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Abstract. We present a new dataset of images of pinned insects from
museum collections along with a ground truth phylogeny (a graph repre-
senting the relative evolutionary distance between species). The images
include segmentations, and can be used for clustering and deep hierar-
chical metric learning. As far as we know, this is the first dataset re-
leased specifically for generating phylogenetic trees. We provide several
benchmarks for deep metric learning using a selection of state-of-the-art
methods.
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1 Introduction

A phylogeny is a fundamental knowledge frame which hypothesizes how different
species relate to each other [11]. A fully annotated phylogeny, i.e. a tree of life
anchored in time scale, placed in the geographic context, and with a multitude
of organismal traits mapped along the tree branches is an important tool in bi-
ology. It explains biodiversity changes over millennia or geological epochs, traces
organismal movements in space and evolution of their properties, models popu-
lations response to climate change, navigates new species discovery and advises
classification and taxonomy. An example phylogeny from our dataset is shown
in fig. 1 along with some example images from the most abundant species in the
dataset.

Traditionally biologists generate phylogenies [9,10] using genetic data or mor-
phological features (relating to the shape or development of the organism, for
example the head shape, or the pattern of the veins on the wings). Despite genetic
data dominating phylogenetic research in recent years, morphological features
extracted by visual inspection of specimens are still of use. Fossils, for example,
contain no genetic data, but morphological features on the fossils can be used to
relate them to existing biodiversity [26]. Occasionally morphological and genetic
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heterothops dis.

quedius cru.

philonthus car.

bisnius fim. gabrius spl. paederus rip. astenus lyon.

rugilus orb.

lathrobium bru.

tetartopeus ter.

Fig. 1. Subset of phylogeny from the Rove-Tree-11 dataset, for the 10 genera with
the most images in the dataset. Each leaf represents a genus. Genera which are closer
together on the tree are more closely related, and nodes in the tree represent common
ancestors. Nodes with more than two branches are considered not yet fully resolved.
Many phylogenetic trees include estimations of time representing when the speciation
event occurred (when the common ancestor split into two species). These dates are
usually based on fossil evidence. This dated information is unfortunately not currently
available for our ground truth tree. Example specimens from each genera are shown
for reference.

data are even combined to generate a so called ’total-evidence’ phylogeny [34].
Morphological features are also of importance for species/specimens which lack
good quality genetic data. Much of phylogenetic research on insects is done from
museum specimens captured many years ago. Often the DNA of such specimens
has degraded and is no longer of use. Genetic extraction is also expensive, time
consuming, and a destructive process which can require completely destroying
the specimen, particularly in the case of small insects.

However, the traditional process of generating morphological features is slow,
meticulous and introduces some aspects of subjectivity by the researcher per-
forming the analysis. Typically a phylogenetic researcher would generate a ma-
trix of discrete traits (although the use of continuous traits has recently been
explored [35]) which they hypothesize are of use in distinguishing the species and
are evolutionary important. With thousands of new species of insects discovered
each year [1], it is difficult for phylogeneticists to keep up.

Deep metric learning [38,22] is a proven technique to generate informative
embedding matrices from images, and we posit that it can be used to generate
morphological embeddings which more objectively represent the morphological
features of a specimen. In this dataset we are unfortunately only looking at one
view of the insect, in our case, the dorsal view (the back), whereas biologists
would ideally examine and compare all external and internal features of the
insect. However, we hypothesize that this can be offset by the model’s ability
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to learn minute details. Our intention is that these methods could eventually
be improved and used as a tool for biologists to inform their decision making
process. Additionally, many natural history museums worldwide [8,20] are dig-
itizing their collections, including in many cases, taking images of millions of
museum insects. The Natural History Museum of Denmark (NHMD) alone es-
timates they have over 3.5 million pinned and dried insect specimens spanning
100,000 described species [32] and is in the process of digitizing their collections
[31]. The importance of such digitization efforts have been studied from a biol-
ogy research perspective [17,36]. Thus, given the increased data availability, we
predict that phylogenetic generation from images will become a growing field of
research within computer vision and related areas of artificial intelligence.

Despite the rapidly growing availability of images of pinned insects from
natural history museums, the ongoing push from the biological community to
generate phylogenies, and the increasing ability of deep learning to learn com-
plex shapes and relationships, few publicly available datasets exist targeting the
generation of phylogenies from images using deep learning techniques. There are
several reasons for this, as we will explore in more detail in sec. 2.1, when we
compare with existing datasets. In brief, although the number of image analysis
datasets is steadily growing, often the graphs which are included in the datasets
are subjectively resolved (such as [5]) or the groupings they provide are too
coarse-grained (such as [12]) or, particularly for biological datasets, the images
are natural photos taken in the wild, meaning they are from various viewpoints
and often obscured (such as [40],[41]). This makes it difficult for the model to
learn which distinct morphological features are more related to those from oth-
ers species. Typical morphology based phylogenies are generated from careful
inspection and comparison of features, meaning we expect direct comparison to
be very important for this task.

In this paper we present ’Rove-Tree-11’, a dataset of 13,887 segmented dorsal
images of rove beetles along with a ground truth phylogeny down to genus level‡.
The species-level phylogeny is not included, because this level of information
is not yet readily available. Our intention with releasing this data is that it
can further research on deep hierarchical metric learning and computer vision
solutions for building morphological phylogenies on interesting biological groups,
leveraging the current digitization-wave that is gripping natural history museums
worldwide.

The contributions of this paper are:

1. The release of a new hierarchically structured image dataset in-
cluding segmentations and ground truth genus-level phylogeny

2. We provide baseline results on this dataset for the tasks of classi-
fication, clustering, and for predicting phylogenetic trees.

‡ to genus-level means that each species within a genus is considered unresolved, or
equally likely to be related to any other species within that genus.

2969



4 R. Hunt and K. Pedersen

2 Related Work

2.1 Comparison with Existing Datasets

Hierarchically structured data is often found in computer vision related tasks.
Examples include cognitive synonym relations between object categories such as
clothing items[27] and is especially found in tasks concerning nature. However,
current datasets which present a ground truth hierarchical grouping of the data
are not intended for morphological phylogenetic research, and therefore poorly
suited to the task.

There are several natural history related image datasets which do, or could
easily be adapted to, include a taxonomy (ie IP102 [44], CUB-200-2011 [41],
iNaturalist [40], Mammal dataset [12], PlantCLEF 2021 [13] and ImageNet [6]).
With the exception of PlantCLEF, these are however all ’in the wild’ images and
identification has typically been done by non-experts with the naked eye. The
phylogenies are also usually superficial - including only a few levels, and typically
based only on the current taxonomy, which is not fine-grained and not necessarily
representative of the state of the art phylogenetic tree, as taxonomies have a
longer review process§. In the case of PlantCLEF the majority of the training
images are of herbaria sheets, and therefore not ’in-the-wild’, however only a
shallow taxonomy is provided with the PlantCLEF dataset. In the case of IP102,
the hierarchical tree is grouped by the plant the insect parasitizes, and is not
related to ancestral traits at all. With the exception of CUB-200-2011, iNaturalist
and PlantCLEF, the species are also easily identified by a layman/amateur by
the images alone, which is not necessarily the case in our dataset, where many
of the identifications traditionally require a microscope or dissection. It is also
often the case that the taxonomy is not properly updated until years after the
phylogeny has been altered, particularly in the case of entomology where new
species are discovered regularly, so using the most recent taxonomy may not
actually represent the state-of-the-art knowledge of the evolution of the species.
In the case of iNaturalist, the dataset does include a tree with the same number of
levels as Rove-Tree-11, however, this depth begins from kingdom-level, whereas
ours begins from family level (four taxonomic ranks lower on the taxonomic
hierarchy), and represents the most recent phylogeny.

Additionally there are non-biological hierarchical datasets, such as DeepFash-
ion [27], for which others have created their own hierarchy [5]. This hierarchy is
however based on loose groupings of clothing items which are highly subjective.
For example, the top-level groupings are: top, bottom, onepiece, outer and spe-
cial, where special includes fashion items such as kaftan, robe, and onesie, which
might morphologically be more related to coats, which are in the ’outer’ cate-

§ the taxonomy represents how the organism is classified - ie which class, order, family
the organism belongs to, and is a non binary tree. The phylogeny represents how
related different species are together, and would ideally be a binary tree. In an ideal
world the taxonomy would be a congruent to the phylogeny, but in reality they tend
to diverge as taxonomic revisions take longer
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Table 1. Comparison of dataset properties. The table indicates number of images and
categories, tree depth and whether or not the images are ’in the wild’. Tree depth is
calculated as the maximum number of levels in the tree. For example, with iNaturalist
this is 7 (corresponding to: kingdom, phylum, class, order, family, genus and species)

Dataset No. Images No. Cat. Tree Depth Wild? year

Rove-Tree-11 13,887 215 11 No 2022
ImageNet [6] 14,197,122 21,841 2 yes 2018

IP102 [44] 75,222 102 4 yes 2019
CUB-200-2011 [41] 11,788 200 4 [2] yes 2011

Cars196 [24] 16,185 196 1 yes 2013
INaturalist 2021 [40] 857,877 5,089 7 yes 2021
PlantCLEF 2021 [13] 330,772 997 3 mixed 2021

DeepFashion [27] 800,000 50 4 ¶ yes 2016

gory. This kind of subjective hierarchy can be useful in other applications, but
not particularly for research on generating relationships based on morphology.

The Rove-Tree-11 dataset on the other hand is a well-curated museum col-
lection, where the identification has been done by experts, often using a micro-
scope, and the ground truth phylogeny is as up to date as possible. Additionally,
because the images are of museum collections and not ’in-the-wild’, the spec-
imen is always fully visible, and the dataset has been curated to include only
whole dorsal images. Whether dorsal-view images are sufficient to generate a
phylogeny remains to be seen. Typically biologists would use features from all
over the body, including ventral and sometimes internal organs. We hypothesize
that dorsal view may be sufficient given the ability of deep learning models to
learn patterns which are difficult for the human eye to distinguish. Additionally
results from our classification experiments shown in table 3 suggest that dis-
tinguishing features can be learnt from the images, supporting our belief that
phylogenies may be learnt from this dataset.

2.2 Related Methodologies

Classification Classification is one of the most developed fields in computer
vision and deep learning, with numerous new state of the art architectures and
methods discovered each year. However, there are some architectures which have
gained widespread usage in recent years, which we will use to give baselines for
this dataset. In particular, we will compare classification results using ResNet
[16] and EfficientNet B0 [39]. ResNet is a series of models, introduced in 2015,
which uses residual convolution blocks. EfficientNet was introduced in 2019 and
is known for achieving high accuracies with few parameters. Classification is not
the main focus of this dataset, but we provide classification results for comparison
with similar datasets.

¶ hierarchy presented in [5]
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Fig. 2. Example image of museum unit tray from Stage 1 of image processing.

Deep Metric Learning The goal of deep metric learning (DML) is to learn
an embedding of the data which represents the dataset and distances between
datapoints meaningfully. This could be through clustering related data together,
or through creating independence and interpretability in the variables. Recent
research into deep metric learning can be split into three groups [38]. Ranking-
based methods attempt to pull instances from the same class (positive exam-
ples) closer together in the embedding space, and typically push examples from
other classes further away (eg, [15] [43]). Classification-based methods, such
as ArcFace[7], work by modifying the discriminative classification task. Finally
Proxy Based methods, such as Proxy NCA [29] compare each sample with a
learned distribution for each class.

In this paper we demonstrate results for this dataset using seven deep metric
learning methods; Five ranking-based losses: margin loss [43], triplet loss [43],
contrastive loss [15], multisimilarity loss [42], lifted loss [45], one classification-
based loss: arcface loss [7] and one proxy-based loss: proxynca [29]. With many
state of the art methods and variations on these, choosing which to use is difficult.
We chose these firstly because they are all used in [38] as benchmarks, making
our results directly comparable. Of the 23 described in [38], we focus on seven
which represented some of the better results and show a variety of methods. For
a detailed description of each loss we refer the reader to [38].

During training DML models are typically evaluated not just on the loss, but
also on a number of clustering metrics. In our case, to do this the dataset is evalu-
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ated using nearest neighbors Recall@1 (R1) and Normalized Mutual Information
(NMI) after clustering using the k-means algorithm [28]. NMI is presented in our
main results, and R1 in the supplemental material. NMI is a symmetric quantity
measuring the overlap between clusters. A NMI of 1 indicates that the clusters
are the same. Recall@1 is a measure of the % of results with a nearest neighbour
in the same class. Both are described in further detail in [38].

Generating a Phylogeny from Embeddings In order to use this dataset
for deep phylogenetic generation, we need methods to generate binary graphs
from embedding spaces. We could treat this as a classification problem, however,
with only one graph to generate, this dataset is not large enough to perform di-
rect graph generation. Instead, the graph can be generated indirectly from the
embedding space and compared with the ground truth. This is analogous to
how biologists would traditionally generate phylogenetic trees for small datasets
using morphological matrices. Biologists use maximum parsimony or bayesian
methods [10] to find the best-fitting tree based on discrete characters (either
morphological or genetic). However, the use of continuous characters in improv-
ing phylogeny generation has been recently explored [35]. Therefore if we assume
our embedding space represents morphological features and is a morphological
space, this could similarly be used to generate a phylogeny using the same con-
tinuous trait bayesian phylogenetic inference methods. We use RevBayes[19], a
popular bayesian inference package to complete the analysis. Similar methods
have been used to generate phylogenetic trees [23].

Phylogenetic Comparison The main purpose of this dataset is to allow ex-
ploration of methods for generating phylogenetic trees based on morphology. To
do this, we need methods for comparing phylogenies. There are many standard
methods of doing this in biology, a thorough comparison of them is provided in
[25]. In brief, the metrics can be split into those which do and do not compare
branch lengths. As branch lengths (i.e. evolutionary time) are not yet avail-
able in our ground truth phylogeny, we will focus on those which do not include
branch lengths, called topology-only comparison methods. The most widely used
of these is called the Robinson-Foulds (RF) metric, introduced in 1981 [37]. The
RF metric defines the dissimilarity between two trees as the number of oper-
ations that would be required to turn one tree into another∗. However, it has
some notable disadvantages, including that apparently similar trees can have a
disproportionately high RF score.

One of the more recently introduced metrics is called the Align Score [33].
The Align Score works in two stages. In the first stage, a 1:1 mapping of edges
from each tree (T1 and T2) is assigned. This is done by calculating a similarity
score s(i, j) between the edges, i and j in T1 and T2 respectively, based on how
similarly they partition the tree. More concretely, in tree T1, edge i will partition
the tree into two disjoint subsets Pi0 and Pi1. The similarity scores can then by

∗ it is, however, different from the edit distance popular in computer science

2973



8 R. Hunt and K. Pedersen

Fig. 3. Examples of specimen images before (above) and after (below) segmentation
and rotation adjustment.

computed as:

s(i, j) = 1−max(min(a00, a11),min(a01, a10)) (1)

where ars is the intersection over the union of the partitions:

ars = |Pir ∩ Pjs

Pir ∪ Pjs
| (2)

The munkres algorithm is then used to find the edge j = f(i) that minimizes
the assignment problem, and then the group with the minimum pairs are summed
as follows to calculate the total align score for the two trees:∑

i∈T1

s(i, f(i)) (3)

Unlike the RF score, for each set of partitions the align score calculates the
similarity, s(i, j), as a continuous variable instead of a binary value. That said,
it has the disadvantage that the value is not normalized - a larger tree will likely
have a larger align score, making the result difficult to interpret. Despite this,
we choose to use it as it is a more accurate representation of the topological
similarity between two trees[25].

3 An Overview of Rove-Tree-11

3.1 Image Collection

The images in the dataset were collected and prepared in 4 stages [14]:

Stage 1: Unit Tray Image Collection Rove-Tree-11 was collected by taking
overview images of 619 unit trays from the entomology collection at Natural
History Museum of Denmark, see fig. 2. A Canon EOS R5 mounted on a camera
stand with a macro lens was used to take images of 5760 × 3840 pixels (px)
resolution. Since the camera height and focus were kept fixed, the images can
be related to physical distance as approx. 400 px per cm. Artificial lighting was
used to minimize lighting variance over the images.
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Table 2. Species-level classification results on segmented and unsegmented images.
We can see that using segmentations drastically reduces the accuracy, indicating that
the model is learning from the background and not the morphology of the beetle, as
desired. Top-1 and Top-5 represent accuracies. Uncertainties represent 95% confidence
intervals.

Model Dataset Top-1 Top-5

ResNet-18[16] segmented 90.9 ± 1.2 99.1 ± 1.2
ResNet-18[16] unsegmented 99.1 ± 0.3 99.9 ± 0.3

Stage 2: Bounding Box Identification and Sorting After image capture,
bounding boxes for the individual specimens were then manually annotated us-
ing Inselect [18]. Images of 19,722 individual specimens were then sorted. Only
dorsal views (views from the ’back’ of the beetle) where the specimen was largely
intact and limbs were mostly visible were included, resulting in images of 13,887
specimens in final dataset. See fig. 3 for examples of bounding boxes around spec-
imens. Estimates of body rotation were also annotated in 45 degree increments
which allows for coarse correction of the orientation of the crops.

Stage 3: Segmentation Segmentations were then generated through an it-
erative process. First 200 images were manually segmented. Then U-Net was
trained on these 200 images and was used to generate predictions for the rest of
the images. 3000 of these segmentations were considered good enough. U-Net was
then retrained with these images, then rerun and new segmentations produced.
The final segmentations were then manually corrected. Examples of segmenta-
tion masks and final segmented specimens can be seen in fig. 3 and fig. 4. The
dataset is released with both the original crops and the segmentation masks,
however, as we show in table 2, the segmentations are extremely important for
phylogenetic analysis, as the background of the image is highly correlated with
the species. This is because many of the same species were collected at the same
time in the same place by the same person, meaning whether the specimen was
glued to a card, the age and color of the card, could be correlated with the species,
despite being unrelated to the phylogeny. The segmentations are not perfect. In
particular they cut off some of the finer hairs on the body; It could therefore
be the case that the segmentations are removing vital information which the
model can use to complete classification. We consider this unlikely and suspect
the model is instead learning from the backgrounds.

Stage 4: Rotation Adjustment Rotations were corrected by finding the prin-
cipal axis of inertia of the segmentation masks, (see [21] for details). Since all
the beetles are more or less oval shaped, the minimal axis of rotation of their
masks tends to line up well with their heads and tails. Using this we further
standardized the rotations of the segmentations. This process is shown in fig. 4.
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Fig. 4. Illustration of rotation adjustment algorithm. Example original masks (top) and
rotated masks (bottom). The red line represents the principal axis of inertia found.

3.2 Preparation of phylogeny

A current genus-level phylogeny of the closely related subfamilies Staphylini-
nae, Xantholininae and Paederinae is provided for the sample of genera used in
our analysis. The full phylogeny is visualized in fig. 1 our supplementary mate-
rial. A subset is shown in fig. 1. This phylogeny represents the current state of
knowledge as it was pieced together from the most relevant recently published
phylogenetic analyses, such as [47] for sister-group relationships among all three
subfamilies and the backbone topology of Xantholininae and Staphylininae, [3]
for the subtribe Staphylinina, [4] for the subtribe Philonthina and [46] for the
subfamily Paederinae. Below genus-level the phylogeny is considered unresolved
as we were unable to find species-level phylogenies for the 215 species included
in Rove-Tree-11. A newick file of the phylogeny is provided with the dataset.

3.3 Dataset Statistics

In total, 13,887 images of beetles from the family Staphylinidae, commonly
known as rove beetles, are included from 215 species - spanning 44 genera, 9
tribes and 3 subfamilies. Example images are shown in fig. 1.

The distribution of the dataset per genus is shown in fig. 7. A species-level
distribution is provided in the supplementary material. From this we can see
that the dataset is not evenly distributed, with the species with the highest
number of specimens having 261 examples and the lowest having 2 with the
genus Philonthus accounting for 24.8% of the dataset. This is due to the number
of specimens the museum had in the unit trays that were accessed and imaged at
the time, although the curators also includes samples of species which were easily
distinguishable from each other, and examples which were hard and can only
usually be determined by genital extraction by experts (ie Lathrobium geminum
and Lathrobium elongatum. Examples from these two species are shown in fig.
5 to demonstate the difficulty of the task). The distribution of image sizes in the
dataset is shown in fig. 6. The majority of the images (82%) are under 500×250
pixels.
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Fig. 5. Example images of Lathrobium geminum (top) and Lathrobium elongatum
(bottom) from the dataset. Typically even experts need to dissect the specimen to
complete the determination between these two species.

Fig. 6. Distribution of image sizes included in the dataset. The majority (82%) of
images are under 500 × 250 pixels.

Fig. 7. Distribution of specimens per genus (bottom left) and per subfamily (top right).
Each slice in the stacked bar chart represents a different species within that genus.
Subfamily distribution is included as it is used to generate the validations and test sets
for the clustering results in sec. 4.2. A full species level distribution is shown in the
supplemental material.
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Table 3. Classification results using deep learning architectures. Top-1 and Top-5
represent accuracies. Uncertainties represent 95% confidence intervals based on 3 runs.

Species Genus
Model Params Top-1 Top-5 Top-1 Top-5

ResNet-18 [16] 11.4 M 90.9±1.2 99.2±1.2 98.9±0.3 100±0.3
ResNet-50 [16] 23.9 M 89.4±1.4 99.2±1.4 98.2±0.4 100±0.4

EfficientNet B0 [39] 5.3 M 91.9±1.8 99.3±1.8 99.1±0.2 100±0.2

4 Evaluation

Here we evaluate the dataset by performing benchmark experiments. As stated
previously, the main purpose of this dataset is for deep metric learning on hier-
archical phylogenetic relationships, so this is also the focus of the benchmarks,
although we also provide benchmarks for the classification and clustering tasks.
The same augmentations were applied to the dataset as for CUB200 and Cars176
and as in [38], with the exception that the RandomHorizontalFlip was changed
to a RandomVerticalFlip, as this makes more sense for the Rove-Tree-11 dataset.
Gradient accumulation was also used in some cases due to memory constraints
on the available clusters. The details of which experiments this was applied to
are provided in the codebase.

4.1 Classification

Results from classification experiments are provided in table 3. For these exper-
iments the official pytorch implementations were used with default parameters:
categorical cross entropy loss with an initial learning rate of 0.1, momentum of
0.9, weight decay of 1e − 4 and SGD optimizer. Training details are released
with the code for this dataset. The only alterations from the defaults were to
reduce the batch-size to 32 due to memory constraints and to alter the data
augmentations, detailed in the code. A species-stratified train/val/test split of
70/15/15 was used. The split is provided with the code.

As shown in table 3, the models are able to achieve a top-1 species-level
accuracy of 92% with no hyperparameter tuning, and a top-1 genus level of
almost 100%. These results suggest that although this dataset could be used for
classification tasks and might be useful as such for biologists, classification of
this dataset is not particularly difficult, and this dataset is probably not ideal
as a benchmark for classification in deep learning.

4.2 Clustering and Phylogenetic Results

In table 4, we present benchmark results of applying state of the art methods
for deep metric learning to the Rove-Tree-11 dataset and comparing phylogenies
generated using phylogenetic bayesian methods on the embedding space to the
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ground truth phylogeny as described in sec. 2. A more complete table showing
R1 scores and Cars176 results, is provided for reference in the supplementary
material (table 1). The ’Random’ row represents the align score of a randomly
generated tree with the 9 genera leaves included in the test set, against the
ground truth tree based on 5 random initializations. Since the align score is not
normalized, this random baseline is useful to gauge our results and represents an
upper bound our models should achieve. Following best practice, as described in
[30], the dataset was split into three groups for training, validation and testing.
To properly test the ability of the model to generalize, the groups were split
at subfamily level, so the train, validation and test sets should be as phyloge-
netically distinct as possible, in the sense that they belong to different parts of
the phylogenetic tree. This results in 8534 training images from the subfamily
Staphylininae, 4399 validation images from the subfamily Paederinae and 954
test images from the subfamily Xantholininae.

All results on Rove-Tree-11 were generated using implementations used in
[38], modified to calculate the align score. A forked codebase is provided as a
submodule in the github repository.

Based on the clustering results in table 4, we see that Rove-Tree-11 has
similar NMI scores to CUB200, suggesting this dataset has a similar clustering
difficulty to CUB200 and may be appropriate as a clustering benchmark. As with
CUB200, the best models on Rove-Tree-11 are Triplet [43] and Multisimilarity
[42]. We can also see that the align score results somewhat correspond with
the NMI, with the best results being achieved with Triplet Loss. We can also
see that the best test set align score of 4.0 is a marked improvement to the
random align score baseline of 6.6, but still significantly far away from a perfect
align score of 0, suggesting there is room for improvement. We find it surprising
that the align score of the best model on the CUB200 dataset shows a 60%
improvement to the random score, while on Rove-Tree-11 the improvement is
only 40% on the test set and 51% on the validation set. This suggests that
either CUB200 is an easier dataset to generate phylogenies from, or could be
an artifact of the align score on trees of different depths (CUB200 has a depth
of 4, while Rove-Tree-11 has a depth of 11). It is surprising that it could be an
easier dataset, given that the images are in-the-wild, but this could also be due
to phylogenetically close birds having similar backgrounds in the images (water-
faring birds might typically have ocean backgrounds, for example, and be more
closely phylogenetically related). The phylogenetic tree produced by the best
model is provided in the supplementary material along with the ground truth
tree for visual inspection.

5 Conclusions

In this paper we present Rove-Tree-11, a novel dataset of segmented images of
and research-grade classifications of rove beetles for researching methods for gen-
erating phylogenies from images. We provide an eleven-level fine-grained ground
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Table 4. Benchmark clustering and Align-Score results on Rove-Tree-11 dataset. ’Ran-
dom’ represents the average align score of 5 randomly generated trees. This gives us a
metric to compare our results with. A perfect align score would be 0. 95% confidence
errors are provided based on 5 runs.

CUB200 Rove-Tree-11
Test Validation Test

Loss NMI Align NMI Align NMI Align

Random - 21.9±0.2 - 15.8±0.9 - 6.6±0.5
Triplet 64.8±0.5 9.9±0.9 68.9±0.4 7.8±1.1 66.3±0.3 4.1±0.5
Margin 60.7±0.3 10.6±1.2 68.0±0.7 8.2±0.7 65.9±0.5 4.2±0.7
Lifted 34.8±3.0 15.9±2.0 55.0±0.6 10.5±0.7 56.0±1.1 4.9±0.8

Constrast. 59.0±1.0 11.0±1.2 66.7±0.5 8.5±1.0 65.4±0.5 4.5±0.6
Multisim. 68.2±0.3 8.6±0.8 70.7±0.2 8.2±0.4 67.3±0.5 4.0±0.5

ProxyNCA 66.8±0.4 9.8±0.8 67.5±0.7 9.0±0.8 65.5±0.3 4.2±0.4
Arcface 67.5±0.4 9.8±0.8 66.9±0.9 8.5±0.4 64.8±0.5 4.1±0.4

truth phylogeny for the 44 (train, validation and test) genera included in this
dataset.

We start by demonstrating the importance of the provided segmentations
as the model can learn from the background. We show benchmark results on
this dataset for classification, deep metric learning methods and tree alignment.
We further demonstrate that this dataset shows similar clustering results to the
CUB200 dataset suggesting it may be appropriate as an alternative clustering
benchmark. Finally, we demonstrate how this dataset can be used to generate
and compare phylogenies based on the align score, and show that while it is
possible to generate such trees, there is plenty of room for improvement and we
hope this will be a growing field of research. Code and data are available (code:
https://github.com/robertahunt/Rove-Tree-11, data: http://doi.org/10.17894
/ucph.39619bba-4569-4415-9f25-d6a0ff64f0e3).

Ethical Concerns Models similar to those described, if applied to images of
faces, could be used to generate family trees for humans. This could result in
public images being used to infer familial relationships which could have a nega-
tive societal impact. The authors strongly discourage this form of misuse of the
proposed methods.
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