m =
{
∆m0

i,j , . . . ,∆mn−1
i,j | ∆mij ∈ RK×K

}
. Because

the modulation scalar ∆m, which was introduced in Deformable ConvNets v2,
could evaluate the reliability of each K ×K offsets, so we feed them into learn-
able guided refiner to decide the final offsets Sij for the position i, j, from the
multi-scale candidate offsets.
The Offsets Refiner
To adaptively select the offsets from generated N -set candidates, we also design
a sub-module namely offsets refiner. Intuitively, the larger confidence value indi-
cates a better offset estimation result. To this end, the learnable guided refiner
decides the final offsets by selecting the one with the maximum confidence value
from candidates. We use G ∈ RK×K to denote the refined index, given the can-
didate modulation scalar set ∆m ∈ RK×K×n. For each position (u, v) in the
spatial domain, we have

Gu,v = argmax
(
∆m0

u,v,∆m1
u,v, · · · ,∆mn−1

u,v

)
, (6)

where argmax(·) generates the index for the maximum value. So values in the
refined index range from 0 to n − 1 and indicate the index of offsets, which
should be chosen for the corresponding positions. However, the argmax(·) is not
continuous, so the gradient cannot be achieved. To solve this problem, we em-
ploy the softmax with temperature to obtain the gradient for argmax(·) through
backward propagation. As detailed in Eq. 7, ζ is the extra noise sampled from
Gumbel (0, 1) distribution, and τ is the temperature parameter which controls
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Fig. 3. The architecture of DDF-UNet (a) with DDF Bottleneck module (b), and DDF-
Upsampling module (c). The DDF-UNet is a unified framework, suitable for various
image restoration tasks, e.g., real world image denoise.

the distribution, and when the τ increases, the distribution becomes more uni-
form, as the τ approaches 0, the distribution becomes one-hot.

Gj
u,v =

e(G
j
u,v+ζ)/τ∑n−1

m=0 e
(Gm

u,v+ζ)/τ
j ∈ [0, n− 1] (7)

Therefore, the refiner index module can be trained by the loss function and yield
the optimal offsets with respect to different scales for each pixel.

3.4 The Pixel-specific Filter Weight Generator

The previous dynamic filter-based methods proposed to generate pixel-adaptive
filter weight from the local feature. However, generating such a large number of
filters (Cin × Cout × K × K) cause extremely large memory usage, where Cin

and Cout are the input channel number and output channel number, respec-
tively. Since each gradient of pixel filter must be saved into memory when doing
backpropagation (e.g., input feature map with size H ×W ×Cin, the gradients
size is H × W × Cin × Cout × K × K ). Thus, the image-level dynamic filters
CondConv [32], DYconv [31] can hardly extend to pixel-level filters.

Motivated by the observation that the traditional convolution filter can be
well represented by a linear combination of low-rank filter basis along with de-
composition coefficients without losing performance [43], we propose the pixel-
specific filter weight generatorΦ(·). The generated dynamic filterDi,j ∈ RK×K×C ,
which could decouple into pixel-adaptive basis Bi,j ∈ Rm×K×K and dynamic co-
efficients Ai,j ∈ RC×m, formulated as Di,j = Bi,jAi,j , m is a pre-defined small
value, e.g., m = 4.
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The work in [43] leaves the coefficients A as the global parameter shared
throughout the image, however, the globally shared filters are hard to capture
cross-channel information. Hence, we propose to enable coefficients A to be a
pixel-specific dynamic parameter and utilized two layers of MLP (MultiLayer
Perceptron) to capture the cross-channel variations. The pixel-adaptive basis B
and dynamic coefficients A are generated as follows:

Bi,j ∈ Rm×K×K = B
(
Mδ

Xi,j
; θB

)
;Ai,j ∈ RC×m = A (Xi,j ; θA) , (8)

where, B(·) and A(·) are the generation network with parameters θB and θA,
respectively. In our experiment, B(·) is implemented by one 1×1 convolution fol-
lowed by a single layer K×K atrous convolution with the dilated rate r = n, the
same as offsets estimator, for the purpose of capturing long-range dependencies.
As for A(·), we only utilized two layers of MLP to generate the coefficients A.
With the help of the decomposed coefficients, the number of parameters is signif-
icantly reduced from (HWKKC) to (CKKm+mHW ). Specifically, m can be
set to a small value, e.g., m = 1, relatively yielding a (HWKKC) /(HWKK+
HW ) ≈ (C) times reduction of parameters.

4 Experiments

4.1 Datasets

To evaluate the proposed method, we conduct extensive experiments on three
image deblurring benchmark datasets: 1) GoPro [8] which consisting of 3, 214
image pairs, in which 2,103 pairs are utilized for training our model and the rest
1111 pairs are for testing, 2) HIDE [44] contains 2,025 pairs of images, all of
which are used for testing, and 3) RealBlur [45] dataset which consisting of 980
image pairs in RealBlur-R and RealBlur-J test sets, respectively. We train our
models on 2,103 pairs of blurry and sharp images from the GoPro dataset, then
test against all the test sets from three datasets. The average values of PSNR
and SSIM [46] are utilized for performance comparison.

4.2 Implementation Details

Setting. We train our model for 2000 epochs by employing Adam optimizer [47]
with default setting β1 = 0.9, β2 = 0.999 and ϵ = 10−8. The learning rate is set
to be 2×10−4 and exponentially decays to 0 using power 0.3. All parameters are
initialized using Xavier normalization. The batch size is set to 16. We randomly
crop the images into 256×256 patches for training and also utilize horizontal flip
and rotation for image augmentation. Experiments are conducted on the server
with an intel E5-2690 CPU, and 4X NVIDIA Tesla v100 GPUs.
Network Architecture. The architecture of U-Net-based network [21] is il-
lustrated in Fig.3(a). We also propose an extension operator DDF-Bottleneck,
which is shown in Fig.3(b), and a DDF-Upsampling module, as shown in Fig.3(c).
According to the upsampling rate r the number of r2 DDF is used. We utilized
pixel-shuffle [48] to assemble the output features as an upsampling layer.
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Blurred image UNet U-Net + DDF
(Ours)

DCN v2 DDF offsets estimator
(Ours) 

(a) (b)

(c) (d)
UNet + DCN v2

Fig. 4. The illustration of the learned offset (a) and filters (b). As shown in (a), for the
slightly blurred regions, the estimated offsets are approximately uniformly distributed
over the local area, while for the large motion regions, the sampling geometry of the
filter is adjusted adaptively according to the motion blur patterns. The weights of the
filter are also adaptively changed to each local region (b), which consolidates that our
DDF has indeed learned spatial adaptability. (c) Visualization of the learned offsets of
DCN v2 [18] and proposed offset estimator, compared to DCN v2, our offset estimator
could capture a larger region of context information along the motion pattern. (d)
Comparison results of original UNet, UNet equipped with DCN v2, and proposed
DDF-UNet, respectively. Thanks to the spatial-adaptive capability of DDF, the large
motion-blurred patch is better recovered than original-UNet and UNet-DCN v2.

4.3 Evaluation of DDF

Because our DDF module is a plug-and-play operator, to verify its effectiveness
in improving motion deblurring accuracy, we plug it into various deblurring
architectures, such as U-Net and MIMO-UNet [25]. For U-Net, we evaluate two
variants of our model: 1) DDF-UNet which consists of 8 encoder blocks and 8
decoder blocks, respectively, and 2) DDF-UNet+ which consists of 20 blocks for
each encoder and decoder, respectively. The ℓ1 loss is used in our implementation,

which is formulated as L = 1
N

∑N
n=1

∥∥∥Ŷ(n) −Y(n)
∥∥∥
1
, where Y(n) is the n−th

corresponding sharp image, Ŷ(n) is the network output, and N is the number of
sample images in a mini-batch.

The detailed architecture is shown in Fig. 3(a). For MIMO-UNet and MIMO-
UNet+ [25], we replace all the ResBlock in MIMO-UNet [25] with our DDF-
Bottleneck module, and also replace the upsampling layer with our DDF-Upsamping
module, dubbed as DDF-MIMO and DDF-MIMO+, correspondingly. We also
use the same loss function: multi-scale frequency reconstruction (MSFR) loss,
from the original work [25]. Embedding the DDF module contributes to re-
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Table 1. Quantitative comparisons on GoPro [8], HIDE [44], and RealBlur [45] dataset.
Our methods and the best results are highlighted.

GoPro [8] HIDE [44] RealBlur-R [45] RealBlur-J [45] Param. MACs Time
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM (M) (G) (s)

DeblurGAN [22] 28.70 0.858 24.51 0.871 33.79 0.903 27.97 0.834 N/A N/A N/A
DeepDeblur [8] 29.08 0.914 25.73 0.874 32.51 0.841 27.87 0.827 11.72 4729 1.290
Zhang et al. [14] 29.19 0.931 − 35.48 0.947 27.80 0.847 N/A N/A N/A
DeblurGAN-v2 [23] 29.55 0.934 26.61 0.875 35.26 0.944 28.70 0.866 N/A N/A N/A
SRN [9] 30.26 0.934 28.36 0.915 35.66 0.947 28.56 0.867 8.06 20134 0.736
Shen et al. [44] − 28.89 0.930 − − N/A N/A N/A
Gao et al. [10] 30.90 0.935 29.11 0.913 − − 2.84 3255 0.316
DBGAN [49] 31.10 0.942 28.94 0.915 33.78 0.909 24.93 0.745 N/A N/A N/A
MT-RNN [12] 31.15 0.945 29.15 0.918 35.79 0.951 28.44 0.862 2.6 2315 0.323
DMPHN [11] 31.20 0.940 29.09 0.924 35.70 0.948 28.42 0.860 7.23 1100 0.137
SAPHN [16] 31.85 0.948 29.98 0.930 − − N/A N/A N/A
SPAIR [50] 32.06 0.953 30.29 0.931 − 28.81 0.875 N/A N/A N/A
HINet [15] 32.71 0.959 − − − 88.67 2401 0.247
MPRNet [13] 32.66 0.959 30.96 0.939 35.99 0.952 28.70 0.873 20.1 10927 1.023

Original-UNet 28.94 0.912 27.42 0.873 32.51 0.898 26.80 0.801 4.1 120 0.031
DDF-UNet (Ours) 30.31 0.934 28.34 0.915 33.72 0.914 27.40 0.829 6.5 170 0.041
DDF-UNet+ (Ours) 31.02 0.940 28.92 0.917 34.59 0.938 27.62 0.833 13.2 420 0.101
MIMO-UNet [25] 31.73 0.951 29.28 0.921 35.47 0.946 27.76 0.836 6.8 944 0.133
DDF-MIMO (Ours) 32.68 0.958 29.72 0.928 35.62 0.948 27.98 0.849 9.2 1100 0.137
MIMO-UNet+ [25] 32.45 0.957 29.99 0.930 35.54 0.947 27.63 0.837 16.1 2171 0.290
DDF-MIMO+ (Ours) 32.89 0.961 30.99 0.931 36.10 0.952 28.76 0.874 19.2 2370 0.320

markable performance gains for both architectures, as detailed in Table 1, e.g.,
w/ DDF in DDF-UNet lead to a 1.37 dB improvement in PSNR on the Go-
Pro dataset, a toy example is shown in Fig. 4. For DDF-MIMO, a 0.95dB gain
in PSNR is verified by plugging the DDF onto MIMO-UNet [25] architecture.
These results consolidate that, the spatial adaptability of DDF could empower
the vanilla network, and achieve better performance.

4.4 Comparisons with State-of-the-art Methods

We extensively compare our proposed method with state-of-the-art dynamic
scene motion deblurring approaches, including DeepBlur [8], DeblurGAN v1,
v2, [22, 23], SRN [9], Gao et al. [10] and DMPHN [11], MPRNet [9] and so on.
The quantitative results on the GoPro [8], HIDE [44], and RealBlur [45] test
sets are listed in Table 1. The visual comparison results are illustrated in Fig.
5 and Fig. 6. As illustrated in the images, our method outperforms the other
approaches in terms of deblurring quality, and handles large dynamic motion blur
scenes quite well. It can be seen from the quantitative results that our DDF-
MIMO+ outperforms the previous state-of-the-art MPRNet [13], in terms of
PSNR, ours DDF-MIMO+ is ranked first, surpassing the best competitor [13].
In terms of inference-time, the proposed DDF-UNet can deblur one image at
41ms. In contrast, the stacked architectures, e.g., SRN [9], DMPHN [11], and
SAPHN [16] suffer from expensive computational costs because they need to
stack more layers for achieving larger receptive fields. Our method is 17.9Ö and
31Ö faster than SRN [9] and DeepBlur [8], respectively. The experimental results
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Table 2. Ablation study based on GoPro [8] testing set for using different compo-
nent combinations in DDF-UNet, where DCN v2 represents Deformable Convolution
V2 [18]. DDF Offsets means the DDF offsets estimation module, while DDF Weight in-
dicates the DDF pixel-specific filter weight generator. The best result is highlighted.

Version Ori-UNet DCN v2 DDF Offsets DDF Weight DDF-Upsampling PSNR (dB)

Version 1 ✓ 28.94
Version 2 ✓ ✓ 29.21
Version 3 ✓ ✓ 29.67
Version 4 ✓ ✓ ✓ 30.10
Version 5 ✓ ✓ ✓ ✓ 30.31

Table 3. Real Image Denoising results on the SIDD [51] and DND [52] datasets. Our
methods and the best results are highlighted.

SIDD [51] DND [52]
Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DnCNN [53] 23.66 0.583 32.43 0.790
CBM3D [54] 25.65 0.685 34.51 0.851
CBDNet [55] 30.78 0.801 34.51 0.851
RIDNet [56] 38.71 0.914 38.06 0.942
DANet [57] 39.47 0.918 39.59 0.955
SADNet [58] 39.46 0.957 39.59 0.952
CycleISP [59] 39.52 0.957 39.56 0.956
MIRNet [60] 39.72 0.959 39.88 0.956
MPRNet [13] 39.71 0.958 39.80 0.954
NBNet [61] 39.75 0.959 39.89 0.955

Original UNet 37.02 0.895 37.80 0.947
DDF-UNet (Ours) 39.62 0.957 39.81 0.954
DDF-UNet+ (Ours) 39.82 0.959 39.94 0.956

demonstrate the optimal trade-off between the performance and computational
complexity of the proposed method.

4.5 Ablation Studies

Analyses of the spatial adaptability. As illustrated in the Fig. 4, DDF han-
dles large dynamic motion blur scenes quite well. We observe that the result of
UNet suffers from artifacts and deficient deblurring results depicted in Fig. 4(d).
In contrast, owing to the proposed DDF module, our model is capable of restor-
ing sharper boundaries and richer details in the region containing large motion
blur. In addition, according to the visualization of the offsets estimation result
in Fig. 4(a), for the background region, the estimated offsets are approximately
uniformly distributed in the area, while for the large motion regions, we can see
that the sampling geometry of the filter is adjusted adaptively according to the
motion blur patterns. Moreover, as shown in Fig. 4(b), the weights of filters are
also adaptively changed for each local region, which demonstrates that our DDF
has been empowered with spatial adaptability.
The effectiveness of offsets estimator and refiner. To demonstrate the
effectiveness of each component in the proposed DDF including the adaptive
offsets prediction module, and the kernel weight perdition module, we compare
the results with several versions. The experimental results are listed in Table 2.
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Blurry Image

Gao et al. [10]SRN[9]Blurry

DMPHN [11] MPRNet [13] DDF-MIMO+
(Ours)

MIMO-UNet+ [25]

DeblurGAN v2 [18]

Fig. 5. Visual comparisons for the GoPro dataset [8].

Blurry Image Gao et al. [10] DMPHN [11] MIMO-UNet+ [25] MPRNet [13] DDF-MIMO+
(Ours)

Fig. 6. Visual comparisons for the HIDE [44] dataset.

Version 1 is the original U-Net, as the baseline. Version 2 is U-Net equipped
with Deformable ConvNets V2 [18], Version 3 is replaces deformable convo-
lution with the adaptive offsets prediction module. It achieves an increase of
0.46 dB in PSNR, which means that the offsets adaptive adjustment ability is
enhanced by the proposed adaptive offsets prediction module. Compared with
deformable convolution, which could only capture a limited area of motion pat-
tern as shown in Fig. 4(c), the proposed DDF demonstrates stronger fitting
capabilities.
The effectiveness of pixel-specific filter weight generator.To further eval-
uate the effectiveness of the pixel-specific filter weight generator, we also propose
Version 4 test, which incrementally adds the filter weight generator to DDF.
Thanks to the adaptive adjustment of weights, the PSNR has further increased
by 0.43 dB.
The effectiveness of the DDF-Upsampling module. Finally, we further
add the DDF-Upsampling module into the UNet as the Version 5 test and get
a 0.21 dB performance gain, which consolidates the effectiveness of the DDF-
Upsampling module.

4.6 Generalization to Real Image Noise Removal Task

To demonstrate the generalization capability of DDF, we also applied the DDF-
UNet+ to real-world image noise removal task. The real-world noise removal
aims at restoring high-quality images from noisy inputs, which are spatially
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DDF-Unet+ (Ours)
37.09 dB

CBM3D [54]
25.75 dB

DnCNN [53]
20.76 dB

CBDNet [55]
28.84 dB

RIDNet [56]
35.57 dB

CycleISP [59]
36.71 dB

SADNet [58]
36.70 dB

DANet[57]
36.74 dB

MPRNet[13]
36.98 dB

Noisy
18.25 dB

Fig. 7. Visual comparisons for the SIDD [51] dataset.

non-uniformly distributed. Thus, the spatially-adaptive operator is a natural
method to solve such kinds of problems. The real-world noise removal dataset
SIDD [51] and DND [52] are used for evaluation. We train our model by using
320 high-resolution images of the SIDD dataset and evaluate the test sets of
SIDD [51] and DND [52]. The quantitative results are listed in Table 3. We
compare DDF-UNet+ with state-of-the-art denoising methods, including the
CBM3D [54], CBDNet [55], RIDNet [56], SADNet [58], DnCNN [53], CycleISP
[59], NBNet [61], DANet [57], MIRNet [60], and MPRNet [13]. Our DDF-UNet+
achieves a 39.82 dB on PSNR for SIDD [51] dataset, and outperforms the best
methods, in our experiments. The visualization results of the SIDD dataset are
shown in Fig. 7. The results indicate that the DDF could handle the spatial-
variance problem, and improve the performance.

5 Conclusion

In this paper, we proposed a new adaptive plug-and-play operator DDF for the
challenging task of handling large motion blur variations across spatial loca-
tions. The weights and the offsets of DDF are adaptively generated from the
local features by proposed meta networks, which are trained end-to-end without
explicit supervision. We have also proposed a U-Net-based architecture powered
by our proposed DDF and DDF-Upsampling module. Extensive experimental
results demonstrated that the proposed DDF could empower the baseline to
achieve better performance. Furthermore, the proposed DDF can be generalized
to other computer vision tasks as a plug-and-play adaptive operator, e.g., real
image noise removal task, and also achieve state-of-the-art performance.
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