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Abstract. In real-world scenarios, video analysis algorithms are con-
ducted for visual signals after compression and transmission. Generally
speaking, most codecs introduce irreversible distortion due to coarse
quantization during compression. The distortion may lead to significant
perception degradation in terms of video analysis performance. To tackle
this problem, we propose an efficient plug-and-play approach to preserve
the essential semantic information in video sequences explicitly. The pro-
posed approach could boost the video analysis performance with a lit-
tle extra bit cost. Specifically, we employ the proposed approach on an
emerging video analysis task, video object segmentation(VOS). Massive
experimental results prove that the our work outperforms the existing
coding approaches over multiple VOS datasets. Concretely, it could im-
prove the analysis performance by up to 13% at similar bitrates. Addi-
tional experiments also verifies the flexibility of our scheme because there
is no dependency on any specific VOS model or encoding method. Es-
sentially, the proposed approach provides novel insights for the emerging
Video Coding for Machine (VCM) standard.

1 Introduction

In recent years, videos has become the dominant component of the internet traf-
fic. Considering the data volume of video big data, it is necessary to develop
high efficient video compression from analysis-friendly perspective. However, in
earlier studies [1], the target of video compression is to simply keep the signal
fidelity. Methods following this target tend to ignore other useful information in
compressed domain, which may cause severe performance degradation in video
analysis tasks. To discuss this problem, we regard video object segmentation,
⋆ Supported in part by the National Natural Science Foundation of China under grant

62072008, 62025101, 61931014, 62101007, and in part by the High Performance Com-
puting Platform of Peking University, which are gratefully acknowledged. (Corre-
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Fig. 1: The comparison between the paradigm of vision tasks in real-world appli-
cation and that in our proposed approach. Our work uses an additional bitstream
to significantly improve the VOS performance.

a popular video analysis task recently, as the representation of video analysis
tasks. Semi-supervised VOS targets segmenting particular objects throughout
the entire video sequence, given only the object mask of the first frame. Existing
state-of-the-art (SOTA) solutions [2] [3] [4] could achieve high accuracy by fully
utilizing the semantic information of the input videos. Nevertheless, the perfor-
mance of these high efficient methods sharply decrease when dealing with video
sequences with compression distortions, especially at low bitrate. Therefore it
is critical to boost the performance of the existing video analysis methods on
compressed videos.

For better comprehension, we summarize two kinds of paradigms for VOS. As
shown in Fig. 1a, the VOS algorithm are conducted after signal capture, signal
encoding, bitstream transmitting, and bitstream decoding. In other words, VOS
is more like a downstream task for video compression. To avoid analytical per-
formance degradation caused by video compression, we propose a compressive
prior guided mask predictive coding approach. The proposed scheme is shown
in 1b. Different from the traditional one, the proposed work could improve the
analysis performance by an additional bitstream. Following the proposed ap-
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proach, the VOS methods could be deployed on the raw videos3 directly rather
than compressed video sequences with severe semantic distortion.

Specifically, our framework could be divided into three parts, Motion Esti-
mation (ME), Feature Compression (FC), and Motion Comprehension (MC).
For the first part, we utilize the existing masks as a reference to extract a mo-
tion feature of the current mask. Then the motion feature is compressed by an
end-to-end autoencoder for transmission. Finally, the compressed motion fea-
ture and the reference masks are fed into a convolution neural network (CNN)
based comprehension network to generate the predicted masks. Experiments
are deployed on two VOS baseline models and three standard VOS datasets.
The consistently superior performances to the baseline codec demonstrate the
effectiveness and generality of the proposed framework. The contributions are
summarized as follows:

– We propose a novel approach to improve VOS performance on compressed
video sequences. To the best of our knowledge, this is the first work who
jointly considers the bitrate and the corresponding VOS performance.

– The proposed framework is high-efficient, generalizable, and flexible. It could
be transferred to any VOS methods or datasets without any fine-tuning.

– Experimental results prove that the proposed framework outperforms tra-
ditional codecs over two VOS models and three VOS datasets. Exhaustive
experiments also demonstrate the robustness of our framework. Our method
provides novel possibilities the Video Coding for Machine (VCM) research.

2 Related Works

2.1 Video Object Segmentation (VOS)

VOS has two sub-tasks, semi-supervised VOS and unsupervised VOS. The dif-
ference between them is whether an initial mask is provided. In this paper, we
mainly consider the former one. Current semi-supervised VOS methods fall into
one of two categories. Following the first category, VOS method [5–7] generates
the masks by fine-tuning the provided initial mask. Regarding the second cat-
egory, these approaches [8–10] adopt propagating the mask from the previous
frame using optical flow and then refining these estimates using a fully convo-
lutional network. However, both VOS methods are facing difficulties when deal-
ing with compressed video sequences due to the discriminative feature damage
caused by quantization error.

Moreover, some VOS approaches utilize compressed videos as an extra sup-
plementary information for better accuracy or efficiency. To increase VOS per-
formance, several algorithms [11, 12] convert the input video sequences into the
compressed domain. In [13], the sparse motion vector are utilized for object
3 Note that we omit the encoding distortions caused by signal capturing tools such as

cameras. Namely, we assume that the video sequences pre-processed in the dataset
are all pristine videos.
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segmentation. To realize high efficient processing, many researches [14] use bit-
stream of compressed video sequences to accelerate existing VOS methods. A
plug-and-play acceleration framework is proposed in [15] by propagating the
motion vectors extracted from the HEVC [16] bitstream. However, existing ap-
proaches for accuracy and efficiency pay little attention to the critical problem,
the bitrate analysis of the compressed videos and their associated VOS perfor-
mance. For example, if the bandwidth for compressed videos is unlimited, the
common codecs allow almost lossless compression at an extremely high bitrate,
which is unrealistic in practical scenarios. Therefore in this paper, we regard
bitrate as another dimension of discussions, which is different from works men-
tioned in this subsection.

2.2 Image/Video Compression for Vision Tasks

Most of the existing compression frameworks for visual tasks aim at image
tasks such as image classification, object detection, and semantic segmentation.
Therefore we will introduce some image compression methods which could im-
prove analysis performance for vision tasks. Benefited from emerging neural im-
age/video compression approaches [17–19], most existing machine vision oriented
methods mainly utilize a task-related learning objective to optimize the entire
framework [20–23]. Chamain et al. [24] formulate a detection loss to optimize
existing end-to-end image compression framework. Moreover, a content-adaptive
end-to-end compression approach [25] is proposed for instance segmentation
task. However, these methods rely heavily on analytical models and datasets.
Therefore, they are less effective in practical application scenarios. To overcome
this problem, we aim to design a framework that is effective for different datasets
and analytical algorithms.

3 Methods

The proposed method is elaborated in this section. We first demonstrate the
schematic illustration of our method with terminology definition. Subsequently,
the detailed descriptions of each module are provided and analyzed. The nota-
tions and preliminary concepts are shown in Table 1.

3.1 Overview

The overall flowchart of the proposed approach in illustrated in Fig. 2. Denote
X as the original video sequence with length T . For each frame Xt ∈ X at
time step t, we generate the corresponding VOS mask Mt = F (Xt) by VOS
model F . After the generation of all of the masks, we get the mask sequence
M = {M1,M2, ...Mt, ...}. Note that the first mask M1 is provided by the self-
supervised VOS task. For other masks Mt at time step t (t ∈ [2, T ]), we de-
construct it into Nt binary masks, in which Nt indicates the number of objects
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A Compressive Prior Guided Mask Predictive Coding Approach 5

Table 1: Notations and descriptions of the proposed scheme
Notations Descriptions

X = {X1, X2, . . . , Xt, . . . } a sequence of video frames with timestep t
M = {M1,M2, . . . ,Mt, . . . } a sequence of masks

Mt original mask at t
Nt number of objects at t
mt,k binary mask of object k at t
vt,k motion feature of object k at t
v̂t,k compressed motion feature of object k at t
m̂t,k the prediction of mt,k

Pt the prediction of Mt

zt,k bitstream of vt,k
bt,k bitrates of compressed vt,k
Bt bitrates of compressed motion features at t
F baseline VOS method
Θτ trainable parameters of module τ

in Mt. Denote the binary map of the kth object in Mt as mt,k, which could be
formulated as,

mt,k(i, j) =

{
1 Mt(i, j) = k

0 others,
(1)

in which (i, j) represents the coordinate of each pixel. The reason for doing so lies
in that objects with different labels will essentially disturb the motion estimation
between each other. The related analysis will be conduced in Section 4.4. Note
that the mt−1,k is not available at the decoder, thus for each binary mask mt,k,
we utilize the previous reconstructed binary mask m̂t−1,k as the reference mask
to ensure encoder-decoder consistency. When t = 2, the reference mask is m1,k

given by the labeled data. Then the binary mask mt,k and its reference is fed
into ME module to estimate the changes from time step t− 1 to t. The changes
are represented by a motion feature vt,k = ME(mt,k, m̂t−1,k). After that, we
encode the motion feature into a more compact representation zt,k by FC for
transmission. We utilize bt,k, the size of zt,k, to evaluate the bit cost to compress
each motion feature. Moreover, given all of the bt,k at time step t, the bit cost
for the entire mask Bt is calculated by,

Bt =

Nt∑
i=1

bt,k. (2)

The compressed motion feature v̂t,k, together with the reference mask m̂t−1,k,
are utilized to generate the predicted binary mask m̂t,k by MC. Specifically, MC
module consists of two parts. Firstly, v̂t,k is warped on m̂t−1,k to obtain a coarse
prediction for mt,k. Then the warped mask is further refined by a CNN-based
network. Finally, we merge all of the predicted binary masks into the predicted
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Fig. 2: The overall flowchart of the proposed approach. ME, FC, MC respec-
tively denote the Motion Estimation, Feature Compression, and Motion Com-
prehension module. Firstly, the mask Mt is generated by a VOS model. Then
the masks are split into several binary masks. For each binary mask mt,k, we
utilize the responding predicted mask m̂t−1,k as the reference mask to extract
the motion feature by ME. Then the motion feature vt,k is compressed by the
FC module for transmission and decompression. After decompression, the com-
pressed motion feature v̂t,k, together with m̂t−1,k, are utilized to predict m̂t,k,
the predicted binary mask by MC. Finally, all of the binary masks are merged
to the final reconstructed mask Pt. Note that we color some binary masks (in-
cluding mt,k, m̂t−1,k and m̂t,k) for better comprehension.

mask Pt at time step t.

Pt(i, j) =

{
k m̂t,k = 1

0 others.
(3)

3.2 Detailed Architecture

ME. In our proposed framework, we employ a masked CNN-based optical flow
estimation approach [26] to estimate the motion between the temporal adjacent
binary mask. The visualization of ME module is shown in Fig 3. The splitted
binary mask mt,k ∈ {0, 1}W×H is fed into the optical flow estimation model
to generate ot,k ∈ RW×H×2, which denotes the motion displacement between
m̂t−1,k and mt,k. Then ot,k is element-wise multiplied with m̂t−1,k to generate
the motion feature vt,k ∈ RW×H×2. Instead of directly deploying the estimated
flow, the element-wise multiplication have two advantages. One is that the mul-
tiplication could remove the disturbs of other regions. Note that the optical flow
responding of the black region are the noises of the estimation. The other is the
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Optical Flow 
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Object Mask

Reference Mask

Estimated Optical Flow

Motion Feature
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Fig. 3: Network of ME module. The example is the video ”swan” in DAVIS 2017.
The optical flow estimation module follows the implementation in [26].

multiplication could make the motion feature easier to compress. which means
the bit cost of the proposed approach decreases. Compared to the optical flow
or motion vector in traditional codecs, the proposed ME module could be end-
to-end optimized with more flexibility.
FC. Since the motion feature extracted by ME module could not be transmitted
directly. We deploy a modified hyperprior guided autoencoder proposed by [27],
which is utilized to compress images with three channels. Therefore we mod-
ify the shape of the inputs and outputs to meet that of vt,k. And the output
of FC is the compressed motion feature v̂t,k, the bitstream zt,k and the bits of
the bitstream bt,k. The architecture of FC module is shown in Fig. 4. Every
vt,k ∈ RW×H×2 is compressed into z1 ∈ RW

16×
H
16×96 and z2 ∈ RW

64×
H
64×64. z1

denotes the representation of vt,k. z2 represents the parameters of the distri-
bution to recover v̂t,k ∈ RW×H×2.4 Compared to other traditional compression
methods, the proposed FC module is more efficient. Because the trainable FC
module can be optimized to fit the signal distribution of vt,k, which is different
from that of images.
MC. The MC module is deployed to generate the predicted binary mask m̂t,k by
the compressed motion feature v̂t,k and the reference mask m̂t−1,k. The flowchart
of MC is shown in Fig. 5. Firstly, we warp the compressed motion feature v̂t,k
on the reference binary mask m̂t−1,k. However, the warped mask is far from an
accurate prediction. Thus we deploy a CNN based refinement network after the
warp operation. The network takes the reference mask and the warped mask as
the inputs to generate the final predicted binary mask. Limited by the length of
the paper, more comparisons between the warped masks before refinement and
after refinement are shown in the supplementary materials.

4 z1t,k and z2t,k for completeness but we drop the subscript (t, k) for simplicity.
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Fig. 4: Network architecture of FC module. The notations on the blocks denote
the hyper-parameters. For example, ”k3c64s2” indicates a convolution or decon-
volution layer with 64 channels, the stride step is 2, and the kernel size is 3.
The blocks in green represent convolution layers, and the blocks in blue denote
deconvolution layers. The parameter of all of the LeakyRelu is set to be 0.1.

4 Experimentation

4.1 Training Details

Loss Function. The goal of the proposed framework is to leverage the accuracy
of the predicted masks and minimize bits required for transmission simultane-
ously. Therefore, the optimization problem at time t could be formulated as:

Lt = αRt + λDt

= α

Nt∑
k=1

H(v̂t,k) + λ

Nt∑
k=1

d(mt,k, m̂t,k),
(4)

in which d(mt,k, m̂t,k) denotes the distortions between mt,k and m̂t,k. In prac-
tice, we use the mean square error (MSE) in our experiments. H(·) represents
the number of bits utilized to compress the motion feature. Actually, the bitrate
estimation is a very complicated problem in end-to-end image compression. How-
ever, it is beyond the scope of this work. Therefore, we directly utilize the imple-
mentation of hyper-prior based entropy model [27] denoted by function H(·). λ
indicates the Lagrange multiplier to adjust the trade-off between Rt and Dt. α is
a binary parameter to remove the loss from Rt. Training Details. The training
details of each stage is shown in Table 2. And the optical flow estimation net
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Fig. 5: Network architecture of the MC module. The notations on the blocks
follows the rules mentioned in Fig. 4. All of the ResBlocks are deployed with the
structure at the bottom right corner.

Table 2: Detailed Training Configuration
Components Trained α λ Learning Rate Batch Size Epochs

Stage I ME,MC 0 1 1e-3 6 40
Stage II FC 1 1e-5 1e-3 4 50
Stage III FC,ME,MC 1 1e-5 1e-3 2 200

in ME module is initialized with a pre-train model5. The optimizer is AdamW
with decay, ϵ equalling to 5e-5 and 1e-8, respectively. Although the approach is
set to optimize for 200 epochs.

The entire scheme is implemented by using PyTorch 1.11.0 with CUDA 11.3.
The simulation environment is based on Ubuntu 18.04 with one NVIDIA 3080ti
graphic card. We train distinct models for different bitrate points to realize
optimal performance.

4.2 Experimental Settings

Datasets & Preparation The experiments are deployed on three VOS bench-
marks: DAVIS 2016 [28], DAVIS 2017 [29], and YouTube-VOS [30]. DAVIS 2016
and DAVIS 2017 are small datasets with 50 and 120 video sequences, respec-
tively. YouTube-VOS is a large-scale dataset with 3945 video sequences. All the
video sequences are converted from RGB to YUV420 format, which is widely
employed color space for traditional codecs such as x265 and VVEnc6 to com-
press.

For the test on three datasets, we use the same model trained by DAVIS 2017
dataset. Note that our framework does not use enormous videos for training.
Only 60 video sequences are utilized. This configuration proves that our work is
simple and robust for unseen VOS datasets.
5 https://github.com/zacjiang/GMA
6 VVEnc [31] is a light-weighted implementation of the reference software of VVC [32].
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Table 3: Experimental Results on DAVIS2016 and DAVIS2017
Dataset VOS Model Method Bitrate↓ Jm↑ Fm↑ (J&F)m↑

DAVIS 2016 [28] AOT [33] Original - 0.9014 0.9217 0.9117
x265(baseline) 0.0198 0.7944 0.8118 0.8031

x265+Ours 0.0168 0.8728 0.9044 0.8886
STCN [34] Original - 0.9042 0.9305 0.9172

x265(baseline) 0.0198 0.7517 0.7848 0.7683
x265+Ours 0.0158 0.8814 0.9148 0.8981

DAVIS 2017 [29] AOT [33] Original - 0.8251 0.8791 0.8521
x265(baseline) 0.0209 0.7165 0.7608 0.7386

x265+Ours 0.0178 0.8056 0.8652 0.8354
STCN [34] Original - 0.8200 0.8862 0.8531

x265(baseline) 0.0209 0.6734 0.7161 0.6947
x265+Ours 0.0158 0.7890 0.8641 0.8265

Metrics. For the accuracy on VOS, we follows the standard criteria from [28]:
Jaccard Index J and F-scores, which represent the region similarity and contour
accuracy, respectively. Additionally, we also report some detailed performance
for each dataset: {Mean↑, Recall↑, Decay↓}x{J ,F} for DAVIS 2017 and {Seen,
Unseen}x{J ,F} for YouTube-VOS. The experimental results of these metrics
are provided in supplementary materials

In addition to the traditional VOS evaluation metrics, we have added the
evaluation metric: bitrate. Bitrate denotes the compression ratio of codecs. Gen-
erally speaking, the method with less bitrate is better given the same perfor-
mance. Specifically, we utilize bits-per-pixel (bpp) as the evaluation of bitrate in
the experiments. As the proposed approach is an additional module to existing
codecs. Thus the bitrate of our work is the sum of it and the baseline codec for
a fair comparison.
Base Video Codecs. We choose two conventional codecs (x265 and VVEnc)
as the baselines. Considering the efficiency and effectiveness, we choose the x265
library in FFmpeg with veryfast preset for main experiments. And VVEnc is
utilized to compress videos for the supplementary experiments. The compressed
sequences will be shared to encourage others to research compressed video seg-
mentation.
Base VOS Models. We choose the AOT and STCN as the base model in
our framework.7 AOT employs a Long Short-Term Transformer to construct
hierarchical matching and propagation. STCN combines the computational ad-
vantages of temporal convolutional networks with the representational power
and robustness of stochastic latent spaces.

4.3 Experimental Results

In this subsection, the experiments are deployed with different VOS models and
codecs for comparison. Please refer to supplementary material for more details
7 AOT and STCN are representative VOS models with codes and models available.
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Table 4: Experimental Results on YouTube-VOS dataset.
VOS Model Method Bitrate↓ Js↑ Fs↑ Ju ↑ Fu ↑ G↑

AOT [33] Original - 0.8387 0.7990 0.8880 0.8848 0.8526
x265(baseline) 0.0159 0.7966 0.8429 0.7530 0.8450 0.8094

x265+Ours 0.0121 0.8265 0.8811 0.7782 0.8742 0.8400
STCN [34] Original - 0.8259 0.8695 0.7946 0.8772 0.8418

x265(baseline) 0.0159 0.7867 0.8264 0.7372 0.8200 0.7867
x265+Ours 0.0122 0.8149 0.8634 0.7726 0.8656 0.8291

and commands about the x265/VVEnc settings. Furthermore, the concrete VOS
models are also provided in it.

The performance of the proposed framework compared to x265 codec is re-
ported in Table 3 and Table 4. On DAVIS 2016, our work achieves 8% and
13% accuracy(J&F) improvement for AOT and STCN with 35% and 25% bi-
trate saving, respectively. On DAVIS 2017, our work achieves 10% and 12%
accuracy(J&F) improvement for AOT and STCN with 14% and 24% bitrate
saving, respectively. On YouTube-VOS, we achieve 3.1% and 4.3% G(G denotes
the score calculated by the evaluation server8) improvement for AOT and STCN
with 20% and 23% bitrate saving. The performance improvement over all of the
VOS models and datasets reveals the generality of our framework.
Rate-Performance Curves. We report the Rate-Performance (RP) curves
in Fig. 6. The QP set of both x265 and x265+Ours are {32,37,42,47}. Taking
DAVIS 2016+AOT in Fig. 6(a) as an example, the line in orange denotes
the RP curve of video sequences compressed by x265 codec without the pro-
posed framework. The line in blue indicates the RP curve of video sequences
compressed by x265 with the proposed framework. From these curves, several
conclusions could be drawn. First of all, the proposed framework outperforms
x265 at every bitrate. Secondly, the accuracy loss of our method is minimal com-
pared to the results on the original videos. Last but not the least, the proposed
framework could achieve remarkable performance for different datasets and VOS
methods.

4.4 Ablation Studies and Modular Analysis

FC Module. We utilize a hyperprior guided auto-encoder model to compress
the underlying motion feature. Actually, it is also reasonable to deploy a tra-
ditional codec to encode the feature. Thus we investigate the efficiency of FC
module by using x265 codec for comparison. As shown in Table 5, experimental
results prove that the proposed FC module could efficiently compress the motion
vector. It is because that the learned parameters in FC module were optimized
to fit the distribution of motion features during training.
MC Module. In our framework, we propose a CNN-based MC model to refine
the predicted mask after the warp operation. Another alternative is to utilize
the warped mask directly as the prediction results. Thus we conduct a set of
8 https://competitions.codalab.org/competitions/20127#participate-submit_results
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Fig. 6: Rate-Performance curves of our approach. D16,D17, and YTB represent
DAVIS 2016, DAVIS 2017 and YouTube-VOS, respectively. Original denotes that
the videos are uncompressed.

ablation study to verify the effectiveness of the MC module. From the visualiza-
tion in Table 6, it is obvious that the propose MC module significantly improve
the quality of the predicted mask. Then the experimental results shows that the
(J&F)m of the approach without MC module will drop about 30% on DAVIS-
2017 dataset.
More Codecs. We conduct experiments on more codecs to verify the generality
of our framework. The experimental results on are shown in Table 7. Although
VVEnc is the most efficient conventional codecs, the proposed framework still
achieve 9.1% improvement on DAVIS 2017 with 32% bits saving.
More Bitrates. By adjusting the λ in the loss function (λ = 10−a, a=2,3,4,5),
the proposed framework are trained for different bitrates. To valid the perfor-
mance at different bitrates, we conduct experiments on DAVIS 2017. Note that
the bitrate is calculated without that of codecs. As shown in Table 8, with the in-
crease of the bitrate, the difference compared to the analysis performance of the
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Table 5: Ablation Study for FC Module on DAVIS 2017 Dataset.
Method Bitrate↓ Jm↑ Fm↑ (J&F)m↑

x265+Ours(x265) 0.0209 0.8052 0.8655 0.8353
x265+Ours(FC) 0.0178 0.8056 0.8652 0.8354

Table 6: Ablation Study for MC Module on DAVIS 2017 Dataset.
Method Bitrate↓ Jm↑ Fm↑ (J&F)m↑

x265+Ours(Warp) 0.0178 0.4725 0.5358 0.5041
x265+Ours(MC) 0.0178 0.8056 0.8652 0.8354

original videos become smaller and smaller. This experimental result demon-
strates that our model could be adapted to different application scenarios by
adjusting the bitrate.
Direct Comparison to Codecs. Rethinking the paradigm illustrated in 1b,
it is feasible to utilize existing compression codecs to compress the VOS masks
to replace our approach. Therefore we conduct a comparative experiment. We
utilize x265 as the mask codec to compress the masks generated by AOT on
DAVIS 2017. The experimental results are shown in Table 9. It is obvious that
the masks encoded by x265 are not accurate for VOS anymore. Then main rea-
son to the degradation is the noise caused by codec at extremely low bitrate.

5 Discussions

Extensibility. The proposed framework can be easily extended to other mask-
based vision tasks. Mask based vision tasks denotes tasks where the output is a
mask related to the semantics of the video such as video instance segmentation
and multi object tracking. To run our work on other tasks, simply replace the
VOS model with the model for the corresponding task.
Robustness. As reported in Table 8, the proposed framework could utilize an
extremely low bitrate to achieve 95% performance compared to that on original
video sequences. It proves that our work could handle practical scenarios with
low network.
Generality. The generality of the proposed framework is manifested in two
aspects. Firstly, the proposed framework does not rely on any VOS methods.
Therefore, our framework can also be adapted to new VOS methods with higher

Table 7: Experimental Results for VVEnc on DAVIS 2017 Dataset.
Method Bitrate↓ Jm↑ Fm↑ (J&F)m↑
Original - 0.8251 0.8791 0.8521

VVEnc(baseline) 0.0179 0.7235 0.7646 0.7440
VVEnc+Ours 0.0121 0.8056 0.8652 0.8354
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Table 8: Experimental Results for Different λ(λ = 10−a)
a Bitrate↓ Jm↑ Fm↑ (J&F)m↑

Original - 0.8251 0.8791 0.8521
2 0.0262 0.8174 0.8706 0.8440
3 0.0162 0.8135 0.8690 0.8413
4 0.0069 0.8056 0.8652 0.8354
5 0.0023 0.7752 0.8502 0.8127

Table 9: Experimental Results for Direct Comparison to Codecs
Method Bitrate↓ Jm↑ Fm↑ (J&F)m↑
Original - 0.8251 0.8791 0.8521

x265 0.0072 0.5856 0.6488 0.6172
Ours 0.0069 0.8056 0.8652 0.8354

performance. Secondly, the input of the proposed frameworks are masks rather
than objects, which means the category information of the objects are not utilized
in our work. Thus it could be easily transferred to other datasets without fine-
tuning.

6 Conclusion

In this paper, we propose a simple and effective framework to improve the per-
formance of semi-supervised VOS on compressed video sequences by preserving
the semantic information during compression procedure. Such a framework could
effectively diminish the degradation of VOS performance during lossy compres-
sion. Moreover, the proposed is a plug-and-play framework which means that it
does not rely on a specific VOS method or a specific codec. Concretely, it could
improve the analysis performance by up to 13% at similar bitrates. As VCM has
been an emerging research topic recently, we provide an promising solution for
efficient and high performance compressed VOS.
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