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Abstract. RGB-D salient object detection (SOD) is used to detect the
most attractive object in the scene. There is a problem in front of the
existing RGB-D SOD task: how to integrate the different context infor-
mation between the RGB and depth map effectively. In this work, we pro-
pose the Siamese Residual Interactive Refinement Network (SiamRIR)
equipped with the encoder and decoder to handle the above problem.
Concretely, we adopt the Siamese Network shared parameters to en-
code two modalities and fuse them during decoding phase. Then, we
design the Multi-scale Residual Interavtive Refinement Block (RIRB)
which contains Residual Interactive Module (RIM) and Residual Refine-
ment Module (RRM). This block utilizes the multi-type cues to fuse and
refine features, where RIM takes interaction between modalities to inte-
grate the complementary regions with residual manner, and RRM refines
features during fusion phase by incorporating spatial detail context with
multi-scale manner. Extensive experiments on five benchmarks demon-
strate that our method outperforms the state-of-the-art RGB-D SOD
methods both quantitatively and qualitatively.

Keywords: RGB-D salient object detect · Multi-scale interactive · Siamese
Network.

1 Introduction

Salient object detection (SOD) aims to segment the most attractive object from
the scene [1–3]. As a pre-processing task, it plays an important role in computer
vision tasks, such as semantic segmentation [4–6], object detection [7, 8], person
re-identification [9, 10], and object tracking [11, 12]. In the past years, various
SOD methods have been proposed and achieved promising performances with
only take RGB as the input [13–18], but may suffer from challenges when on
the indistinguishable and complex scenarios. Alternatively, we can obtain some
complementary informations from depth maps. In fact, owing to the popular-
ity of depth sensing technologies and the importance of the depth information,
RGB-D SOD has attracted the attention of researchers, and various RGB-D
SOD methods have been designed to detect the salient object from the RGB im-
age and corresponding depth maps [19–24]. Traditional RGB-D SOD methods
adopted the image priors with hand-crafted feature to detect the saliency object
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Fig. 1. The architecture of three fusion manners. Early-fusion methods directly con-
catenate two modalities. Middle-fusion methods utilize two-stream architecture to fuse
two modalities. Late-fusion methods fuse features as a post-processing step.

in scenes, including contrast [19], shape [25] and so on. However, the hand-crafted
features cannot be represented well to the complex scenario, which limited the
performance of these methods. Recently, benefiting from the progress of Con-
volutional Neural Networks (CNNs) and the representation ability of features,
several CNN-based RGB-D SOD approaches were proposed [26, 27]. Depending
on merging the RGB and depth map features in different stages, these methods
can be divided into three categories: early-fusion, middle-fusion and late-fusion,
the architectures of these manners are shown in Fig. 1. Early-fusion schema
merged the RGB and depth to a four-channels input and fed it into network
directly [28, 29]. While middle-fusion methods usually designed a two-branch
architecture network to fused the features [27, 23]. Late-fusion [30] methods ex-
tracted the features of RGB and depth map separately, and fuse these features
as a post-processing step.

Though above middle-fusion methods have achieved promising performance,
there is still a problem in front of them, which is how to integrate the different
context information between the RGB and depth map effectively. To this end,
we propose the Siamese Residual Interactive Refinement Network (SiamRIR)
with residual manner to fuse two modalities and refine the features by incorpo-
rating the cues from encoder. Specifically, we adopt the Siamese Network as the
encoder since it contains less parameters. Then, the Context Enhancement Mod-
ule (CEM) is proposed to utilize the multi-scale features to improve the global
context information. After that, we design a Residual Interactive Refinement
Block (RIRB) to model the interactions during two modalities, which contains
Residual Interactive Module (RIM) and Residual Refinement Module (RRM).
The RIM takes interaction between the RGB and depth features to integrate
the complementary regions, and RRM incorporates the spatial details which
extracted by the encoder to refine the features.

In summary, the contributions of this paper are as follows:

– We propose a Siamese Residual Interactive Refinement Network (SiamRIR),
which considers the different context cues. Our SiamRIR explores the com-
plementary regions by taking interaction between modalities and refines the
features by incorporating the spatial detail context.
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– We design Multi-Scale Residual Interactive Refinement Block (RIRB) as
decoder with residual manner to fuse the multi-type context. In this process,
the complementary regions between two modalities are utilized by RIM, and
the spatial details are explored by RRM with multi-scale manner, which
can refine the features during the fusion phase, therefore the performance of
SiamRIR is improved.

– We conduct extensive quantitative and qualitative evaluations on five RGB-
D SOD benchmarks, which illustrates that SiamRIR outperforms previous
state-of-the-art RGB-D SOD approaches.

2 Related Work

2.1 RGB-D Salient Object Detection

RGB-D salient object detection aims to detect the object in a scene that the
human would be most interesting in. Peng [31] proposed a single-stream archi-
tecture to fuse the RGB and depth directly as inputs to predict the saliency
maps. Song [22] adopted the multi-scale fusion to combine low-level, mid-level
and high-level feature to calculate the saliency maps. Liu [32] fed the RGB-D
four-channels into network to generate multiple level features. Then a depth
recurrent network is applied to render salient object outline from deep to shal-
low hierarchically and progressively. The fusion strategy of these methods is
called early-fusion, which merge the RGB and depth as single input of net-
work. In contrast to early-fusion, middle-fusion can make full fusion of RGB and
depth, thus there are many methods apply this strategy. Liu [33] proposed a
two-stream network to fuse features from different level by directly adding the
features. Zhang [34] designed a bilateral attention network with a complemen-
tary attention mechanism to better utilize salient informations in foreground
and background. Huang [35] considered corresponding semantic information to
distinguish the informative and non-informative regions in the input RGBD im-
ages. Chen [36] utilized RGB images to predict a hint map, then used hint map
to enhance the depth map, this approach resolved the low-quality issue of depth
maps. Wang [37] added an adaptive weights to depth maps to reduce the negative
effects of unreliable depth maps.

Different from above approaches, our method considers the multi-type cues
during fusion stage including the different context between two modalities, and
spatial detail context from the features extracted by encoder.

2.2 Siamese Network

In order to reduce the number of parameter of the model, several works utilized
Siamese network to extract the features of RGB and depth. Siamese network was
proposed by Bromley [38] for hand-written signature verification. In their paper,
two uniform networks were designed to deal with different signatures, where
these two networks shared the same parameter. During the learning process,
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Fig. 2. The overall architecture of Siamese Residual Interactive Refinement Network
(SiamRIR).

the features were constrained by the distance measure. Since it is suitable for
calculating the distance from two similar inputs, Siamese network was further
applied in sundry tasks where the inputs were similar, such as Chan [39] proposed
a novel siamese implicit region proposal network with compound attention for
visual tracking, and Fan [40] designed a multi-stage tracking framework, which
consists of a sequence of RPNs cascaded from deep high-level to shallow low-level
layers in a Siamese network. Recently, several works adopted Siamese network
to salient object detection. For example, Zhao [41] proposed a lightweight and
real-time model with a simple initialization strategy, which can make full use of
the pre-trained model on ImageNet [42] to extract the discriminative features
and utilized the depth to guide the fusion between RGB and depth.

Different from above RGB-D SOD methods, in this work, the Siamese net-
work is applied to take advantage of the complementary regions between RGB
and depth, rather than measuring distance. Specifically, we concatenate the RGB
and depth along the batch dimension and fed it into the network [43], after that
we fuse the features during decoding stage to achieve the interactive between
RGB and depth in stead of measuring distance.

3 Approach

3.1 Architecture Overview

The architecture of the proposed framework is illustrated in Fig. 2. We utilize
two backbones to extract the features from two modalities, where the parameters
in these two backbones are shared (i.e., Siamese Network). To be concise, we
define the features of RGB branch in the encoder as FR

i (i ∈ {1, 2, 3, 4}) and the
features of depth map in the encoder as FD

i (i ∈ {1, 2, 3, 4}). Then the features
are fed into Context Enhance Module (CEM), to enhance the global context of
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the features by different receptive fields. After that, we design a Residual Inter-
active Refinement Block (RIRB) to decode features from the CEM. Specifically,
the features are first input to Residual Interactive Module (RIM) to explore the
complementary regions by taking interactive between the RGB and depth map
with residual manner. Then, Residual Refinement Module (RRM) takes the fea-
tures from RIM and encoder as inputs to refine the features with integrating the
spatial information from the encoder. Finally, in order to reduce the parameters
we adopt the element-wise addition to fuse the output of RRMs in the one RIRB
and the output of CEMs, then concatenate these features as the prediction. In
the following contents, we will describe the details of each components in the
architecture.

3.2 Context Enhance Module (CEM)

The global context is useful for SOD method to detect the object. Therefore
we design Context Enhance Module (CEM) to enhance the global context of
the features from the encoder. Specifically, we fed the output of Conv4 (i.e.,
FR
4 , FD

4 ) into CEM, then we utilize four adaptive max pooling with different
sizes to acquire four feature maps with different receptive fields,

Fi = AdaptiveMaxPoolingi(F
j
4 ) (1)

where Fi denote the output of adaptive max pooling, AdaptiveMaxPoolingi is
the adaptive max pooling with different size (i = 1, 5, 9, 13). F j

4 is the input of
CEM (j ∈ {R,D}). After that, we use convolution layer and ReLu to reduce the
numbers of channels for the features to one fourth of F j

4 and up-sample these

features to the size of F j
4 ,

F
j

i =↑ (ReLU(Conv(F j
i ))) (2)

where ReLU(∗) is the ReLU function, Conv(∗) is the convolution layer and ↑ is
the bilinear upsample operation. Finally, we concat these features and add the
input of CEM to it to generate the features which contain the global context,

CEM j = Cat(F
j

1, F
j

5, F
j

9, F
j

13) + F j
4 (3)

where Cat(∗) denotes the concatenate operation. The details of this module are
shown in Fig. 2 (a).

3.3 Residual Interactive Refinement Block (RIRB)

As shown in Fig. 2, the Residual Interactive Refinement Block (RIRB) con-
tains two components, e.g., Residual Interactive Module (RIM) and Residual
Refinement Module (RRM). We embed RIRBs (e.g., RIRB1, RIRB2, RIRB3

represents the first RIRB from left to right) to decode the features, which can
achieve the interactions of two modalities. Specifically, we adopt RIM to cal-
culate the complementary regions between the features of two modalities with
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residual manner. Then, RRM is applied to incorporate the spatial informations
obtained from the encoder to refine the features. In the following context, we
will describe the details of RIM and RRM.

Residual Interactive Module (RIM) In the training process, we utilize the
same ground-truth to supervise the prediction of RGB and corresponding depth
map, the predictions of these two modalities contains consistency. However, the
informations contained in the RGB and the corresponding depth map are dif-
ferent (e.g., RGB contains semantic informations, depth map contains spatial
depth informations), this will lead the network to locate the different regions. In
order to explore the complementary regions between the features of two modal-
ities during decoding phase for adjusting the prediction, we design the Residual
Interactive Module (RIM) with residual manner to interact with the features of
two modalities. For the RIM3, as is shown in Fig. 2 (b), the blue and green lines
represent the feature extracted from RGB (i.e., CEMR), the feature extracted
from depth map (i.e., CEMD), respectively. We firstly adopt the convolution
layer to reduce the channels of features to 256, Sigmoid and BatchNormalization
are used to map the value of features to the range of 0 to 1. Then we subtract the
CEMR from the CEMD to obtain the complementary regions between these
two features,

ComR = ReLU(Bn(Conv(CEMD))) (4)

−ReLU(Bn(Conv(CEMR))) (5)

ComD = ReLU(Bn(Conv(CEMR))) (6)

−ReLU(Bn(Conv(CEMD))) (7)

where Bn(∗) represents the BatchNormalize layer. Then we multiply the FR

and FD by the corresponding Comj(j ∈ {R,D}), the channels of Comj also
be reduced to 256 by convolution layer, which can assign the weights to the
complementary regions between two modalities.

WeightR = ComR ∗ Conv(CEMD) (8)

WeightD = ComD ∗ Conv(CEMR) (9)

RIMR = WeightR + CEMD (10)

RIMD = WeightD + CEMR (11)

Finally, we add the WeightR and the FR together, add the WeightD and the
FD together. The next RIMs (e.g., RIM j

2 , RIM j
1 ) takes the outputs of the

previous RIRB as the inputs. Thus, the final prediction of the saliency map can
be adjusted step by step.

Residual Refinement Module (RRM) Since, there are more semantic con-
text than detailed context in the high-level features, the details in the the RIMR
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and RIMD are unsatisfactory. Hence, we design the Residual Refinement Mod-
ule (RRM) to refine the features by incorporating the features from the encoding,
which contains the spatial detail information. The RRM takes the output of the
RIM and features from the encoder as the inputs, which are extracted from dif-
ferent modalities. It is worth mentioning that, we adopt the multi-scale manner
to explore the detail context contained in different scale features. The architec-
ture of RRM is shown in Fig. 2 (c). Firstly, since the channels of F j

i and RIM j
i

are different, we utilize the convolution layer to decrease the channels of F j
i to

256. After that, we down-sample the F j
i to the size of RIM j

i and up-sample the

RIM j
i to the size of F j

i , respectively.

F̂ j
i =↓ Conv(F j

i ) (12)

R̂IM
j

i =↑ RIM j
i (13)

Then we subtract the F̂ j
i from the RIM j

i and R̂IM
j

i from F j
i respectively, to

locate the redundant regions by incorporating the features from the encoding
between these two modalities.

ReduR
i down = F̂D

i −RIMR
i (14)

ReduD
i down = F̂R

i −RIMD
i (15)

ReduD
i up = FD

i − R̂IM
R

i (16)

ReduR
i up = FR

i − R̂IM
D

i (17)

(18)

where Reduj
i down and Reduj

i up represent the redundant regions which subtract

from different scales, then we multiply the Reduj
i down by F̂ j

i and add the F̂ j
i .

Meanwhile, multiply Reduj
i up by F̂ j

i and add the F j
i .

RRMR
i =↑ (ReduR

i down ∗ F̂D
i + F̂D

i ) (19)

+ReduR
i up ∗ FD

i + FD
i (20)

RRMD
i =↑ (ReduD

i down ∗ F̂R
i + F̂R

i ) (21)

+ReduD
i up ∗ FR

i + FR
i (22)

At last, we add the features of these two different scales as the output of RRM j
i .

3.4 Decoder Network

We integrate the outputs of CEM and RIRB as the prediction of the proposed
method. Concretely, we sum the results of RRM in the same RIRB and sum
the outputs of CEM, respectively. Then, we upsample the outputs of CEM and
RIRBs to the size of ground-truth,

RIRBi =↑ (RRMR
i +RRMD

i ) (23)

CEM =↑ (CEMR + CEMD) (24)
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Notably, in the RIRBs and the features integration stage, we utilize the pixel-
wise addition to integrate the features of two modalities, which can reduce the
parameters of network and avoid the network modeling bias for a modalities.
Inspired by [44] we concat RIRBi and CEM to retain the various levels of
contexts, then convolution layer is adopted to reduce the channels of feature to
1 as the final prediction of out method. Besides, the RIRBi and CEM is also
used to be the coarse maps,

Sf = Conv(Cat(RIRBi, CEM)) (25)

Sa
i = RIRBi (26)

where Cat(∗) represents the concatenate operation, Sf is the final prediction
map of our method and Sa

i denotes the coarse maps to coarsely locate the objects.
The Sf and Sa

i suffer from the same supervision operation to make sure these
maps are consistent.

3.5 Implementation Details

Loss function In salient object detection fields, binary cross-entropy loss is the
classical loss function to calculate the relation between the ground truth and the
predicted saliency map, which is defined as:

ℓ = − 1

H ×W

H∑
i=1

W∑
j=1

[Gij log (Sij)

+ (1−Gij) log (1− Sij)] (27)

whereH,W indicate the height and weight of the image respectively, Gij denotes
the ground truth of the pixel (i, j) and Sij denotes the predicted saliency map
of the pixel (i, j). In order to coarsely detect the results, we utilize the auxiliary
loss ℓiaux (i = 1, 2, 3, 4) at decoder stages. Specifically, we apply 3×3 convolution
layer to decrease the channel of the feature maps to 1. After that, these maps
are fed into bilinear interpolation to up-sample the feature maps to ground truth
size. The total loss function ℓtotal is formulated as:

ℓtotal = ℓf
(
Sf , G

)
+

4∑
i=1

λiℓ
i
aux (S

a
i , G) (28)

where Sf is the final predicted result, λi indicates the weight of different loss we
set λi as {1, 1, 1, 1}, Sa

i represents the coarse maps predicted.

Network Training We apply Pytorch as our training platform. In the training
process, we resize the input image to 384×384, then randomly crop a patch with
the size of 240 × 240. Noticeably, we convert the depth map into three channel
by simple gray color mapping. The module parameters are optimized by Adam
optimization algorithm, with the batch size of 16, the momentum parameter 0.9
and the weight decay to 5e−4. We set the learning rate to 1e−4 and stop training
after 48 epochs.
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(c) GT (d) Ours (e) S2MA (f) D3Net (g) DMRA (i) TANet(h) CPFP (j) MMCI (k) CTMF(a) RGB (b) Depth (l) DF

Fig. 3. Visual comparisons of the state-of-the-art RGB-D SOD methods and our
method. As shown in this figure, the saliency maps generated by our method are closer
to ground-truth than others, especially when the color of object is similar to back-
ground and complex background (e.g., the chameleon in the second row, the street
lights in the fourth row).

4 Experiments

4.1 Datasets

NJU2000 [45] consists of 1985 RGB-D image pairs, which is collected from the
internet, movies and photographs. NLPR [31] contains 1000 RGB-D image pairs
respectively, with diverse scenarios collected by Kinect. Following [23], we select
the 1500 image pairs from NJU2000 and 700 image pairs from NLPR as the
training set. STERE [46] contains 1000 samples collected from internet and the
depth maps are produced by sift flow algorithm [47]. SSD is a small-scale but
high-resolution dataset with 80 image pairs picked up from movies. The last
dataset is SIP [29], which contains 929 high-quality person images.

4.2 Evaluation Metrics

To quantitatively compare our method with other methods, we adopt five widely-
used metrics, i.e., S-measuer (Sα), maximum F-measure (Fmax

β ), maximum E-
measure (Emax

ϕ ) and Mean Absolute Error (M).
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Table 1. Quantitative results of the state-of-the-art method and the proposed method.
The best and second scores are marked with red and blue, respectively. ↑ / ↓ for a metric
means higher/lower value is better.

Dataset Metrics
PCF TANet CPFP DMRA D3Net MCINet ASIF FANet FCMNet SiamRIR
(2018) (2019) (2019) (2019) (2020) (2021) (2021) (2022) (2022) (Ours)

NJU2K

Sα ↑ 0.877 0.878 0.879 0.886 0.895 0.900 0.889 0.899 0.901 0.912
M ↓ 0.059 0.06 0.053 0.051 0.051 0.050 0.047 0.044 0.044 0.039

Emax
ϕ ↑ 0.924 0.925 0.926 0.927 0.932 0.920 0.921 0.914 0.929 0.948

Fmax
β ↑ 0.872 0.874 0.877 0.886 0.889 0.873 0.900 0.892 0.907 0.911

STERE

Sα ↑ 0.875 0.871 0.879 0.886 0.891 0.901 0.869 0.881 0.899 0.908
M ↓ 0.064 0.06 0.051 0.047 0.054 0.042 0.050 0.047 0.043 0.039

Emax
ϕ ↑ 0.925 0.923 0.925 0.938 0.93 0.929 0.926 0.908 0.939 0.943

Fmax
β ↑ 0.86 0.861 0.874 0.886 0.881 0.872 0.894 0.863 0.904 0.899

NLPR

Sα ↑ 0.874 0.886 0.888 0.899 0.906 0.917 0.884 0.913 0.916 0.926
M ↓ 0.044 0.041 0.036 0.031 0.034 0.027 0.050 0.026 0.024 0.023

Emax
ϕ ↑ 0.925 0.941 0.932 0.947 0.946 0.947 0.926 0.951 0.949 0.958

Fmax
β ↑ 0.841 0.863 0.867 0.879 0.885 0.890 0.894 0.885 0.908 0.912

SIP

Sα ↑ 0.842 0.835 0.85 0.806 0.864 0.867 0.373 - 0.858 0.873
M ↓ 0.071 0.075 0.064 0.085 0.063 0.056 0.269 - 0.062 0.054

Emax
ϕ ↑ 0.901 0.895 0.903 0.875 0.910 0.909 0.552 - 0.912 0.914

Fmax
β ↑ 0.838 0.83 0.851 0.821 0.862 0.840 0.250 - 0.881 0.871

SSD

Sα ↑ 0.841 0.84 0.807 0.857 0.858 0.860 0.849 - 0.855 0.877
M ↓ 0.062 0.063 0.082 0.058 0.059 0.052 0.059 - 0.055 0.043

Emax
ϕ ↑ 0.892 0.897 0.852 0.906 0.910 0.901 0.888 - 0.903 0.916

Fmax
β ↑ 0.804 0.81 0.766 0.844 0.834 0.820 0.846 - 0.860 0.851

4.3 Comparisons with State-of-the-art Methods

We compare our method with other state-of-the-art RGB-D SOD methods, in-
cluding PCF[48], TANet [24], CPFP [23], DMRA [49], D3Net [29], MCINet [50],
ASIF [51], FANet [52], FCMNet [53].

Quantitative Evaluation Table 1 illustrates the quantitative evaluation result
in terms of four metrics on five datasets. As shown in Table 1, on the NJU2K
and NLPR dataset, our method achieves the best performance in terms of the
four metrics, on the STERE, SIP and SSD dataset, our method achieves the
best performance in terms of three metrics (i.e., Sα, M and Emax

ϕ ). In addition,
our method achieves competitive results for the SIP dataset (i.e., our approach
ranks second in terms of the four metrics). This indicates the effectiveness of the
proposed approach.

Qualitative Evaluation In order to make the comparisons more intuitive,
we further provide qualitative results. The visual results of our method and
other state-of-the-art are shown in Fig. 3. From Fig. 3, we can find that the
saliency maps generated by DF, CTMF and MMCI is not clear (i.e., the edges
of the salient object are slightly blurred). In addition, the results of DMRA and
S2MA is not accurate (e.g., in the fifth row, the saliency map of DMRA only
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Fig. 4. The features of the RIRBs. From this figure we can observe that the comple-
mentary regions of the features are recovered by RIM and the details of the features
are refined by RRM.

detect one window and S2MA segment the wall as salient object). Moreover, the
CPFP and D3MA are failure when the object is similar to background (e.g.,
D3Net only detect one chameleon in the second, CPFP regard the background
as a part of the dog since the color of background is similar to the head of
the dog). In contrast to the above methods, the saliency maps predicted by our
method are more accurate and clear, especially under the similar and complex
background. Besides, when the quality of depth map is poor our method can
also detect the object accurately (e.g., the sword in the first row). Overall, the
comparisons of quantitative and qualitative illustrate that our method achieve
better performance than other state-of-the-art approaches and is less influenced
by background and the quality of depth maps.

4.4 Ablation Study

To demonstrate the effectiveness of the components in our method, we perform
ablation study on NJU2K, STERE and NLPR, as shown in Tab 2. We first
explore the validity of concat the features from different level decoder as the
prediction. Then, we investigate the effect of RIRB on model performance, which
contains the RIM and RRM. We will make detailed analysis of these factors in
following parts.

Effectiveness of multi-scale features fusion In Tab 2, baseline represents
that we do not concat the features from various level decoder as the predictions,
Sf represents we adopt the Sf as the predictions. By observing the first two rows
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Table 2. Ablation studies with different components. ‘✓’ means adding the corre-
sponding component. ↑ / ↓ for a metric means higher/lower value is better.

Model

baseline ✓ ✓ ✓ ✓ ✓
lf ✓ ✓ ✓ ✓

RRM ✓ ✓ ✓
RIM ✓ ✓
CEM ✓

NJU2K

Sα ↑ 0.881 0.892 0.896 0.908 0.912
M ↓ 0.057 0.050 0.048 0.041 0.039

Emax
ϕ ↑ 0.927 0.937 0.935 0.944 0.948

Fmax
β ↑ 0.872 0.888 0.890 0.903 0.911

STERE

Sα ↑ 0.876 0.887 0.892 0.906 0.908
M ↓ ↓ 0.060 0.052 0.049 0.041 0.039
Emax

ϕ ↑ 0.919 0.926 0.931 0.941 0.943
Fmax
β ↑ 0.853 0.873 0.877 0.897 0.899

NLPR

Sα ↑ 0.897 0.908 0.916 0.920 0.926
M ↓ ↓ 0.033 0.030 0.027 0.025 0.023
Emax

ϕ ↑ 0.941 0.944 0.952 0.954 0.958
Fmax
β ↑ 0.867 0.886 0.894 0.905 0.912

of Tab 2 we can find that the performance in terms of four metrics have declined,
demonstrates that supervise the Sf is useful to improve the performance of
network since Sf contains the multi-scale context informations.

Effectiveness of RIRB In our method, the RIRB consists of two components
which are RRM and RIM, the RRM can explore the complementary regions by
interacting the features of two modalities with residual manner and we adopt the
RIM to refine the features during decoding phase by incorporating the spatial
detail context from the encoder. We can find from Tab 2 that, after embed the
RIM and RRM, the performance of our method is improved. Besides, the results
of different variants to SiamRIR are listed in Tab 3, where Ri(i ∈ {1, 2, 3} repre-
sents there are different number of RIRB in the SiamRIR. From this table we can
find that, as the number of RIRB increases the performance of SiamRIR grad-
ually improves. This study demonstrates the effectiveness of the RIRB, which
takes the features of two modalities and features from encoder interaction.

In order to illustrate the RIRB intuitively, we provide the visualization results
of RIRB1 which are shown in Fig. 4, where Inputj , RIM j

1 and RRM j
1 represent

the input of the RIRB1, the output of the RIM j
1 , the output of the RRM j

1 ,
respectively (e.g., j = R where features in the first row, j = D where features in
the second row). By observing the first row in Fig. 4 (b) we can find that, after
the RIMR

1 the complementary regions of rider are located, then after the RRM j
1

the details of the rider and the head of horse are refined. The similar phenomenon
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Table 3. Ablation studies with RIRB. ‘✓’ means adding the corresponding component.
↑ / ↓ for a metric means higher/lower value is better.

Model NJU2K STERE NLPR

R1 R2 R3 Sα ↑ M ↓ Emax
ϕ ↑ Fmax

β ↑ Sα ↑ M ↓ Emax
ϕ ↑ Fmax

β ↑ Sα ↑ M ↓ Emax
ϕ ↑ Fmax

β ↑

✓ 0.891 0.048 0.933 0.887 0.893 0.048 0.93 0.878 0.909 0.029 0.946 0.888

✓ 0.904 0.043 0.938 0.902 0.903 0.041 0.937 0.892 0.925 0.025 0.954 0.911

✓ 0.912 0.039 0.948 0.911 0.908 0.039 0.943 0.899 0.926 0.023 0.958 0.912

can also be observed in the second row. Therefore, we can concluded that the
features of two modalities can be adjusted (i.e., the complementary regions are
recovered and the spatial details are refined) by RIRBs with taking interaction
of two modalities and spatial context, which can improve the performance of the
proposed method.

Effectiveness of CEM Since there are different size of objects in the scene,
the global context informations are important for our method to detect the
salient object. Therefor, we design the CEM to enhance the global context in the
features from high-level encoder. From the Tab 2 we can observe that, without
the CEM, the performance of our method in three test datasets are decreased,
which verifies the benefit of the CEM and also verifies the importance of global
context cues to the SOD task.

5 Conclusion

In this work, we propose a novel RGB-D SOD method Siamese Residual In-
teractive Refinement Network (SiamRIR). In order to utilize the different con-
text information during fusion stage effectively, we design a Multi-scale Resid-
ual Interactive Refinement Block (RIRB) with residual manner to interact the
saliency maps of two modalities and the spatial detail information extracted by
the encoder, which can explore the complementary regions and refine the fea-
tures during decoding phase. And then, the Context Enhance Module (CEM)
is proposed to improve the global context information. Extensive experiments
illustrate that SiamRIR outperforms the state-of-the-art methods on RGB-D
SOD task in terms of quantitative and qualitative.
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