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Abstract. The use of multimodal images generally improves segmenta-
tion. However, complete multimodal datasets are often unavailable due
to clinical constraints. To address this problem, we propose a novel mul-
timodal segmentation framework that is robust to missing modalities
by using a region-of-interest (ROI) attentive modality completion. We
use ROI attentive skip connection to focus on segmentation-related re-
gions and a joint discriminator that combines tumor ROI attentive im-
ages and segmentation probability maps to learn segmentation-relevant
shared latent representations. Our method is validated in the brain tu-
mor segmentation challenge dataset of 285 cases for the three regions of
the complete tumor, tumor core, and enhancing tumor. It is also vali-
dated on the ischemic stroke lesion segmentation challenge dataset with
28 cases of infarction lesions. Our method outperforms state-of-the-art
methods in robust multimodal segmentation, achieving an average Dice
of 84.15%, 75.59%, and 54.90% for the three types of brain tumor regions,
respectively, and 48.29% for stroke lesions. Our method can improve the
clinical workflow that requires multimodal images.

Keywords: segmentation · missing modalities · multimodal learning ·
adversarial learning.

1 Introduction

Segmentation of lesions in medical images provides important information for
assessing disease progression and surgical planning. Accurate segmentation of-
ten requires multimodal 3D images with complementary information about the
lesions. For example, brain tumors are usually diagnosed with multimodal mag-
netic resonance imaging (MRI) and different MRI modalities, such as T1-weighted
(T1), contrast-enhanced T1-weighted (T1ce), T2-weighted (T2), and fluid atten-
uation inversion recovery (FLAIR), provide complementary information (e.g.,
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edema, enhancing tumor, and necrosis/non-enhancing tumor) about the brain
tumor. In addition, T1, T2, diffusion-weighted images (DWI), and FLAIR MRI
are acquired for the diagnosis of subacute ischemic stroke. DWI and FLAIR
modalities provide general information about stroke lesions, whereas T1 and T2
modalities provide information on vasogenic edema present in subacute stroke
[29]. Therefore, compared to the use of single-modality MRI, segmentation with
multimodal MRI [30, 11, 40, 16, 21, 13, 14, 18–20, 27] helps to reduce uncertainty
and improve segmentation performance.

Using multimodal data for segmentation is generally preferred, but modali-
ties can often be missing in clinical practice. Some modalities may be missing due
to limited patient tolerance, limited scan times, and corrupted images. In such
cases, the missing modalities are not available for learning, which degrades the
segmentation performance. Therefore, to fill the information gap of the missing
modalities, an algorithm that effectively handles missing modalities is required.
The simplest way to compensate for missing modalities is to impute missing
modalities from other modalities using a method such as a k-nearest neighbor.
However, this method cannot fully incorporate semantic information originally
contained in the missing modalities. Many deep learning methods have recently
been proposed to solve the problem of missing modalities [36, 24, 17, 12, 7, 35, 42].
These methods can be broadly grouped into two approaches. The first approach
synthesizes missing modalities from available modalities and performs segmen-
tation using complete modalities [36, 24]. These methods are computationally
complex because many different models are required to handle different missing
scenarios. The second approach involves learning a shared representation of the
multimodal information for segmentation. The learned shared representation is
common to multimodal data, and thus, it is possible to construct one model that
scales well to handle many missing scenarios.

Existing methods based on the second approach primarily use procedures
to complete the full modalities as auxiliary tasks to learn a shared represen-
tation that is robust to missing modalities. Although this strategy successfully
solves the problem of missing modalities, as a result, information about segmen-
tation can be lost, which can lead to degradation of segmentation performance.
Therefore, in addition to the constraints related to the completion of the full
modalities, it is necessary to impose constraints related to segmentation tasks,
such as image structure and the region-of-interest (ROI).

In this paper, we propose a new robust multimodal segmentation frame-
work called region-of-interest attentive heteromodal variational encoder-decoder
(RA-HVED). Our framework uses a heteromodal variational encoder-decoder
(U-HVED) based on a multimodal variational formulation as a backbone to
demonstrate the competitive performance of ROI attentive completion. The
main contributions of our method are threefold: (1) We propose a robust seg-
mentation framework for missing modalities that focuses on ROI. To impose
additional weights on the ROI, we introduce the ROI attentive skip connection
module (RSM) and the ROI attentive joint discriminator. (2) We facilitate the
learning of segmentation task-relevant shared representations by adding RSM
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that constrains the skip connection and an ROI attentive joint discriminator
that strongly constrains modality completion. (3) We have conducted exten-
sive experiments with missing modalities using brain tumor and stroke lesion
datasets. Our method is more robust than previous methods for segmentation
with missing modalities for the two datasets. In summary, our method can be
applied to practical situations where data with missing modalities occur.

2 Related Works

2.1 Medical Image Synthesis

Medical image synthesis is a field that has recently been explored. Initially,
methods based on convolutional neural network (CNN) have been commonly
used for image synthesis. Li et al. [24] synthesized positron emission tomogra-
phy (PET) images from MRI to improve the diagnosis of brain disease. Han [15]
proposed a CNN method to synthesize the corresponding computed tomogra-
phy (CT) images from an MRI. Since the first generation of CNNs, generative
adversarial network (GAN)-based methods have achieved excellent performance
in various medical image synthesis tasks. Nie et al. [31] synthesized CT images
from MRI images using a context-aware GAN with high clinical utility. Costa
et al. [10] generated a vessel tree using an adversarial autoencoder and synthe-
sized a color retinal image from a vessel tree using a GAN. Wolterink et al. [38]
used a GAN to obtain a routine-dose CT by reducing the noise of low-dose CT.
Bi et al. [4] synthesized low-dose PET images from CT and tumor labels using
a multichannel GAN. These methods are mostly intended for cases where one
source modality is mapped to another target modality and thus are not suitable
for multimodal settings where there may be more than one source and target
modalities. Many studies on multimodal synthesis have recently been conducted
to exploit the complementary information of multimodal data [37, 23, 41, 5, 34].
Wang et al. [37] synthesized full-dose PET images by combining low-dose PET
images and multimodal MRI. Lee et al. [23] proposed CollaGAN for the impu-
tation of missing image data. CollaGAN used a generator to produce a single
output corresponding to each combination of multimodal inputs. CollaGAN used
multiple cycle consistency to obtain the content of each combination, and the
generation of the corresponding target modality was controlled by the one-hot-
mask vector. However, this method cannot handle multiple missing modalities
because it assumes that only one modality is missing at a time. Therefore, Shen
et al. [34] proposed ReMIC for multiple missing modalities. Because ReMIC is
a GAN framework that generates multiple images by separating the common
content code of modalities and modality-specific style code, it can solve prob-
lems with missing multiple modalities. Furthermore, it has been shown that the
learned content code contains semantic information and, therefore, can perform
segmentation tasks well. Because the segmentation task was performed inde-
pendently after synthesis, the segmentation task was not explicitly optimized,
and the segmentation performance depended on the results of the synthesized
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modalities. Therefore, we propose a robust segmentation framework for multiple
missing modalities that overcomes these limitations.

2.2 Segmentation with missing modalities

Many methods have been proposed to solve the problem of the missing modality
in segmentation [36, 24, 17, 12, 7, 35, 42]. These methods can be broadly divided
into two types. The first approach synthesizes missing modalities and then per-
forms segmentation from a set of complete modalities [36, 24]. This approach can
be effectively used when only two modalities are considered. However, once the
number of modalities exceeds three, it becomes complex because many differ-
ent models are required to handle different missing scenarios. Subsequently, the
synthesis of the missing modalities in multimodal (more than two modalities)
situations was proposed, but it is still difficult to deal with multiple missing
modalities. The second approach involves creating a shared feature space that
encodes multimodal segmentation information. Because this method finds com-
mon information via a shared encoder, it is possible to create one model that
scales well to handle many missing scenarios. As such, many studies have adopted
the second approach [17, 12, 7, 35, 42]. Havaei et al. [17] proposed a heteromodal
image segmentation (HeMIS) method to calculate the statistics of learned fea-
ture maps for each modality and used them to predict the segmentation map.
Because the encoder of HeMIS could not fully learn the shared representation us-
ing simple arithmetic operations, Dorent et al. [12] proposed U-HVED based on
a multimodal variational formulation. U-HVED proved to be robust to missing
modalities and outperformed the HeMIS in evaluating the brain tumor dataset.
Chen et al. [7] applied the concept of feature disentanglement to effectively
learn the shared latent representations in missing modality settings. However,
this method requires an additional encoder for feature disentanglement. Shen et
al. [35] introduced adversarial loss to learn invariant representations by matching
feature maps of missing modalities to feature maps of complete modalities. This
model was designed to be robust to only one missing modality; thus, it cannot
handle situations where more than two modalities are missing. Existing meth-
ods [17, 12, 7, 35, 42] have proposed robust models for missing modalities using
modality completion as an additional auxiliary task in the main segmentation
task.

Our model goes further and improves the performance of segmentation with
missing modalities by imposing constraints related to the segmentation task on
the modality completion.

3 Methods

Fig. 1 shows an overview of our proposed framework. As the backbone of our
method, we first introduce U-HVED, which learns the multi-scale shared rep-
resentation. This model extracts representations from encoders and fuses them
into a shared representation of multimodal data. We also introduce a dimension
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Fig. 1. Overview of our RA-HVED for robust multimodal segmentation. All modality-
specific encoders E1, . . . , En are included in the multi-encoder ME. The multi-scale
shared representation from the multi-encoder ME flows into the reconstructor R for
modality completion and segmentor S for image segmentation. The joint discriminator
D computes adversarial loss using the concatenation (Â, P ) of the outputs from the
two streams. ROI attentive images Â are obtained using reconstructed images X̂ and
segmentation probability maps P .

reduction block (DRB) to efficiently learn the multi-scale shared representation.
The shared representation is used in two streams for robust segmentation in
different scenarios of missing modality. One stream generates the full modal-
ities from the shared representation of the multimodal input, and the other
performs the segmentation. At each level of the segmentor S, the encoder fea-
tures are weighted by the segmentation-related regions using ROI attentive skip
connections. Finally, we propose the ROI attentive module M and the joint
discriminator D, which forces the reconstructor R to focus on the ROI.

3.1 Heteromodal Variational Encoder-Decoder

Dorent et al. [12] proposed U-HVED that combines U-net [33] and multimodal
variational autoencoder (MVAE) [39] to perform segmentation from any subset
of the full modalities. MVAE is a model developed in the context of condition-
ally independent modalities X = x1, . . . , xn when a common latent variable z is
given. The authors of MVAE deal with the missing data by extending variational
autoencoder (VAE) [22] formulation for multimodal inputs. The encoded mean
µ and covariance Σ of each modality are fused into a common latent variable z
of the multimodal data using the product of Gaussian (PoG) [6] (Supplementary
Fig. 2(a)). If a modality is missing, the corresponding variation parameters are
excluded (Supplementary Fig. 2(b)). The latent variable z estimated by sampling
was decoded into the image space. Sampling was performed using a reparame-
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terization trick [22]. U-HVED performs optimization by drawing random subsets
in each iteration. VAE loss for the network optimization is as follows:

LV AE = Ex− [DKL[ME(x−) ∥ N(0, 1)]+ ∥ x̂− − x ∥] , (1)

where x− are the random missing modalities from input images x, x̂− denotes the
reconstructed images, DKL is KL divergence, ME is a multi-encoder E1, . . . , En,
and N(0, I) is the normal distribution.

Fig. 2. Schematic visualization of our network architecture. Only two encoders, a seg-
mentation decoder and a reconstruction decoder are shown. Each orange block stands
for DRB. The size of the output channel of the decoder is 1 for the reconstruction of
modality and 3 for segmentation.

3.2 ROI Attentive Skip Connection Module

U-net [33] uses skip connections for successful segmentation. Generally, skip
connection of U-net is a structure in which an input of a decoder and a fea-
ture of a corresponding encoder are concatenated. Since the decoder uses the
encoder’s features, it is easier to recover the lost detailed spatial information.
Here, we propose an ROI attentive skip connection module (RSM) to empha-
size the segmentation-related region in encoder features. Before applying RSM,
a dimension reduction block for efficient representation learning is introduced.

Dimension Reduction Block. U-HVED learns multi-scale shared represen-
tation by applying MVAE to skip connections and the main stream of U-net. As
the layer depth increases, the dimension of the representation increases, which
makes learning the shared representation difficult. This problem is magnified in
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3D medical images compared to 2D natural images because a two-fold magnifi-
cation of the image leads to an eight-fold increase in the amount of data in 3D
compared to the four-fold increase in 2D images. As the spatial size of the shared
representation eventually increases, the expansion of the model becomes limited.
To solve this problem, we propose DRB method that reduces the dimensions of
the shared representation. DRB consists of dimension reduction and upsampling
(Fig. 2). First, our DRB reduces the size of the spatial and channel by a 3 ×
3 × 3 convolutional layer. Then, after sampling the representation, the repre-
sentation is restored to the original dimension by a 1 × 1 × 1 convolutional
layer, an upsampling layer, and depth-wise convolutional layer. DRB is applied
to each modality at all levels. Ultimately, we obtain a shared representation with
an 8-fold reduction in spatial size and a 2-fold reduction in channel size com-
pared to the original U-HVED. This shared representation has a relatively small
dimension compared to the original dimension, which enables efficient learning
and facilitates 3D expansion of the model.

ROI Attentive Skip Connection. Our RSM does not simply concatenate
input features when applying skip connection, but applies weights to encoder
features using segmentation feature maps and then proceeds with concatenation.
In Fig. 3, spatial features are obtained by using channel-wise average and max
operations of the l-th segmentation feature fS

l and l-th encoder features fE
l . The

concatenated spatial features are transformed into spatial attention weights by
sequentially passing them through the depth-wise convolutional layer, the point-
wise convolutional layer, and the sigmoid activation. Spatial attention weights
are applied to the encoder features in a residual manner. The spatial attention
weights of segmentation features fS

l are obtained through the same process with
only their own spatial features and are applied to the segmentation features fS

l

in a residual manner. Finally, the attentive segmentation and encoder features
are concatenated.

Fig. 3. Schematic visualization of our ROI attentive skip connection module. Using
fS
l , spatial attention weights are applied to each feature.

3.3 ROI Attentive Module and Joint Discriminator

Many studies [30, 17, 12, 7, 35, 42, 28, 32, 8, 1] used an autoencoder or VAE as
an auxiliary task to learn meaningful representations for segmentation. These
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methods have achieved success in accurate segmentation. However, the learned
shared representation may be less relevant for segmentation because the network
is simultaneously trained for image reconstruction and segmentation. Therefore,
we introduce a joint discriminator D that combines ROI attentive images â and
segmentation probability maps p to learn a shared representation that focuses on
the segmentation task. The joint discriminator D enables learning of the shared
representation by imposing additional constraints on the image reconstruction.
ROI attentive images â are created by the ROI attentive module M (Eq. 2)
using the reconstructed images x̂ and their segmentation probability maps p as
inputs. These values are calculated as follows:

â = x̂ ∗ (1 +
∑
k

pk) , (2)

where pk is the segmentation probability maps whose values are greater than 0.5
for segmentation class k. The ROI attentive module M emphasizes the ROI by
using the average of the segmentation probability maps p in the reconstructed
images x̂ as a weight. Joint discriminator D is trained as an adversary by dis-
tinguishing between full and missing modalities with a focus on the ROI. The
adversarial loss for joint discriminator D is defined as

Ladv = Eâ[log(D(â, p))] + Eâ− [log(D(â−, p−))] . (3)

Although it is possible to constrain the ROI in image reconstruction us-
ing only the joint discriminator D, we enforce stronger constraints on the ROI
through the ROI attentive module M. Thus, our joint discriminator D strongly
constrains the reconstruction network R to reconstruct images that focus on the
ROI, making the shared representation more relevant to the segmentation task
and more robust to missing modalities.

3.4 Segmentation

We choose a Dice loss for segmentation network ME ◦ S that consists of multi-
encoder ME and segmentor S. Our goal is to successfully perform segmentation
in all subsets of input modalities; thus, we use both Dice loss for full modalities
x and missing modalities x− to train a segmentation network ME ◦ S.

Lseg = Dice(y, p) +Dice(y, p−) , (4)

where y is ground truth, and p represents is segmentation probability maps.

3.5 Training Process

As shown in Fig. 1, our goal is to learn a multi-scale shared representation
for multiple encoders. In this context, segmentor S and reconstructor R are
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trained for segmentation and modality completion, respectively, using a multi-
scale shared representation. Finally, through joint adversarial learning, segmen-
tor S is forced to generate a segmentation map that is robust to missing modali-
ties, and the reconstructor R is forced to generate images related to the segmen-
tation task. The total objective function with trade-off parameters λ1,λ1 for the
entire framework is as follows:

L = Lseg + λ1 ∗ LV AE + λ2 ∗ Ladv . (5)

4 Experiments

4.1 Data

BraTS. We evaluated our method using a multimodal brain tumor segmen-
tation challenge (BraTS) 2018 dataset [26, 2, 3]. The imaging dataset included
T1, T1ce, T2, and FLAIR MRI modalities for 285 patients with 210 high-grade
gliomas and 75 low-grade gliomas. Imaging data were preprocessed by resampling
to an isotropic 1 mm³ resolution, coregistration onto an anatomical template,
and skull stripping. The ground truth of the three tumor regions was provided
by manual labeling by experts. The clinical goal of BraTS 2018 dataset is to seg-
ment three overlapping regions (i.e., complete tumor, tumor core, and enhancing
tumor). We randomly divided the dataset into 70 % training, 10 % validation,
and 20 % testing sets.

ISLES. The ischemic stroke lesion segmentation challenge (ISLES) 2015 dataset
[25] provides multimodal MRI data. We selected the subacute ischemic stroke
lesion segmentation (SISS) task between the two subtasks. The SISS dataset
provides four MRI modalities consisting of T1, T2, DWI, and FLAIR for 28 pa-
tients. The imaging data were preprocessed by resampling to an isotropic 1 mm³
resolution, coregistration onto the FLAIR, and skull stripping. The infarcted ar-
eas were manually labeled by the experts. We randomly divided the dataset into
70 % training and 30 % testing sets.

4.2 Implementation Details

The network structure of RA-HVED is shown in Fig. 2. Our entire network
takes the form of a 3D U-net [9]. A detailed network structure is referred in
the supplementary material. We normalized the MRI intensity to zero mean and
unit variance for the whole brain in each MRI modality. For data augmentation,
we randomly applied an intensity shift for each modality and flipped for all
axes. The 3D images were randomly cropped into 112 × 112 × 112 patches
and used during training. We used an Adam optimizer with an initial learning
rate of 1e-4 and a batch size of 1. The learning rate was multiplied by (1-
epoch/total epoch)0.9 for each epoch during 360 epochs. We set λ1 = 0.2 and
λ2 = 0.1 through a grid search with 0.1 increments in [0, 1] from the validation
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set. The missing modalities were constructed by uniformly drawing subsets, as
is done in U-HVED [12] during training. All networks were implemented using
the Pytorch library. To obtain the final inference result, we used the sliding
window strategy, which is commonly used in patch-based networks. The stride
of the sliding window is 28 × 28 × 28 and equal to patch size / 4. After we
obtained the final result, no postprocessing was done. The settings of the brain
tumor dataset were used in the stroke dataset without any specific architectural
changes or hyperparameter tuning. Our implementation is available here.4

4.3 Results of Segmentation with missing modalities

To evaluate the robustness of our method against the missing modalities, we
compare our method (RA-HVED) to three previous methods in all scenarios of
missing modalities: 1) U-HeMIS [12] is a U-net variant of HeMIS [17]—a first
model for learning shared representations for missing modalities. 2) U-HVED
[12], which combines MVAE and U-net, is compared because it is the base of
our method. 3) Chen et al. [7] is compared due to the strength of feature disen-
tanglement in learning shared representations. It separates each modality into
content and appearance codes. Then, segmentation is performed using the shared
representation created by fusing the content codes.

Table 1. Comparison of segmentation performance with respect to all 15 missing
modality scenarios on the BraTS 2018 dataset. The presence of modality is denoted by
•, and the missing of modality is denoted by ◦. All results are evaluated with a dice
score (%).

Available
Modalities

Complete tumor Tumor core Enhancing tumor

F T1 T1c T2
U-

HeMIS
U-

HVED
Chen
et al.

Ours
U-

HeMIS
U-

HVED
Chen
et al.

Ours
U-

HeMIS
U-

HVED
Chen
et al.

Ours

◦ ◦ ◦ • 79.00 78.89 80.60 81.47 60.95 67.34 60.60 67.82 27.54 34.97 30.15 36.93

◦ ◦ • ◦ 57.86 58.26 68.92 71.83 66.95 71.99 75.57 77.93 59.68 61.35 65.97 68.97

◦ • ◦ ◦ 59.40 68.38 67.79 68.16 46.49 58.60 50.28 57.46 16.68 22.35 23.54 28.75

• ◦ ◦ ◦ 84.57 82.72 85.04 88.21 63.54 60.33 63.18 65.62 27.42 29.89 29.06 36.96

◦ ◦ • • 81.16 79.85 83.76 84.63 76.78 80.66 81.64 81.68 64.74 66.94 68.16 70.29

◦ • • ◦ 67.44 73.06 72.96 75.27 68.03 78.06 78.41 80.35 64.08 66.84 66.62 69.97

• • ◦ ◦ 86.08 84.94 87.17 88.84 66.00 67.66 67.86 70.73 32.24 31.84 34.66 38.12

◦ • ◦ • 80.47 82.32 83.77 83.97 62.73 72.76 64.33 71.59 31.26 36.93 34.75 39.19

• ◦ ◦ • 86.77 88.38 87.63 88.94 67.04 71.94 65.76 70.98 33.89 40.69 33.67 40.32

• ◦ • ◦ 86.67 85.48 87.08 89.45 76.64 76.13 82.14 83.17 64.71 63.14 67.96 69.76

• • • ◦ 86.54 86.78 87.96 89.12 77.58 77.69 83.20 84.14 65.65 65.45 68.67 70.87

• • ◦ • 87.19 88.59 88.31 88.47 67.03 73.15 67.71 73.58 35.86 40.31 37.65 41.71

• ◦ • • 87.32 88.31 88.15 89.31 78.31 80.44 82.42 82.65 66.45 67.75 68.54 69.89

◦ • • • 81.58 82.04 84.16 84.89 75.84 81.39 82.29 82.59 66.16 68.40 68.07 70.54

• • • • 87.56 88.10 88.50 89.64 78.32 82.30 83.27 83.62 66.50 68.31 68.31 71.28

Average 79.97 81.07 82.79 84.15 68.82 73.36 72.58 75.59 48.19 51.01 51.05 54.90

4 https://github.com/ssjx10
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Fig. 4. Results of tumor segmentation produced by using different methods on the
BraTS dataset. The first column is the input image of each modality, and each
row shows segmentation results with missing modalities of comparison methods. GT:
ground truth. Purple: complete tumor; Yellow: tumor core; Red: enhancing tumor.

Results of BraTS. Table 1 shows the brain tumor segmentation results for
various methods to deal with missing modalities. Our method outperforms the
segmentation accuracy of previous methods for all three tumor regions in most
missing modality scenarios. Our method achieved the highest average Dice of
84.15%, 75.59%, and 54.90% for the three nested tumor regions. The second
robust method is Chen’s approach, which achieves an average Dice of 82.79%,
72.58%, and 51.05%. We show that the Dice score increases more in the case of
enhancing tumors than in other tumor regions. FLAIR and T2 modalities provide
valuable information for complete tumors, and T1c modality provides crucial
information for tumor cores and enhancing tumors. Because the T1 modality
has relatively little information about the tumor compared to other modalities,
it is difficult to obtain robust results when only the T1 modality is available.
However, our method achieves similar or even higher accuracy than U-HVED,
which shows high performance even in the case of the T1 modality alone. This
indicates that the proposed method successfully learns shared representations.
Inference times for other methods are referred in the supplementary Table 1.

Fig. 4 shows a qualitative comparison of the various methods. As the number
of missing modalities increases, the segmentation results of all methods gradually
deteriorate. Nevertheless, our method provides more robust segmentation results
than other methods and achieves accurate segmentation results even for the T1
modality, which contains relatively little information.
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Table 2. Comparison of segmentation performance on the ISLES 2015 dataset.

Methods U-HeMIS U-HVED Chen et al. Ours

Average
Dice score (%)

40.09 42.92 41.16 48.29

Fig. 5. Results of stroke lesion segmentation produced by our RA-HVED on ISLES.

Results of ISLES. The segmentation results for ISLES are shown in Table 2.
On the average Dice score, our method shows a higher segmentation accuracy
than other methods, reaching 48.29%. Chen’s approach achieves a lower segmen-
tation accuracy than U-HVED, in contrast to the results of the BraTS dataset.
Fig. 5 shows the results of stroke lesion segmentation using our method. Even
when the number of missing modalities increases, our method provides robust
segmentation results. Segmentation results for all missing scenarios and visual-
ization of segmentation about other methods are referred in the supplementary
material.

4.4 Results of Reconstruction with missing modalities

Our primary goal is to perform segmentation, but reconstruction of modali-
ties can be performed during the process. Fig. 6 shows the results of image
reconstruction on FLAIR, the modality with the most information, for BraTS
when modalities are missing. When all modalities are available, U-HeMIS and
U-HVED produce images that are most like the corresponding image. However,
other methods, including U-HVED, fail to produce tumor area details when the
number of missing modalities increases. When only the T1 modality is available,
the details of the tumor core are poorly generated. When all modalities are avail-
able, our method generates images similar to manual segmentation, although it
is less similar to the corresponding image for the tumor region. Moreover, our
method generates details of the tumor core better than other methods, even
when the number of missing modalities increases. The reconstruction result for
ISLES is referred in the supplementary material.

4.5 Ablation Study

We conduct an ablation study on RA-HVED with U-HVED as the baseline. In
Table 3, we compare the methods using the average Dice score for all possible
subsets of input modalities on the BraTS dataset. First, we confirm the effect
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Fig. 6. Image reconstruction results generated by different methods on the BraTS
dataset. The first column is the input image of each modality, and each row shows
the reconstruction results with missing modalities of the comparison methods. Ground
truth for segmentation is overlaid on T1. Purple: complete tumor; Yellow: tumor core;
Red: enhancing tumor.

Table 3. Ablation study of our key components. DRB : dimension reduction block,
RSM : ROI attentive skip connection module, RJD : ROI attentive joint discriminator.

Methods
Average Dice Score (%)

Complete tumor Tumor core Enhancing tumor

(1) U-HVED 81.07 73.36 51.01

(2) U-HVED + DRB 81.34 73.03 51.36

(3) (2) + RSM 82.68 74.27 53.73

(4) (2) + RSM + RJD
(RA-HVED)

84.15 75.59 54.90

of adding DRB to U-HVED when comparing (1) with (2). In Method (2), the
dimension of the shared representation is decreased compared to (1), but the
average Dice scores are similar. In method (3), RSM improves overall segmen-
tation performance including enhancing tumor. In particular, the segmentation
performance in enhancing tumor region is further improved because attention is
imposed using segmentation features. Finally, in (4), an ROI attentive joint dis-
criminator is added to (3) to provide stronger constraints to the ROI in the image
reconstruction. The ROI attentive module is added to improve the segmentation
performance in all tumor regions and achieve the highest Dice score in most sce-
narios with missing modalities. In particular, the average Dice increases by 4.5%
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Table 4. Results on the effectiveness of ROI-based attention in RSM and ROI attentive
joint discriminator.

Methods
Average Dice Score (%)

Complete tumor Tumor core Enhancing tumor

spatial-wise
attention

83.16 74.24 53.69

joint
discriminator

83.28 74.61 54.14

Ours
(RA-HVED)

84.15 75.59 54.90

for (2) in the enhancing tumor. This shows that the proposed key components
of RA-HVED efficiently learn the multi-scale shared representations.

In Table 4, we conduct experiments to prove the effect of ROI-based atten-
tion in RSM and ROI attentive joint discriminator. First, spatial-wise attention
is applied to encoder features without the intervention of segmentation features
in RSM (spatial attention in Table 4). Next, the joint discriminator replaces the
ROI attentive joint discriminator (joint discriminator in Table 4). Both models
achieve lower segmentation performance than RA-HVED. This indicates that
ROI-based attention is important for learning segmentation-relevant shared rep-
resentations.

5 Conclusion

In this study, we propose a novel and robust multimodal segmentation method
that can function effectively when there are missing modalities. Our model effi-
ciently learns segmentation-relevant shared representations through ROI atten-
tive skip connection and joint adversarial learning that constrains the ROI in
modality completion. We validate our method on a brain tumor and a stroke le-
sion dataset. Experimental results show that the proposed method outperforms
previous segmentation methods on missing modalities. Moreover, we demon-
strate the effectiveness of our key components in an ablation study. Our method
can be applied to improve the clinical workflow that requires multimodal images.
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