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Abstract. Few-shot segmentation (FSS) aims to segment objects of un-
seen classes given only a few annotated support images. Most existing
methods simply stitch query features with independent support proto-
types and segment the query image by feeding the mixed features to a
decoder. Although significant improvements have been achieved, existing
methods are still face class biases due to class variants and background
confusion. In this paper, we propose a joint framework that combines
more valuable class-aware and class-agnostic alignment guidance to fa-
cilitate the segmentation. Specifically, we design a hybrid alignment mod-
ule which establishes multi-scale query-support correspondences to mine
the most relevant class-aware information for each query image from the
corresponding support features. In addition, we explore utilizing base-
classes knowledge to generate class-agnostic prior mask which makes a
distinction between real background and foreground by highlighting all
object regions, especially those of unseen classes. By jointly aggregat-
ing class-aware and class-agnostic alignment guidance, better segmenta-
tion performances are obtained on query images. Extensive experiments
on PASCAL-5i and COCO-20i datasets demonstrate that our proposed
joint framework performs better, especially on the 1-shot setting.

Keywords: Few-shot learning · Semantic segmentation · Hybrid align-
ment.

1 Introduction

Semantic segmentation has made tremendous progress thanks to the advance-
ment in deep convolutional neural networks. The performance of standard su-
pervised semantic segmentation [4, 23, 56] heavily relies on large-scale datasets
[8, 24] and will drop drastically on unseen classes. However, obtaining large-
scale datasets requires substantial human efforts, which is costly and infeasible

⋆ Equal contribution.

1471



2 K. Huang et al.

Feature
Matching

Prediction

Prototypes

Support Image Support Features

Support Mask

Query Image Query Features

(a) Conventional Methods

Class-aware
Alignment

Feature
Matching

Class-agnostic
Alignment

Class-aware
Guidance

Prediction
Class-agnostic
Guidance

Support Mask

Support FeaturesSupport Image

Query FeaturesQuery Image

(b) Our Proposed JC2A

Fig. 1. Illustration of (a) conventional methods and (b) our proposed JC2A. JC2A in
(b) joint class-aware and class-agnostic guidance rather than only independent proto-
types in (a) to guide the query image segmentation.

in general. Inspired by the few-shot learning [35], few-shot segmentation (FSS)
has been proposed to alleviate the need of huge annotated data set. Conven-
tional FSS methods are built on meta-learning [36], which is supposed to learn a
generic meta-learner from seen classes and then adopted to handle unseen classes
with few annotated support samples. Specifically, as shown in Fig.1(a), the fea-
tures of query and support images are firstly extracted by a shared convolutional
neural network. Then the support features within the target object regions are
transferred to prototypes [6, 20] which are used to guide the query image seg-
mentation with a feature matching module, e.g., relational network [38]. Despite
of the recent progresses made by these work [20, 38, 25, 42, 46], there still exist
two limitations on FSS. 1) Class-aware bias: The support prototypes extracted
independently from the query feature are not discriminative enough due to the
variations of objects within the same class. 2) Class-agnostic bias: FSS treats
objects of unseen classes as background during training, e.g., person in the query
image of Fig. 1, which leads to model bias toward the seen classes rather than
class-agnostic.

Some researches [46, 47, 51] have tried to address one of the above limitations.
To eliminate the influence of class-aware bias, feature interaction [47, 51] are
adopted to fuse relative class-aware features in support samples by calculating
the pixel-to-pixel relationship between query and support features, which ignore
the contextual information and still suffer from the second limitation. Recently,
MiningFSS [46] tries to mine latent object features by using pseudo class-agnostic
labels and an extra training branch, which is more complex and does not consider
the query-support relationship. To sum up, it is inspiring to study how to fully
explore class-aware relationship between query and support samples and class-
agnostic information as a joint guidance to improve FSS.

In this work, we propose a novel joint framework, Joint Class-aware and
Class-agnostic Alignment Network (JC2A), to address the above-mentioned prob-
lems with one stone. For each query image, as shown in Fig. 1(b), JC2A aims to
guide the segmentation by jointly aggregating most relevant class-aware infor-
mation from the support image and class-agnostic information by object region
mining. Specifically, JC2A explores class-aware guidance by aligning the pro-
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totypes based on the feature relationships between query features and support
features, and designs a Hybrid Prototype Alignment Module (HPAM) to build
point-to-point and point-to-block correspondences. The class-aware prototypes
produced by HPAM contains not only spatial details but also contextual cues
of objects in the support feature. To eliminate class-agnostic bias and focus on
regions of all objects well, JC2A proposes a Class-agnostic Knowledge Mining
Module (CKMM) to mine object regions of all classes in the query image, includ-
ing seen and unseen classes. The CKMM provides a class-agnostic object mask
by highlighting all non-background regions. By aggregating both class-aware pro-
totypes and class-agnostic object mask as a joint guidance, better segmentation
performance are obtained on query images. In addition, comprehensive experi-
ments on PASCAL-5i and COCO-20i validate the effectiveness of our proposed
JC2A in comparison with ablations and alternatives.

2 Related Work

Semantic Segmentation is the task to assign a specific category label to each
pixel in an image. Inspired by Fully Convolutional Network (FCN) [27], state-of-
the-art segmentation methods [4, 56, 3, 54, 22] have been proposed and applied
in various fields [57, 5, 33, 21]. Recently, dilated convolution [4, 3, 48], pyramid
features [54, 55], non-local modules [59, 12], vision transformer [56] and skip con-
nections [23, 34] are adopted to perceive more contextual information and pre-
serve spatial details. However, these supervised methods heavily rely on a large
amount of pixel-level labeled data. In this work, we focus on FSS which performs
better on unseen classes with a handful of annotations.

Few-shot Learning is meant to efficient adapt to handle new tasks with
limited empirical information available, which emphasizes on the generalization
capability of a model. In order to reflect the ability of fitting to new categories
given a few annotated data, episodes-based training and verification strategy
[39] has been the foundation of major few-shot learning methods. Meta-based
learning methods [9, 18, 7] maintain a meta-learner to boost the ability of fast
acclimatization for new tasks. For instance, meta-manager [9, 19] for parameters
optimization, meta-memorizer [32, 58] for storing the properties of prototypes
and meta-comparator [37] for feature retrieval between query image and support
set. Metric-based methods [36, 15, 14] aim to construct a unified similarity mea-
sure within the multi-tasks, such as embedding distance of Matching Networks
[39], parameterized metric of Relation Networks [37] and structural distance of
DeepEMD [50].

Few-shot Segmentation aims to give a dense prediction for the query
image with only a few annotated support images. The pioneer work OSLSM
[35] generates segmentation parameters based on support images by the two-
branch network including a conditional branch and a segmentation branch.
Later, prototype-based methods [6, 20, 38, 46, 49, 43] adopting this two-branch
paradigm became the mainstream solutions for FSS. The prototype was first
proposed in few-shot segmentation [6], which is directly used to guide the seg-
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Fig. 2. Overview of Joint Class-aware and Class-agnostic Alignment Network (JC2A).
A shared encoder is adopted to extract features for support set, query set and base-
classes set. Hybrid Prototype Alignment Module (HPAM) and Class-agnostic Knowl-
edge Mining Module (CKMM) are used to generate context-aware prototypes and
class-agnostic probability map respectively, which then jointly guide the segmentation.

mentation of query images by comparison [6, 38, 46, 41, 52, 53]. Some works adopt
part-aware prototypes [20, 45, 26] to contain more diverse support features which
may not be needed by the query image. Interaction-based methods [51, 40, 28]
extract class-aware information for the query images by only considering point-
level correspondence between query and support features. MiningFSS [46] mines
the latent objects by a class-agnostic constraint, which needs extra annotations
and parameters. Existing methods rarely focus on both class-aware and class-
agnostic information for the query image. In this work, we jointly use class-aware
and class-agnostic information as an aggregated guidance for FSS.

3 Method

3.1 Task Formulation

Few-shot segmentation (FSS) aims to quickly adapt to the given segmentation
tasks with only a few annotated data available. For a K-shot few-shot segmen-
tation task, K labeled samples from the same class make up a support set S of
this task, and there is another unlabeled sample set named query set Q. FSS
needs to segment the target of the specific class in the query set Q only with the
help of the support set S.

The training and evaluation of FSS models are usually performed by the
episodic paradigm [39]. Specifically, the model is trained on a base-classes set
Cbase and evaluated on a novel-classes set Cnovel with the precondition Cbase ∩
Cnovel = ∅. For each episode, samples of K-shot FSS episodic task with class c
from Cbase or Cnovel are randomly sampled. The final segmentation performance
is reported by averaging the results on the query set of various episodic tasks.
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3.2 Overview

Fig. 2 illustrates an overview of our joint framework (JC2A) for few-shot seg-
mentation. JC2A mainly contains two components: Hybrid Prototype Align-
ment Module (HPAM) and Class-agnostic Knowledge Mining Module (CKMM).
HPAM is designed to generate most relevant class-aware support prototypes for
each query and support image pair by establishing multi-scale query-support
relations. Specifically, HPAM builds Point-to-Point and Point-to-Block corre-
spondences between query and support features and combines them as class-
aware prototypes, which is able to provide more useful class-aware guidance
with spatial details and contextual information. CKMM aims to mitigate the
class-agnostic bias mainly caused by background confusion by highlighting all
foreground regions in the query image. In CKMM, object features of seen classes
in the training set are used to mine the class-agnostic guidance for each query
image. More details are introduced in the following.

3.3 Hybrid Prototype Alignment Module (HPAM)

Inspired by [43, 51], we utilize the mutual information between the support
feature and the query feature to mine more class-aware information from the
support feature for the query image. However, simply computing pixel-level at-
tention which contains limited weakened semantics ignores the context. Thus,
Hybrid Prototype Alignment Module (HPAM) is proposed to mine the most
relevant class-aware guidance from support features by mixing Point-to-Point
Alignment and Point-to-Block Alignment, which calculate different scale corre-
spondences between the support and the query.

Point-to-Point Alignment (P2P). Considering the support image Is and
its binary mask Ms as the support instance pair {Is,Ms}, and Iq denotes the
query image, their respective features extracted by the pretrained CNN are rep-
resented as fs and fq. A Hadamard product is performed in support feature

map with its binary mask to obtain the masked support features f̃s. We adopt
an attention mechanism to establish the point-to-point relation between f̃s and
fq. Formally,

Qq = fqWQ, Ks = f̃sWK , Vs = f̃sWV , (1)

whereWQ,WK ,WV are learnable projection parameters,Qq,Ks, Vs ∈ RC×(H×W )

are projected features. An attention map is then obtained by the dot-product
operation between Qq and Ks, which will bring heavy computation as the res-
olution of feature map grows. To balance computational efficiency and keeping
as much target information as possible, a linear attention mechanism [16, 30]
is adopted to decompose the calculation of the attention map, which has linear
complexity. Thus, the point-to-point class-aware information can be obtained by
the linear attention:

P d
aw = Φ(Qq)× (Ψ(Ks)

T × Vs) ∈ RC×(H×W ), (2)

where Φ(·) and Ψ(·) are the decoupling functions to approximate the attention
map of normal attention mechanism, in which batch normalization function [13]
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and softmax function are commonly used respectively. In order to accommodate
the mini-batch learning and suppress the noisy alignment of FSS, we adopt the
ReLU function [1] instead of batch normalization to generate positive responses.
The Eq. (2) can be rewritten as:

P d
aw = ReLU(Qq)× (softmax(Ks)

T × Vs) ∈ RC×(H×W ). (3)

In this way, we obtain the class-aware information of each query point under
the full support key-value point features with an dense way. The point-to-point
dense alignment between query features and masked support features can offer
a detailed and complete pixel level alignment, which tends to find similar grainy
vision information from the intra-task targets of support set.

Point-to-Block Alignment (P2B). The Point-to-Point approach only fo-
cuses on single point alignment which contains limited weakened semantics. It
is observed that the feature points with similar semantic information are always
close in spatial locations, consequently, the semantic alignment can be performed
in a sparse way with spatial blocked targets of support images. Specifically, We
pick out several key feature blocks to represent the class-aware target, such as
head-block, leg-block and tail-block for a horse. Then, a point-to-block linear at-
tention alignment between query point-feature and masked support block-feature
is formed to catch the semantic class-aware information.

It is worth mentioning that the permutation invariance [17] of attention mech-
anism may disrupt the topological relation of feature blocks. Take a horse as an
example, it is clear that the head-block is in the front of the tail-block accord-
ing to the actual spatial location relationship. The topological relation becomes
chaotic in the linear attention, which will impact the expression of semantic
level information. Thus, we adopt two parameterized matrices to act as the
point-specific position embedding, which provides a valid signal which carries
the original positional information:

fp
q = fq + pq, f̃

p
s = f̃s + ps (4)

where pq, ps ∈ RH×W are learnable position embedding for query and support
features respectively. Similar to Eq. (1), the queries, keys and values with the
position embedding are represented as Qp

q , K
p
s and V p

s . Assume the block area is
m×m in feature pixels, the concatenated block patch of masked support features
is formulated as:

B(f̃p
s ) = Concat(f̃p

s [(r − 1)m : rm, (c− 1)m : cm])Ni=1 ∈ RC×N×m2

, (5)

where r is the row position of i-th block and can be calculated with the round
down of im/W , c indicates the column position of i-th block which is obtained
with i− rW/m, and N = HW/m2 is the total number of block patches.

The importance of the i-th block patch is obtained according to the target
coverage with corresponding block in its binary mask:

(Is)i =
rm∑

o=(r−1)m

cm∑
j=(c−1)m

Ms(o, j)/m
2. (6)
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The top k key feature blocks are selected by the importance ranking within
these block patches as:

B(f̃p
s |Topk) = B(f̃p

s |Sort(Is)[: k]) ∈ RC×k×m2

. (7)

It inevitably contains pure empty regions when the number of valid blocks is
smaller than k. The alignment outcomes of such regions keeps zero response
and is insignificant compared with the positive response of those target regions.
Therefore, mining an amount of pure empty regions basically does not affect the
learning. The keys and values of blocked support features can be represented as:

B(Kp
s ),B(V p

s ) = B(f̃p
sWS |Topk),B(f̃p

sWV |Topk). (8)

where the reformulated B(Kp
s ),B(V p

s ) ∈ RC×N×m2

are the sparsification of sup-
port key-value with more focused and explicit semantic information on support
features. The sparse feature alignment between query features and blocked sup-
port features is further expressed as:

P s
aw =

1

m2

∑
m×m

ReLU(Qp
q)(softmax(B(Kp

s ))
TB(V p

s )) ∈ RC×H×W . (9)

Compared with the Point-to-Point prototype alignment in Eq. (3), we align
support prototypes with the blocked support key-value features by using P2B.
Moreover, instead of using the block set with a fixed partition, the sparse feature
blocks contain pivotal semantic information of targets. Thus the point-to-block
prototype alignment aggregates the integrated semantic information with the key
feature blocks and offers a block-level semantic alignment, which can generate
more stable and smooth class-aware information.

Hybrid Prototype.Our final hybrid aligned prototype combines the aligned
prototypes generated by Point-to-Point and Point-to-Block alignment respec-
tively, which is summarized as:

Paw = P d
aw + P s

aw ∈ RC×H×W . (10)

As aforementioned, the P2P alignment is designed to obtain a dense align-
ment and search the class-aware information with the view of local vision, al-
though the candidate targets of query image usually get positive response, it also
introduce background points for the low discrimination of visual features. Thus,
by considering the semantic matching between query points and blocked class-
aware targets, the P2B alignment can help to filter out these semantic irrelevant
points and smooth the class-aware information of P2P alignment. Extension
to Feature Pyramid. Feature pyramid has been widely used in few-shot seg-
mentation [20, 38, 49] due to its abundant multi-scale feature maps. Higher-level
hierarchical feature maps possess more centralized semantic information but with
lower resolution. In this context, fixed number of key feature blocks become inap-
propriate, which may introduce noisy information for high-level feature maps or
miss essential parts of target for low-level feature maps. In order to tolerate this
variation, we apply specific number of block patches corresponding to different
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scale support feature maps. More concretely, a top k set {kl}Ll=1 is prepared for
L-layers feature pyramid, kl decreases as l increases. With such a variational top
k for sparse feature alignment, the blocked support features can gain semantic
information of class-aware targets according to the multi-scale feature pyramid.

3.4 Class-agnostic Knowledge Mining Module (CKMM)

Due to the limitation of few-shot segmentation datasets, there is only one seen
class for the effective targets, and others unseen are treated as the background.
The ability of adapting to novel classes is in doubt when same or similar classes
are viewed as background in the training process.

Mining latent target with base-classes set was firstly proposed by [53], which
focuses on search target by part-specific attributes. However, it suffers from com-
plicated multi-states optimization and the low-semantic target parts are more
easy to match the background. Inspired by the feature prototype [36] in few-shot
classification, we exploits another simple but effective way with class-specific at-
titudes. Specifically, we propose to mine the latent target information as well
as class-agnostic information with the masked feature prototypes, which are ob-
tained by the base-classes. Given the feature map f c,i ∈ RC×HW and its binary
mask M c,i with class c, the spacial weighted Global Average Pooling (wGAP)
[49, 52] for i-th instance pair {f c,i,M c,i} of class c is defined as:

f c,i
wGPA =

∑
h,w f c,i(h,w)M c,i(h,w)∑

h,w M c,i(h,w)
∈ R1×C , (11)

where h and w are the height index and width index with the limitation of H
and W . Feature prototype of class c is obtained by averaging over the wGAP of
all instance pairs with class c, and the feature prototype of base-classes Cbase is
concatenated with each single-class feature prototype:

FP base = Concat([
∑Ic

i=1
fc,i
wGPA/Ic]c∈Cbase) ∈ R|Cbase|×C , (12)

where Ic is the total instance pairs of class c, and |Cbase| indicates the cardinality
of base-classes set. The feature prototype FP base can be regarded as the aggre-
gation of seen base-classes, and each row of FP base contains the most common
feature of this class. Subsequently, the latent targets with similar or partially
similar features are possibly mined to replenish the missing class-agnostic infor-
mation. The class-agnostic probability map of query image Iq is calculated by
the dot-product between the base feature prototype and query features:

P̄ag =
1

|Cbase|
∑

|Cbase|
FP base · fq ∈ R1×W×H . (13)

For the convenience of adapting different base-classes set, we make the average
operation in |Cbase| dimension to obtain a compositive probability map of class-
agnostic information for query features, which acts as a kind of prior mask.
Different from the class-specific prior mask in PFENet [38], our class-agnostic
probability map has the ability to search not only the class that is common with
support set but also the latent class existed in other meta-tasks.

1478



Joint Class-aware and Class-agnostic Alignment Network 9

3.5 Multiple Information Aggregation (MIA)

The class-aware information generated by HPAM aims to provide more discrim-
inative prototypes for the current meta-task. The CKMM provides the class-
agnostic information to eliminate the background confusion during training. To
joint these guidance, we simply combine these two sets of information by con-
catenating:

Pmultiple = Concat([Paw, P̄ag]) ∈ R(C+1)×H×W . (14)

The concatenated information then is passed through 1×1 convolution along
with the original query features and support features for further information
aggregation. The predicted mask of query image is later obtained by a feature
decoder with multi-scale residual layers refer to [38, 42].

4 Experiments

4.1 Implementation Details

Dataset. We validate the effectiveness of our proposed method on two standard
few-shot segmentation datasets: PASCAL-5i [35] and COCO-20i [29]. PASCAL-
5i consists of PASCAL VOC 2012 [8] with extra mask annotations from SDS
[10] dataset. It contains 20 object classes which are evenly divided into 4 folds:
{5i, i ∈ {0, 1, 2, 3}}. COCO-20i is a more challenging dataset for few-shot seg-
mentation, which is modified from MS COCO [24]. It splits 80 categories into
4 folds: {20i, i ∈ {0, 1, 2, 3}}. Following the standard experimental settings [38],
on both datasets, three folds are selected for training while the remaining fold
is used for evaluation in each single experiment. During the evaluation, 1000
episodes in the target fold are randomly sampled for both datasets.
Evaluation metrics. Following [52, 29], we adopt mean intersection over union
(mIoU) and foreground-background IoU (FB-IoU) as our evaluation metrics.
Specifically, mIoU is computed by averaging over IoU values of all classes in a
fold. FB-IoU calculates the average of foreground and background IoU in a fold
(e.g., C = 2), which treats all object categories as a single foreground class. The
average of all the folds is reported as the final mIoU/FB-IoU. For the multi-shot
case, we leverage the decision-level fusion strategy [20, 49, 52] by averaging the
predicted masks between each single support instance and the query image.
Training details. Our proposed model is constructed on PyTorch [31] and
trained on a single NVIDIA RTX 2080Ti. We build our model with the ResNet50
[11] and ResNet101 [11] as backbones. Our model is optimized by the SGD with
an initial learning rate of 2.5e-3, where momentum is 0.9 and the weight decay
is set to 1e-4. During training, the batch size is set to 4 and parameters of the
backbone are not updated. All images together with the masks are all resized to
473×473 for training and tested with their original sizes. We construct four-layer
feature pyramid for the mixed alignment module, the top k set is set to {60, 20,
5, 3} as l increases, which also corresponds to 20% number of block patches with
respective scales.
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Table 1. Performance of 1-shot and 5-shot segmentation on PASCAL-5i. Results in
bold indicate the best performance and the underlined ones are the second best.

Backbone Method
1-shot 5-shot

fold-0 fold-1 fold-2 fold-3 mIoU FB-IoU fold-0 fold-1 fold-2 fold-3 mIoU FB-IoU

ResNet50

PGNet[51] 56.0 66.9 50.6 50.4 56.0 69.9 57.7 68.7 52.9 54.6 58.5 70.5

SCL[49] 63.0 70.0 56.5 57.7 61.8 71.9 64.5 70.9 57.3 58.7 62.9 72.8

SAGNN[43] 64.7 69.6 57.0 57.2 62.1 73.2 64.9 70.0 57.0 59.3 62.8 73.3

CMN[44] 64.3 70.0 57.4 59.4 62.8 72.3 65.8 70.4 57.6 60.8 63.7 72.8

PFENet[38] 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9

RePRI[2] 60.2 67.0 61.7 47.5 59.1 - 64.5 70.8 71.7 60.3 66.8 -

MiningFSS[46] 59.2 71.2 65.6 52.5 62.1 - 63.5 71.6 71.2 58.1 66.1 -

HSNet[28] 64.3 70.7 60.3 60.5 64.0 76.7 70.3 73.2 67.4 67.1 69.5 80.6

CyCTR[53] 65.7 71.0 59.5 59.7 64.0 - 69.3 73.5 63.8 63.5 67.5 -

JC2A (ours) 67.3 72.4 57.7 60.7 64.5 76.5 68.6 72.9 58.7 62.0 65.4 76.8

ResNet101

PPNet[26] 52.7 62.8 57.4 47.7 55.2 70.9 60.3 70.0 69.4 60.7 65.1 77.5

DAN[40] 54.7 68.6 57.8 51.6 58.2 71.9 57.9 69.0 60.1 54.9 60.5 72.3

PFENet[38] 60.5 69.4 54.4 55.9 60.1 72.9 62.8 70.4 54.9 57.6 61.4 73.5

RePRI[2] 59.6 68.6 62.2 47.2 59.4 - 66.2 71.4 67.0 57.7 65.6 -

MiningFSS[46] 60.8 71.3 61.5 56.9 62.6 - 65.8 74.9 71.4 63.1 68.8 -

HSNet[28] 67.3 72.3 62.0 63.1 66.2 77.6 71.8 74.4 67.0 68.3 70.4 80.6

CyCTR[53] 67.2 71.1 57.6 59.0 63.7 - 71.0 75.0 58.5 65.0 67.4 -

JC2A (ours) 68.2 74.4 59.8 63.0 66.4 78.8 70.6 75.2 61.9 64.8 68.1 80.6

Table 2. Performance of 1-shot and 5-shot segmentation on COCO-20i. Results in
bold indicate the best performance and the underlined ones are the second best.

Backbone Method
1-shot 5-shot

fold-0 fold-1 fold-2 fold-3 mIoU FB-IoU fold-0 fold-1 fold-2 fold-3 mIoU FB-IoU

ResNet50

PPNet[26] 31.5 22.6 21.5 16.2 23.0 - 45.9 29.2 30.6 29.6 33.8 -

RePRI[2] 31.2 38.1 33.3 33.0 34.0 - 38.5 46.2 40.0 43.6 42.1 -

MMNet[42] 34.9 41.0 37.2 37.0 37.5 - 37.0 40.3 39.3 36.0 38.2 -

CMN[44] 37.9 44.8 38.7 35.6 39.3 61.7 42.0 50.5 41.0 38.9 43.1 63.3

CyCTR[53] 38.9 43.0 39.6 39.8 40.3 - 41.1 48.9 45.2 47.0 45.6 -

MiningFSS[46] 46.8 35.3 26.2 27.1 33.9 - 54.1 41.2 34.1 33.1 40.6 -

HSNet[28] 36.3 43.1 38.7 38.7 39.2 68.2 43.3 51.3 48.2 45.0 46.9 70.7

JC2A (ours) 40.4 47.4 44.5 43.5 44.0 70.0 44.3 53.5 46.0 45.8 47.4 71.5

ResNet101

PMMs[45] 29.5 36.8 28.9 27.0 30.6 - 33.8 42.0 33.0 33.3 35.5 -

PFENet[38] 34.3 33.0 32.3 30.1 32.4 58.6 38.5 38.6 38.2 34.3 37.4 61.9

SCL[49] 36.4 38.6 37.5 35.4 37.0 - 38.9 40.5 41.5 38.7 39.9 -

SAGNN[43] 36.1 41.0 38.2 33.5 37.2 60.9 40.9 48.3 42.6 38.9 42.7 63.4

MiningFSS[46] 50.2 37.8 27.1 30.4 36.4 - 57.0 46.2 37.3 37.2 44.4 -

HSNet[28] 37.2 44.1 42.4 41.3 41.2 69.1 45.9 53.0 51.8 47.1 49.5 72.4

JC2A (ours) 41.5 48.6 45.6 42.9 44.7 70.6 43.7 55.2 47.3 47.7 48.5 72.0

4.2 Comparisons

To verify the effectiveness of our proposed method, we compare with alternatives
on the two few-shot segmentation datasets [24, 35]. Extensive experiments with
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Fig. 3. Qualitative results on PASCAL-5i and COCO-20i. Oriented top to bottom,
each row shows the ground truth of query images (yellow), the baseline results (blue)
and ours results (blue), respectively.

various backbones show that our model achieves the best performance as shown
in Table 1 and Table 2.

Quantitative results. In Table 1, we show the comparative results of our JC2A
and alternative FSS methods on PASCAL-5i. Although our method does not per-
form better on PASCAL-5i 5-shot, our method achieves competitive performance
compared with other methods on the 1 shot setting. The highest increment
mIoU based metrics is around 2 points (e.g. from 72.3% to 74.4% for fold-1 with
ResNet101). Table 2 presents the results of different approaches on COCO-20i.
It can be found that our JC2A outperforms significantly compared with alter-
natives on both 1-shot and 5-shot settings. With the backbone of ResNet50, our
method outperforms the second best by 3.7% mIoU and 0.5% mIoU on 1-shot
setting and 5-shot setting respectively. The performance gains with different
backbones further demonstrate the superiority of our JC2A, particularly with
the backbone of ResNet101 on COCO-20i, which exceeds the second best model
by 3.5% on 1-shot. From the above comparison, we conclude that our JC2A
achieves better performance. Besides, we think that JC2A is more suitable for
few-shot segmentation, because it obtains the SOTA on 1-shot setting, which
means fewer annotated samples are required in JC2A.

Qualitative results. Fig 3 provides visual examples of JC2A on PASCAL-5i

and COCO-20i. Compared our results (the 4th row) with the baseline (the 3rd
row), JC2A yields fewer false predictions in base classes and background. Besides,
JC2A can capture more details and maintain a more complete structure of the
target object. These results verify that the joint class-aware and class-agnostic
guidance is effective for FSS.
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Table 3. Ablation Study on the effect of different components. “P2P” and “P2B”
represent the Point-to-Point alignment and the Point-to-Block alignment respectively.

P2P P2B CKMM Parameters
mIoU

1-shot 5-shot

34.09M 59.0 60.6
✓ 34.52M 61.3 62.2

✓ 34.61M 62.7 63.3
✓ ✓ 34.61M 63.6 64.7

✓ 34.11M 61.7 62.8
✓ ✓ ✓ 34.64M 64.5 65.4

Table 4. Ablation Study on HPAM. “NA” is the normal attention, “NLA” indicates
the normal linear attention, “PE” means the position embedding in Point-to-Block
alignment, “IS” is the inference speed on 1-shot setting.

Setting
1-shot 5-shot

mIoU ↑ FB-IoU ↑ IS ↑ mIoU ↑ FB-IoU ↑ IS ↑

NA 64.2 76.9 1.00x 65.5 77.2 0.19x
NLA 62.8 74.5 4.11x 63.3 74.9 0.84x
cosine 62.3 74.4 2.86x 62.8 73.3 0.55x

Ours w/o PE 63.1 74.9 4.07x 64.0 75.2 0.80x
Ours 64.5 76.5 4.10x 65.4 76.8 0.82x

4.3 Ablation Studies

To analyze the impact of each component in JC2A, we conduct extensive ab-
lation studies on PASCAL-5i. Here, our baseline model is obtained from JC2A
excluding HPAM and CKMM.
Model Effectiveness. We first conduct an ablation study to show the effec-
tiveness of the Hybrid Prototype Alignment Module (HPAM) and Class-agnostic
Knowledge Mining Module (CKMM). Results are summarized in Table 3. It is
noted that the model using HPAM (P2P+P2B) outperforms the baseline (1st
row) by 4.6% and 4.1% on 1-shot and 5-shot settings respectively. CKMM pro-
vides class-agnostic information to FSS by highlighting all object regions. Ob-
serving results of 1st row and 5th row in Table 3, we can see CKMM improves
the results by a large margin with 2.7% mIoU on 1-shot and 2.2% mIoU on
5-shot, which shows the effectiveness of CKMM. The last row of Table 3 demon-
strates that the combination of these two modules performs better than only
using each of them. We can infer that HPAM and CKMM mutually benefit
during meta-learning.
Hybrid Prototype Alignment Module (HPAM). HPAM contains different
scale prototype alignments, P2P and P2B. The 2nd row and the 3rd row in Table
3 proves the effectiveness of combination of P2P and P2B. Table 4 studies the
influence of operations in HPAM. Since the feature alignment is accomplished
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Table 5. Effectiveness of CKMM (Class-agnostic guidance) for different encoder-
decoder based FSS methods on PASCAL-5i and COCO-20i.

Dataset Method
1-shot 5-shot

fold-0 fold-1 fold-2 fold-3 mIoU fold-0 fold-1 fold-2 fold-3 mIoU

PASCAL-5i
PFENet[38] 61.7+0.82 69.5+0.59 55.4+1.24 56.3+1.05 60.8+0.93 63.1+0.65 70.7+1.14 55.8+0.98 57.9+0.77 61.9+0.89

SCL[49] 63.0+0.65 70.0+1.63 56.5+0.47 57.7+0.70 61.8+0.86 64.5+0.79 70.9+1.28 57.3+0.54 58.7+0.77 62.9+0.85

MM-Net[42] 62.7+1.72 70.2+0.60 57.3+0.54 57.0+0.98 61.8+0.96 62.2+1.89 71.5+1.05 57.5+0.66 62.4+0.96 63.4+1.14

COCO-20i
PFENet[38] 34.3+1.05 33.0+0.89 32.3+0.67 30.1+0.90 32.4+0.88 38.5+0.94 38.6+0.77 38.2+0.93 34.3+0.84 37.4+0.87

SCL[49] 36.4+1.26 38.6+1.30 37.5+0.78 35.4+1.03 37.0+1.09 38.9+1.17 40.5+1.34 41.5+0.88 38.7+1.01 39.9+1.10

MM-Net[42] 35.4+1.51 41.7+0.90 37.5+1.33 40.1+1.06 36.2+1.20 37.8+1.66 41.0+1.11 40.3+1.28 36.9+1.37 39.0+1.36

G
ro

un
d

Tr
ut

h
PM

Fig. 4. Visualization of class-agnostic probability maps (PM) generated by CKMM.
The 1st row shows query images with their annotations (yellow). The 2nd row shows
probability maps which highlight all object regions of seen and unseen classes.

by a modified linear attention, we compare it with the normal attention (NA),
normal linear attention (NLA) and cosine interaction. It is clear that our class-
aware feature alignment achieves competitive performance with greatly increased
inference speed. Although the normal attention way gets slight superiority in
some cases, it trades off with a huge computational cost which is reflected in
its slowest inference speed. For the reason of mini-batch data form in few-shot
segmentation, the normalization decoupling function suffers from instability of
data distribution and gets worse performance than ReLU function adopted in our
method. The interaction ability of cosine similarity is weaker than the attention-
based measure for its lack of nonlinear mapping and noisy suppression. Besides,
as shown in the 4th row and the bottom row of Table 4, the position embedding
also plays a positive role in our method to improve the results.

Class-agnostic Knowledge Mining Module (CKMM). CKMM is designed
to provide class-agnostic alignment guidance for FSS by highlighting all object
regions. As shown in Fig 4, CKMM is able to successfully highlight all object
regions. To further demonstrate the effectiveness of CKMM and its generated
class-agnostic probability maps (PM), we apply it to several encoder-decoder
based FSS methods [38, 42, 49]. We adopt ResNet50 and ResNet101 as the back-
bone of PASAL-5i and COCO-20i dataset respectively. The experimental results
in Table 5 indicate that our CKMM can also boost other FSS approaches without

1483



14 K. Huang et al.

Table 6. Ablation study on different ways of hybrid prototypes and information ag-
gregation. Three common operations are compared: Multiply, Add and Concat.

Component Setting
1-shot 5-shot

mIoU FB-IoU mIoU FB-IoU

HPAM
Multiply 60.2 72.3 61.8 73.5
Add 64.5 76.5 65.4 76.8

Concat 64.0 75.7 64.8 76.1

MIA
Multiply 58.8 70.1 60.9 73.0
Add 62.7 74.3 63.3 75.0

Concat 64.5 76.5 65.4 76.8

upsetting the original structures. It also proves that the class-agnostic alignment
guidance is beneficial for FSS.

Hybrid Prototypes & Information Aggregation. Table 6 shows the ab-
lation study of different information aggregation methods. For the aggregation
of obtaining hybrid prototypes from P2P and P2B, the add operation obtains
better performance than others. The recommended operation is concat between
mixed alignment for class-specific targets and probability map for class-agnostic
targets. It is reasonable that the add operation is more suitable to aggregate the
information with similar properties and the concat operation prefers differen-
tiated information with the precondition of absence of curse of dimensionality.

5 Conclusion

In this paper, we have proposed a joint framework JC2A towards class-aware
and class-agnostic alignment for few-shot segmentation. JC2A contains two crit-
ical modules: Hybrid Prototype Alignment Module (HPAM) and Class-agnostic
Knowledge Mining Module (CKMM), then combines these two modules to jointly
guide the query image segmentation. HPAM aims to generate class-aware guid-
ance for the query image by combining multi-scale aligned prototypes between
query features and support features. To prevent background confusion and class-
agnostic bias, CKMM uses base-classes knowledge to produce a class-agnostic
probability mask for the query image, which highlights object regions of all
classes especially those of unseen classes. Comparisons with FSS alternatives
validate the effectiveness of joint class-aware and class-agnostic information in
guiding the query image segmentation. Potential extensions of JC2A include
developing more replaceable components for each module, thus improving FSS
performance.
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