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Abstract. Explanation generation for transformers enhances account-
ability for their predictions. However, there have been few studies on
generating visual explanations for the transformers that use multidimen-
sional context, such as LambdaNetworks. In this paper, we propose the
Lambda Attention Branch Networks, which attend to important regions
in detail and generate easily interpretable visual explanations. We also
propose the Patch Insertion-Deletion score, an extension of the Insertion-
Deletion score, as an effective evaluation metric for images with sparse
important regions. Experimental results on two public datasets indicate
that the proposed method successfully generates visual explanations.

Keywords: Lambda Networks · transformer · attention.

1 Introduction

Visual explanations for deep neural networks are important in terms of enhanc-
ing accountability about biomedical image processing and providing scientific
insight to experts. Specifically, in the task of predicting solar flares, for which
the theoretical background remains unclear, visual explanations using magne-
tograms can provide scientists with insights into underlying solar activities.

In this paper, we focus on the task of visualizing important regions in an
image as a visual explanation of the model’s decisions. In this task, pixels that
contributed to the model’s prediction should be attended.

Explanation generation for convolutional neural networks has been studied
intensively in recent years [28, 34]. On the other hand, there have been few
studies on generating visual explanations for transformers, especially those based
on Lambda [3]. In addition, standard metrics for visual explanations (e.g. the
Insertion-Deletion score [24]) are sometimes inappropriate for images with sparse
important regions.

Given this background, we propose the Lambda Attention Branch Networks
(LABN), which generates interpretable visual explanations for Lambda-based
transformers. In addition, we introduce the loss used in saliency guided training
[12] to reduce the importance of regions irrelevant to the prediction. Fig. 1 shows
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Fig. 1. Overview of our method.

an overview of our method. It is composed of three modules: the Lambda Feature
Extractor (LFE), Lambda Attention Branch (LAB), and Lambda Perception
Branch (LPB). Attention in the original Lambda layer [3] is sometimes not clear
as visual explanation. On the one hand, we obtain a clear visual explanation by
introducing a branch structure dedicated to visual explanation generation.

We also propose the Patch Insertion-Deletion (PID) score, an extension of the
Insertion-Deletion score, as an effective evaluation metric for images with sparse
important regions. Unlike the Insertion-Deletion score, the PID score evaluates
visual explanations in a patch-wise manner.

The main contributions of this study are as follows:

– We propose the LABN, which has a parallel branching structure to obtain
clear visual explanations than those provided by attention in the Lambda
Layer.

– We propose the PID score, which is an extension of the Insertion-Deletion
score, as an effective evaluation metric for images with sparse important
regions.

– We introduce the loss used in saliency guided training to improve the quality
of the visual explanations.
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2 Related Work

There have been many studies in the field of explanation generation [4, 5, 10,
22, 24, 28, 34]. [6] is a comprehensive survey paper in this field that categorizes
the methods according to their approach. [14] summarizes the characteristics of
vision transformer models for various tasks. In the field of visual explanation
generation, standard image classification datasets are used (e.g., ImageNet [7],
CIFAR10, CIFAR100 IDRiD [25]).

Explanation generation methods can be classified into backpropagation meth-
ods, perturbation methods, and other methods. Backpropagation methods gener-
ate explanations by focusing on the gradient during backpropagation; Integrated
Gradients [31], SmoothGrad [29], FullGrad [30], CAM [37], Grad-CAM [28],
PatternNet [15], and LRP [4, 5] are typical backpropagation methods. For ex-
ample, [31] is a method that satisfies the two axioms of Sensitivity and Imple-
mentation Invariance. It integrates the gradient to generate an explanation. The
authors of [29] pointed out that gradient-based explanations are often noisy and
proposed an averaging method to reduce the noise. Reference [12] reduces noise
using saliency guided training, which brings the gradients of less important re-
gions closer to zero. Reference [30] theoretically proved that the two axioms that
the explanation should satisfy do not hold simultaneously. It then proposed a
generation method that can balance both axioms.

By contrast, perturbation methods generate explanations from changes in
the output when the input is perturbed; LIME [26], RISE [24] and Shapley
Sampling [16] are typical perturbation methods. For example, [24] proposed a
method to generate an explanation from the relationship between masked image
and output.

The Attention Branch Network [10] (ABN), IA-CNN [36] and IA-RED2 [22]
are categorized as other methods. The authors of [22] argued that attention in
the transformer layer is not always appropriate as an explanation. Reference [13]
further showed that attention in the transformer layer can be controlled without
changing the prediction. ABN, which uses a branch structure, has been extended
as Multi-ABN [17], ABEN [21], and PonNet [18]. The authors of [36] proposed
a method to generate the explanations for each key point by connecting parallel
branching structures to the CNN.

Sanity Check [2], ROAR [11], and [9] are representative studies that eval-
uate visual explanations. Reference [2] evaluated an explanation by comparing
the explanations generated by trained and randomized models. In [11], images
are re-trained without the important regions and the difference in accuracy is
calculated. Re-training can eliminate the effect of out-of-distribution data. Ref-
erence [9] evaluated robustness using the distance between explanations with
and without samples in the training set.

The proposed method differs from other visual explanation generation meth-
ods (e.g., Attention Rollout [1]) in that it generates explanations using a branch
structure rather than attention in the Lambda layer. The proposed method is
also different from ABN in that it generates visual explanations and delete pixels
simultaneously.
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Fig. 2. Example data of visual explanation generation.

3 Problem Statement

In this paper, we focus on the task of visualizing important regions in an image
as a visual explanation of the model’s decisions. In particular, we focus on visual
explanations of the Lambda-based transformer [3]. In this task, the pixels that
contributed to the model’s prediction should be attended. For example, Fig. 2
shows an example image from a standard dataset, Indian Diabetic Retinopathy
Image Dataset (IDRiD) [25]. The left and right figures show the input image
and the visual explanation, respectively.

The input and output of this task are defined as follows:

Input: Image x ∈ Rc1×w1×h1

Output: Predicted probability for each class ŷ ∈ RC

where C, c1, w1, and h1 denote the number of classes, the number of channels,
width and height of the input image, respectively. Additionally, the importance
of each pixel is obtained as an attention map α ∈ Rw1×h1 , which is used as a
visual explanation.

The Insertion-Deletion [24] and PID scores are used as an evaluation met-
rics (see Section 4 for details). Using the PID score, we can evaluate the match
between the attention map and the region that contributed to the model’s de-
cision. In this paper, we assume that the model is based on a Lambda-based
transformer. We also assume that the attention maps are not class specific. Fur-
thermore, we focus on specific domains, such as medical care.

4 Proposed Method

Our method is inspired by transformer-based methods that capture the interac-
tions among pixels, such as the Lambda ResNet [3]. Lambda ResNet can capture
the relationship of the entire image with less computation than a typical self-
attention mechanism used in simple vision transformers [8]. Since it does not
assume patch partitioning, it is highly compatible with CNNs. Our method is
also inspired by explanatory visualization methods, such as the Attention Branch
Network [10], in the aspect of using a parallel branch structure. Attention Branch
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Fig. 3. Framework of LABN: our method consists of a Lambda Feature Extractor,
Lambda Attention Branch and Lambda Perception Branch. Each module is explained
in Section 4.1. “Conv” and “GAP” denote the convolution layer and global average
pooling, respectively.

Network is a model that introduces a parallel branch structure to obtain an at-
tention map. We use the parallel attention mechanism to obtain a clear visual
explanation. This explanation is used to highlight important pixels for input.

The novelties of our approach are as follows:

– We introduce a structure that obtains an attention map as a parallel branch,
which provides a clear explanation than a serial Lambda Layer.

– We propose the PID score, which is an extension of Insertion-Deletion score
[24], as an effective explanation evaluation method for images with a large
area of unimportant regions.

4.1 Structure

Fig. 3 shows the structure of our method. It is composed of three modules: the
LFE, LAB, and LPB. We assume that the backbone network contains NB bot-
tleneck layers. First, we divide the backbone network into the LFE and LPB
modules at the B-th bottleneck layer. Next, we introduce the LAB, which is
placed in parallel between the LFE and LPB.

The input of the LFE is image x. The LFE contains B bottleneck layers
and a batch normalization layer to extract features from x. The bottleneck layer
consists of a Lambda layer and multiple convolutional layers, batch normalization
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layers, and ReLU activation functions. The Lambda layer is described later. The
output of the LFE is denoted as hLFE ∈ Rc2×w2×h2 , where c2, w2 and h2 denote
the number of channels, width, and height of the output of the LFE, respectively.

The LAB is divided into two parts, f (1)
LAB and f

(2)
LAB. First, f (1)

LAB generates
an attention map. It contains a bottleneck layer and a global average pooling
layer. The input and output of f (1)

LAB are hLFE and α̃ ∈ Rw2×h2 . We upscale α̃ to
obtain α ∈ Rw1×h1 for the visual explanation. We obtain the final α′ ∈ Rw2×h2

by setting 0 to the values of α̃ that are below the value of θα, where θα is a
hyperparameter that represents the threshold of the attention map.

α̃ = f
(1)
LAB (hLFE) , (1)

α′
ij =

{
α̃ij (θα < α̃ij),
0 (otherwise),

(2)

The reason for setting α′
ij = 0 for values less than θα is to use only the important

regions for prediction. Because the input of LPB is α′ ⊙ hLFE, the value for
importance less than θα is 0. In other words, regions of low importance are
masked to 0. Therefore, regions essential for prediction will be given higher alpha
than other regions. This prevents the importance of regions that contribute to
the model’s predictions from decreasing.

The input and output of f
(2)
LAB are hLFE and p(ŷLAB), respectively. Using

p(ŷLAB) in the loss function, we can train LAB directly for classification tasks.
As a result, we can generate attention maps associated strongly with the classi-
fication result.

Next, fLPB performs classification based on the outputs of the LFE and LAB.
It contains (NB−B) bottleneck layers, flatten layers, and fully connected layers.
The input and output of LPB are α′ ⊙ hLFE and p(ŷLPB), respectively, where
⊙ represents the Hadamard product.

4.2 Lambda Layer

We use the Lambda layer proposed in [3]. Self-attention [32] models relationships
in a sequence by computing inner products. However, self-attention is compu-
tationally expensive and difficult to implement in images with long sequences.
Unlike [8], Lambda Netowkrs [3] reduced computational complexity by perform-
ing dimensionality reduction followed by inner product calculation. This allows
the relationship between pixels to be modeled without having to split them into
patches.

Fig. 4 shows the structure of the Lambda layer. h ∈ Rc3×w3×h3 denotes the
input of the Lambda layer, where c3, w3 and h3 denote the number of channels,
width, and height of the input of the Lambda layer, respectively.

First, we generate the queries, keys and values as follows:

Q = V = Conv(h), (3)
K = softmax(Conv(h)). (4)
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Fig. 4. Structure of Lambda layer.

Next, we compute the con-
tent lambda λc and position
lambdas λp:

λc = K⊤V, (5)
λp = Conv(V ). (6)

The output of the Lambda
Layer hL ∈ Rc3×w3×h3 is com-
puted as follows:

hL = (λc + λp)
⊤Q. (7)

We use the following loss function:

L = LLPB + λ1LLAB + λ2LKL, (8)

LLPB = CE(ŷ
(x)
LPB,y), (9)

LLAB = CE(ŷLAB,y), (10)

LKL = DKL

(
ŷ
(x)
LPB||ŷ

(x̃)
LPB

)
, (11)

where y, CE, DKL and λ1, λ2 denote the ground truth label, cross-entropy loss
function, Kullback–Leibler divergence and weights, respectively. In addition, x̃
and ŷ

(z)
LPB denote the image masked by the bias image and the output of LPB

when z is input, respectively. x̃ and the bias image b are computed as follows:

x̃ij =

{
xij (θb < α̃ij),
bij (otherwise),

(12)

bij =
1

N

N∑
k=0

x
(k)
ij , (13)

where θb and x(k) denote the hyperparameter of the mask ratio and the k-
th sample of the training sets. Note that it is often impossible to define an
appropriate bias image on generic datasets (e.g., ImageNet and VOC).

4.3 PID Score

The Insertion-Deletion (ID) score is a standard evaluation metric for visual ex-
planations [24]. It measures the change in the probability of a predicted class
when pixels are inserted according to the importance given by a method. How-
ever, the ID score often overestimates coarse explanations. This is inappropriate
for problems with sparse important regions.

Therefore, we propose the PID score, an extension of the ID score, as an
effective evaluation metric for images with sparse important regions. the PID
score uses the maximum importance in the patch. This increases the influence

3542



8 T. Iida et al.

of the details in the fine-grained explanation and allows for proper evaluation
as well as for normal images. The PID score can appropriately evaluate such
images by inserting and deleting patches. The PID score is defined as follows:

PID = AUC(patch-insertion)−AUC(patch-deletion), (14)

where AUC denotes the area under the curve.
Patch-insertion and patch-deletion curves are obtained by the following pro-

cedure: First, we divide x into patches (submatrices) pij ∈ Rc1×m2

, where m, i,
and j denote the size of the patch, vertical indices, and horizontal indices, re-
spectively. When m = 1 and bij = 0 for any i and j, the PID score is the same
as the ID score.

Next, we apply max-pooling to attention map α to create the attention map
αp ∈ Rm2

for each patch. The elements of αp are denoted as αi1j1 ,αi2j2 , · · · ,αimjm

in ascending order. We define An as follows:

An = {(ik, jk)|k ≦ n} , (15)

where n is the number of patches inserted or deleted.
Then, the inputs of patch-insertion in and patch-deletion dn are represented

using An as follows:

(in,dn) =

{
(pij , bij) (i, j) ∈ An,
(bij ,pij) (otherwise).

(16)

Finally, patch-insertion and patch-deletion curves are obtained by plotting n

with y
(ins,n)
c and y

(del,n)
c , respectively. Here, y(ins,n), y(del,n), and c respectively

denote the outputs when in is input, outputs when dn is input, and the class to
which x belongs.

5 Experiments

5.1 Experimental Setup

IDRiD Dataset The Indian Diabetic Retinopathy Image Dataset (IDRiD) [25]
and DeFN magnetograms dataset [20] were used for the experimental evaluation.
The IDRiD is a dataset for detecting diabetic retinopathy from retinal fundus
images. It was annotated by medical experts. The images were classified into
separate groups ranging from 0 (No apparent) to 4 (Severe) according to the
International Clinical Diabetic Retinopa [35]. The IDRiD contained 516 samples.
Among these samples, 168 were negative and 348 were positive. The training,
validation, and test sets consisted of 330, 83, and 103 samples, respectively. For
the IDRiD, we assigned binary label to five lesions of retinopathy grades 0–4,
by converting grade 0 to negative and grades 1–4 to positive. The size of each
image were 4288 × 2848. The input images were resized to 224 × 224. We used
the IDRiD because it is a standard dataset for visual explanation generation
tasks [19]. In addition, we added a bias image to the training set as a negative
class.

3543



Visual Explanation Generation Based on LABN 9

Table 1. Parameter settings.

IDRiD DeFN
magnetograms

Optimizer AdamW AdamW

Learning rate LAB, Linear 1.0× 10−3 1.0× 10−3

LFE, LPB 1.0× 10−4 1.0× 10−4

Weight decay 0.09 0.09
Batch size 32 32

Loss weights Negative 2 1
Positive 1 1

θα 0.75 0.5
θb 0.2 0.2
NB 16 1
B 7 0

DeFN magnetograms Dataset The DeFN magnetograms dataset contained
the hourly solar images taken by the Helioseismic and Magnetic Imager [27]. We
collected magnetograms from the Solar Dynamic Observatory3 [23] web archives.
Because the mechanism underlying solar flares remains unclear, it is important
to generate visual explanations that give insight into the related theory.

The label of each magnetogram was the maximum solar flare class that oc-
curred within 24 hours. We assigned binary labels for the four solar flare classes
of O, C, M, and X, by converting O and C classes to “< M” and converting
M and X to “≥ M.” The input images were resized to 512 × 512. The DeFN
magnetograms dataset contained 61,315 samples, covering the period from June
2010 to December 2017. Among these samples, 56,078 images were labeled as
“< M” and 5,237 images were labeled as “≥ M.” The size of each image was
1024× 1024. The training, validation, and test sets consisted of 45,530 samples
from 2010–2015, 7,795 samples from 2016, and 7,990 samples from 2017, respec-
tively. Similar to the IDRiD, we added a bias image to the training set as the
“< M” class. The training, validation, and test sets were used for parameter
training, hyperparameter validation, and evaluation, respectively. The images
were standardized for both datasets.

Hyperparameter Settings Table 1 shows the hyperparameter settings of the
proposed method. Here, the loss weights denote the weight of each class in the
loss function. When NB = 1 and NB = 16, the model had 8,490 and 22 million
parameters, respectively. The parameters were trained on an RTX 2080 with
11GB of GPU memory and an Intel Core i9 processor. It took approximately 1
day and 40 minutes to train the model on the DeFN magnetograms dataset and
IDRiD, respectively. The inference time was approximately 0.1 s. Warmup and
cosine-decay were used to schedule the learning rate. We stopped the training
when the loss on the validation set did not improve for six consecutive epochs.
3 https://sdo.gsfc.nasa.gov/data/
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Table 2. Quantitative results on the IDRiD (upper table) and DeFN magnetograms
dataset (lower table).

Method RISE [24] Lambda attention [33] Ours (LABN)
ID↑ 0.319± 0.015 −0.101± 0.074 0.431± 0.213

m = 2 0.179± 0.080 −0.105± 0.073 0.458± 0.198

PID↑ m = 4 0.130± 0.045 −0.116± 0.081 0.473± 0.178
m = 8 0.136± 0.050 −0.123± 0.078 0.470± 0.178
m = 16 0.101± 0.033 −0.093± 0.054 0.455± 0.181

Method RISE [24] Lambda attention [33] Ours (LABN)
ID↑ 0.235± 0.145 0.374± 0.080 0.506± 0.170

m = 2 0.261± 0.217 0.414± 0.129 0.748± 0.102

PID↑ m = 4 0.296± 0.199 0.403± 0.138 0.755± 0.100
m = 8 0.379± 0.172 0.378± 0.162 0.757± 0.094
m = 16 0.461± 0.164 0.291± 0.216 0.756± 0.096

Table 3. Confusion matrix.

IDRiD DeFN magnetograms
TP 56 161
TN 25 7566
FP 9 243
FN 13 20

5.2 Quantitative Results

We used RISE [24] and Lambda attention [33] as the baseline methods. We
obtained Lambda attention by computing the average of λ⊤

c Q in the Lambda
layer in the direction of channel dimension. Because there is no established ex-
planation generation method for Lambda Networks, we constructed a baseline
method based on standard explanation methods for transformers (e.g., attention
rollout [33]). As a result, we selected the optimal λ⊤

c Q and named it Lambda
attention. RISE is also a standard method that can be applied to general models.

We used the ID and PID scores as the primary evaluation metrics. The ID
score is a standard evaluation method for explanation generation. We used the
PID score because the IDRiD and DeFN magnetograms dataset contain sparse
images.

Table 2 shows the quantitative results. The upper and lower tables show the
results on the IDRiD and DeFN magnetograms dataset, respectively. We con-
ducted the experiment four times for each method, and the average and standard
deviations of the scores are reported. For the IDRiD and DeFN magnetograms
dataset, only the positive and “≥ M” data were used to calculate the score, re-
spectively. This is because the negative and “< M” data do not contain regions
that are appropriate for explanation.
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Table 4. Quantitative results of ablation studies.

Condition (i) (ii) (iii) (iv) Ours
LKL ✓ ✓

bias image ✓ ✓

ID↑ 0.044 0.124 0.460 0.506
m = 2 0.311 0.446 0.774 0.748

PID↑ m = 4 0.489 0.405 0.792 0.755
m = 8 0.523 0.388 0.808 0.757
m = 16 0.556 0.382 0.807 0.756

(a) RISE [24] (b) Lambda attention [33] (c) Ours

Fig. 5. Qualitative results. The top two and bottom two rows show the results on the
IDRiD, DeFN magnetograms dataset, respectively. RISE focuses on areas that are too
large, and Lambda attention focuses on the background. By contrast, the proposed
method does not focus on inappropriate areas.
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For the IDRiD, Table 2 shows that the PID score at m = 16 was 0.101,
-0.093, and 0.455 points for RISE, Lambda attention and LABN, respectively.
The PID score of LABN was better than that of RISE by 0.354 points. Similarly,
the ID and PID scores at m = 2, 4, 8 improved by 0.112 and 0.279, 0.343, 0.334
points, respectively, when LABN was used. For the PID score (m ≥ 2), these
results suggest that the performance has improved (p < 0.1).

For the DeFN magnetograms dataset, the table shows that the ID and the
PID scores were also improved. These results indicate that LABN successfully
generates explanations for images with sparse important regions. In particular,
for the PID score (m ≥ 2), there was a statistically significant improvement
(p < 0.05). On the other hand, in the ID score, these results suggest that there
is no significant difference (p > 0.1).

Table 3 shows the confusion matrix of our method. On the IDRiD, 56, 25,
9 and 13 samples were classified as True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN), respectively. On the DeFN mag-
netograms dataset, 161, 7566, 243, and 20 samples were classified as TP, TN,
FP, and FN, respectively.

LABN failed on 22 and 263 samples in the IDRiD and DeFN magnetograms
dataset, respectively. LABN failed to generate explanations with a PID score
< 0.2 for 32 and 1029 samples in the IDRiD and DeFN magnetograms dataset,
respectively.

5.3 Ablation Studies

We set the following ablation conditions:

1. w/o LKL

We removed LKL to investigate the effect of saliency guided training on
explanation generation performance.

2. w/o bias image
We eliminated the bias image from the training set to investigate the effect
on explanation generation performance.

Table 4 shows the quantitative results for the ablation studies. Under con-
dition (ii), both ID and PID scores decreased significantly. Note that condition
(iii) led to higher performance in terms of PID. These results indicate that LKL

contributed more to the model performance.

5.4 Qualitative Results

The top two and bottom two rows of Fig. 5 show the qualitative results for the
IDRiD and DeFN magnetograms dataset samples, respectively. The first and
second rows in the left column of the image illustrate that RISE attended large
areas and did not focus on the important regions. In the first and second rows in
the middle column of image, most of the area attended by Lambda attention are
background, which is inappropriate. By contrast, LABN successfully attended
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Fig. 6. Failure examples. Left and right figures are images from the IDRiD and DeFN
magnetograms dataset, respectively.

the appropriate regions, which contributed to the accuracy, as shown in the first
and second rows in the right column of image.

The third and forth rows in the left and middle columns of images demon-
strate that RISE and Lambda attention attended unrelated regions such as the
circumference and background. By contrast, the third and forth rows in the right
column of image show that LABN appropriately attended the active sunspots,
which are important for solar flare prediction.

Fig. 6 shows examples of failures (examples with a PID score less than 0.2),
for the IDRiD and DeFN magnetograms dataset, respectively. In the left figure,
a wide range of areas including the optic disk are highlighted. In the right figure,
important regions were not appropriately highlighted, reducing the PID score.

For the IDRiD and DeFN magnetograms dataset, 32 and 100 samples, re-
spectively were classed as failures. Note that we randomly selected 100 failure
samples from the DeFN magnetograms dataset.

– IP (Incorrect Prediction)
IP refers to a case in which the model predicts the incorrect class. The
bottom left of Fig. 6 shows an example of an IP.

– OA (Over-Attended)
OA refers to a case in which most of the image is highlighted. The top left
of Fig. 6 shows an example of an OA image. In this example, the model paid
attention to the entire image.

– IA (Insufficiently Attended)
IA refers to a case in which the attended area is insufficient. The top right
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Table 5. Error analysis

Error ID Description IDRiD DeFN
magnetograms

IP Incorrect Prediction 12 58
OA Over-Attended 16 3
IA Insufficiently Attended 3 24
WA Wrongly Attended 1 15

of Fig. 6 shows an example of an IA image. In this example, ||α|| is small
and the sunspots are not highlighted.

– WA (Wrongly Attended)
WA refers to a case in which the pixels that do not contribute to the accuracy
are given attention. The bottom right of Fig. 6 shows an example of a WA
image. The PID score at m = 16 is 0.1, which indicates that non-important
regions are attended.

5.5 Error Analysis

Table 5 shows that the bottleneck of the IDRiD and DeFN magnetograms dataset
are OA and IP errors, respectively. Therefore, we expect that improving the
model accuracy and regularizing α each dataset will be an effective approach to
generating appropriate visual explanations.

6 Conclusions

In this paper, we focused on the task of generating an attention map as a visual
explanation for a model’s decisions. The main contributions of this paper are as
follows:

– We introduced a parallel branch structure to obtain explanations that are
clearer than those obtained using Lambda attention.

– We proposed the PID score as an effective evaluation measure for explaining
images with sparse important regions.

– We introduced the loss used in saliency guided training [12] to reduce the
importance of irrelevant regions.

– LABN outperformed the baseline methods in terms of the ID and PID scores.
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