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Abstract. Although significant progress has been made in single-image
shadow detection or single-image shadow removal, only few works con-
sider these two problems together. However, the two problems are com-
plementary and can benefit from each other. In this work, we propose
a Mask-Guided Residual Learning Network (MGRLN-Net) that jointly
estimates shadow mask and shadow-free image. In particular, MGRLN-
Net first generates a shadow mask, then utilizes a feature reassembling
module to align the features from the shadow detection module to the
shadow removal module. Finally, we leverage the learned shadow mask
as guidance to generate a shadow-free image. We formulate shadow re-
moval as a masked residual learning problem of the original shadow
image. In this way, the learned shadow mask is used as guidance to
produce better transitions in penumbra regions. Extensive experiments
on ISTD, ISTD+, and SRD benchmark datasets demonstrate that our
method outperforms current state-of-the-art approaches on both shadow
detection and shadow removal tasks. Our code is available at https:
//github.com/LeipingJie/MGRLN-Net.

Keywords: Shadow detection and removal - Multi-task learning - Masked
residual learning.

1 Introduction

Shadows that help us better understand real-world scenes are cast by objects
that block the propagation of light rays and are ubiquitous in our daily lives.
However, they cause trouble to many tasks, e.g., object detection, image seg-
mentation, or scene analysis. Shadows can be cast into arbitrary shapes with
different intensities at any position, making both shadow detection and removal
challenging.

Due to their challenge and importance, shadow detection and removal are
active research topics. Traditional methods [30,6,5,18] utilizing physical models,
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Fig. 1: We compare our model with two state-of-the-art methods DSC [11] and
DHAN [3]. As can be seen, our model produces better details.

handcrafted features, or prior knowledge, are not robust and lead to unsatisfac-
tory performance. Leveraging large-scale annotated datasets and computational
power, deep learning-based shadow detection and shadow removal approaches
have shown their superiority. Modern shadow detection methods [35,21,37,31,14]
formulate the shadow detection problem as a binary classification problem. They
typically use different strategies to extract the global and local contexts from
a single input image, including attention mechanisms [15,4], bidirectional fu-
sion [37], and teacher-student learning [1]. Similarly, shadow removal approaches [28,12]
primarily leverage Generative Adversarial Networks (GAN), where the generator
attempts to produce faked shadow-free images while the discriminator tries to
distinguish between the real shadow-free images and the generated fake shadow-
free images. Despite superior performance, most approaches tackle these two
problems individually. Intuitively, shadow detection and shadow removal are mu-
tually beneficial. On the one hand, the shadow detection results provide strong
guidance for shadow removal algorithms to adjust more on shadow pixels and less
on non-shadow pixels. On the other hand, the shadow removal process expects
more variation on shadowed pixels and less variation on non-shadowed pixels,
which is also associated with identifying whether a pixel is a shadow pixel or
not.

In this paper, we propose a unified network for joint shadow detection and
removal. In practice, shadow detection and removal are formulated as classifi-
cation and regression problems. For the shadow detection problem, the model
only needs to predict whether a pixel is a shadow pixel or not. However, the
model needs to answer how to transfer shadowed pixels to shadow-free pixels
to solve the shadow removal problem, which is more challenging. Based on this,
we design a compact and efficient shadow detection sub-network and a more
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MGRLN-Net: Joint Single-Image Shadow Detection and Removal 3

complicated shadow removal sub-network. Specifically, we build our model in
an encoder-decoder way, where the encoder extracts multi-level features while
the decoder is responsible for fusing the features to generate the desired shadow
masks and shadow-free images. We want to emphasize that although several pa-
pers [11,4,13] claimed for performing joint shadow detection and removal, they
differ from ours. [11,13] introduced frameworks that could be trained for shadow
detection or shadow removal. In other words, their frameworks were trained sep-
arately for shadow detection and removal. However, our network can be trained
with the two tasks concurrently. [4] differs from ours in five aspects: (1) Their
architecture is based on GAN. (2) They do not explicitly predict shadow mask
images. (3) They use the recurrent unit to generate shadow attention, while we
use it to remove shadows. (4) Our recurrent unit is shared while theirs is not.
(5) Our model performs better on shadow detection and removal.

One challenging problem for shadow removal is to generate a natural tran-
sition effect in the penumbra regions (between the umbra and the shadow-free
regions). Nevertheless, identifying and annotating penumbra regions is excep-
tionally time-consuming, expensive, or even impossible. To generate annotation
for penumbra regions at low cost, previous methods [7] utilize morphological
algorithms. Specifically, the penumbra region is defined as the area of the dila-
tion mask minus the erosion mask. However, the kernels used for dilation and
erosion are chosen empirically and thus are sometimes inappropriate. Thanks to
our joint training pipeline, the shadow masks predicted by our network natu-
rally contain penumbra regions. In other words, the shadow boundaries in the
shadow mask do not transition hardly but softly. Consequently, we design a
shadow mask-guided residual learning module to remove shadows. Specifically,
the shadow-guided residual learning module consists of feature reassembling,
feature refining, and prediction modules.

To verify the effectiveness of our proposed method, we conduct extensive
experiments on three commonly used benchmark datasets: ISTD, ISTD+, and
SRD. Comparisons are made with both state-of-the-art shadow detection and
removal methods. Experimental results show that our network outperforms the
state-of-the-art shadow detection and removal methods.

In summary, our main contributions are three-fold:

— We propose a novel network for joint shadow detection and shadow removal.

— We design an efficient shadow removal module that reassembles and refines
the context features with the mask guidance to produce better transition
effects in penumbra regions.

— We show that the proposed network outperforms the state-of-the-art shadow
detection and removal methods on three widely used benchmark datasets
ISTD 28], SRD [22] and ISTD~+ [19].

2 Related Work

In this section, we review the shadow detection and the shadow removal ap-
proaches, respectively.
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2.1 Shadow Detection

Before the era of deep learning, most shadow detection approaches relying on the
physical properties [6,5] assumed color, illumination or statistical-based hand-
craft features to be consistent [36,18]. Zhu et al. [36] combined mixed features,
e.g., the intensity difference, the gradient, and the texture similarities, to train
a boosted decision tree classifiers. For better performance and robustness, Guo
et al. [10] considered areas rather than individual pixels or edges to construct a
graph of segments by classifying the pairwise segmented area, followed by the
graph-cut algorithm. Later, Vicente et al. [27] distinguished the shadow area
from the non-shadow region by training a kernel Least-Squares Support Vector
Machine (LSSVM). Despite the improved performance, traditional approaches
heavily rely on consistent color or illumination assumptions, which may not be
suitable for real-world scenes. Therefore, the overall performance is not high and
satisfactory. Like many other computer vision tasks, shadow detection is now
dominated by deep learning approaches. Early solutions utilized the deep con-
volutional neural network (CNN) as the feature extractor to replace handcraft
designs. Khan et al. [17] proposed the first CNN-based approach for shadow de-
tection. Unlike traditional methods, they used a 7-layer CNN to learn features
along the object boundaries at a super-pixel level and then generated smooth
shadow contours with a conditional random field model. Shen et al. [24] ex-
ploited the local structure of the shadow edge using the structured CNN and
improved the local consistency of the estimated shadow map with the structured
labels. Later, due to the newly developed neural network architectures, such as
U-Net [23], GAN [8], research on shadow detection tended to train neural net-
works in an end-to-end manner, focusing more on using both global and local
features at the same time. Hu et al. [31] demonstrated that the direction-aware
context features could be learned by spatial recurrent neural network (RNN).
Zhu et al. [37] presented a bidirectional feature pyramid network to explore
and combine global and local context. Recently, Jie et al. [14,15] proposed a
transformer-based network to capture attention along multi-level features. Un-
like the common CNN architecture as the feature extractor, Nguyen et al. [21]
added an additional parameter of sensitivity to the generator to optimize the
based conditional GAN framework. More recently, Zheng et al. [35] proposed to
explicitly learn and integrate the semantics of visual distraction areas with their
differentiable Distraction-aware Shadow (DS) module. To alleviate the burden
of annotation and boost performance, Chen et al. [1] introduced to explore the
learning of multiple information of shadows using a multi-task mean teacher
model with unlabeled data in a semi-supervised manner.

2.2 Shadow Removal

Similar to the shadow detection problem, shadow removal methods can also
be divided into traditional and learning-based methods. Traditional approaches
exploited physical properties, e.g., image illumination [32,33] and image gra-
dient [9]. Recently, shadow removal approaches using deep learning have be-
come popular. Qu et al. [22] introduced a multi-context architecture to integrate
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Fig.2: Overview of our proposed network. Our network takes a single image as
input and outputs the corresponding shadow mask and shadow-free image. The
network is an encoder-decoder structure and is composed of a feature extractor
(see Section 3.1), a shared shadow detection module (see Section 3.2) and a
shared shadow removal module (see Fig. 3 and Fig. 4). The input image is fed
into the feature extractor to obtain multi-level feature maps, which are fed into
both the shadow detection and shadow removal module. The predicted shadow
mask is also fed into the shadow removal module as weight guidance for the
residual learning of the shadow-free images.

high-level semantic context, mid-level appearance information, and local image
details, which learns a mapping function between the shadow image and its
shadow matte. Hu et al. [11] leverages the spatial context in different direc-
tions and attention mechanism for both shadow detection and removal. Chen
et al. [2] proposed a two-stage context network to transfer contextual informa-
tion from non-shadow patches to shadow patches. By formulating the shadow
removal problem as an exposure fusion problem, Fu et al. [7] addressed shadow
removal by fusing estimated over-exposure images and achieved state-of-the-
art performance. Moreover, methods based on Generative Adversarial Network
(GAN) show their potential. ST-CGAN [28] utilized two conditional GAN for
both shadow detection and removal. MaskShadowGAN [12]| proposed a cycle-
GAN-based framework to identify the shadow-free to shadow image translation
with learned guidance from shadow masks. Despite the boosting performance,
only few works consider both shadow detection and shadow removal. We believe
that the two complementary tasks can benefit from each other and should be
considered together.

3 METHODOLOGY

In this section, we first introduce the overall architecture of our proposed method
in Section 3.1. Next, we illustrate our shadow detection module in Section 3.2 and
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6 L.P. Jie and H. Zhang

shadow removal module in Section 3.3, respectively. Finally, the loss functions
will be presented in Section 3.4.

3.1 Network Architecture

As shown in Fig. 2, our method takes a single shadow image as input and outputs
the corresponding shadow mask and shadow-free image. Specifically, we first
utilize a pretrained EfficientNet [26] as our feature extractor, which obtains L
different levels of encoder features {FZ»}Z-L:1 (L = 5 here). These features are then
fed into the following modules, including an Upsampling and Fusion Module
(UFM), a Shadow Detection Module (SDM), and a Shadow Removal Module
(SRM), to generate different levels of decoder features {Di}le (L = 5 here),
where F; and D; are of the same resolution. In UFM, it first upsamples the
current decoder feature map D; (i # 0) to D} using a differentiable interpolation
operator, and then concatenates D} with the corresponding encoder feature map
F;_4, followed by two consecutive 3 x 3 convolutional layers. We denote the
output feature map of UFM as {Ui}iLzl (L = 4 here).

3.2 Shadow Detection Module

Considering that our shadow detection module is used to help with shadow re-
moval, we designed a compact and efficient subnetwork for shadow detection.
Given any output feature map U; from UFM, we stack a 3 x 3 and another
1 x 1 convolutional layer with the sigmoid function to generate the predicted
shadow mask. In our model, the output feature map U; from UFM is also fed
into the shadow removal module, which implies that U; contains the discrimina-
tive features for both shadow detection and removal when training is processed
in a joint manner. Unlike previous methods that generate shadow masks from
each decoder layer, we only generate two shadow masks from the last two de-
coder layers. Despite its simple structure, our shadow detection module predicts
satisfactory shadow masks (more details are presented in Section 4.3)

3.3 Shadow Removal Module

As shown in Fig. 3, our proposed shadow removal module consists of three sub-
modules: Feature Reassembling (F'R), Recurrent Refinement (RR), and Residual
Learning (RL).

Feature Reassembling. The feature reassembling submodule aims at re-
assembling the input feature U;. Since our shadow detection module and shadow
removal module share U;, it is difficult to force U; to be discriminative for both
shadow detection and shadow removal. We argue that discriminative features
for shadow detection and removal should be different but complementary, which
means they can be transferred from one kind to the other. Based on this, we
adopt an improved lightweight U-Net to accomplish this transformation. The
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Fig. 3: Illustration of our proposed Fig.4: Tlustration of ConvGRU
shadow removal module. module.

UNet downsamples and upsamples three times, respectively, and keeps the in-
put and output feature maps at the same resolution.

Recurrent Refinement. Although the reassembled features are adapted for
shadow removal, they still contain noises. Here we propose to remove them in
a recurrent way. Specifically, the recurrent refinement submodule utilizes Con-
vGRU [25]. Given the input feature map x; and the previous hidden state h;_1,
we first apply two 3 x 3 convolution layers on z; and h;_1, respectively, followed
by a sigmoid function to get the update gate z;. The same operation is performed
to get the reset gate rr. Then, 7 is used to generate candidate hidden state hj.
Finally, the update gate z; is used to adaptively select information from the
previous hidden state h;—; and the candidate hidden state h} to output h;. The
whole procedure can be formulated as follows:

2 = o(Conv®(x;) + Conv™(hy_1)),

ry = o(Conv®(x;) + Convl(hy_1)),

h, = tanh(Conv} (z;) + Convj,(ry o hy—1)),
he = (1 —2z) o hy—1 + 2 o hy,

(1)

where (C), Conv, o, o are concatenation operation, convolutional layer, sigmoid
function and element-wise multiplication, respectively. It is worth mentioning
that the recurrent refinement can be run N times. Empirically, we set N = 2 for
speed-performance tradeoff.

Residual Learning. To get the final shadow-free image prediction, we use
residual learning, which means we regress the residual image R; based on the
input RGB image instead of predicting the shadow-free image directly. This is
quite effective in our experiment (see Section 4.5). More importantly, we impose
the predicted shadow mask M; on the residual output, which enables our net-
work to generate desired transition effect between the shadow-free and penumbra
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regions. We express this procedure as follows:
Free = M; o R; + RGB, (2)

where Free, RGB, M;, R; represent the predicted shadow-free image, the input
RGB shadow image, the predicted shadow mask, and the predicted residual
image, respectively.

3.4 Objective Functions
For both predicted shadow mask and shadow-free images, we use L1 loss as
follows:
2
Lrgb = Z Hyz - gi”la
i=1
= (3)
Lmask = Z ||mz - mi”l;
i=1

where m;, m;, y;, y; are the predicted shadow mask, the ground truth shadow
mask, the predicted shadow-free image, and the ground truth shadow-free image,
respectively.

Furthermore, we also compute the feature loss using the pretrained VGG-19
network ¥ as follows:

2
Lfeature = Z ||!pl(y) - !pl(g)”h (4)
=1

where ¥; indicates the layer [, and {2 represents the 3th, 8th, 15th, 22th layers in
the VGG-19 network.
Overall, our loss function is:

L = Lpask + )\lLrgb + )\QLfeaturev (5)

where A1 and Ay are empirically set to 2.0 to balance between different losses.

4 Experimental Results

4.1 Datasets and Evaluation Metrics

Datasets. We train and evaluate our proposed method on three widely used
benchmark datasets: ISTD [28], ISTD+ [19] and SRD [22]. ISTD consists of
1,300 and 540 triplets of shadow, shadow mask, and shadow-free images for
training and testing. ISTD+ is constructed based on the ISTD, where only
the shadow-free images are adjusted for color consistency between shadow and
shadow-free images, and thus has the same training and testing splits as ISTD. In
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contrast, SRD has 2,680 and 408 shadow and shadow-free image pairs for train-
ing and testing, with no shadow masks provided. Since shadow masks are neces-
sary for our pipeline, we follow MaskShadow-GAN [12] to generate shadow masks
by using Otsu’s algorithm with the difference between shadow and shadow-free
images. The image resolution in ISTD and ISTD+ is 640 x 480, while SRD is
840 x 640.

Evaluation Metric. We employ the Balance Error Rate (BER) and Root
Mean Square Error (RMSFE) to quantitatively evaluate shadow detection and
shadow removal performance. BER considers the performance of both shadow
prediction and non-shadow prediction and can be formulated as follows:

1 /TP TN
=(1-2 (% +— 1
BER ( 2<Np Nn)> x 100 , (6)

where TP, TN, N,, and N,, are the number of true positive pixels, true nega-
tive pixels, shadow pixels, and non-shadow pixels, respectively. RM SFE is calcu-
lated in the LAB color space between the predicted shadow-free images and the
ground truth shadow-free image. It is worth noting that the default evaluates
code used by all methods (including ours) actually computes the mean absolute
error (MAE), as mentioned in [16,19]. For both BER and RMSE, the smaller
the value, the better the performance.

4.2 Implementation details

Our proposed method is implemented in PyTorch and all the experiments are
conducted on a NVIDIA single RTX 2080Ti GPU.

Training Settings. When training, we crop and resize the input images to
448 x 448 with batch size 8. The maximum learning rate maz;, is set to 0.000375
and decayed with 1-cycle policy. Specifically, the initial and the minimum learn-
ing rate are set to max;,./30 and max;,./150, while the percentage of the cycle
spent increasing the learning rate is 0.1. We empirically train our network for
200 epochs using half-precision floating and AdamW optimizer, where the first
momentum value, the second momentum value, and the weight decay are 0.9,
0.999, and 54, respectively.

Testing Setting. When testing, we do not apply any data augmentations
and post-processing operations, e.g., conditional random filed (CRF) for shadow
masks.

4.3 Comparison with State-of-the-Art Shadow Detection Methods

Since no ground truth shadow mask is provided for SRD, we only evaluate our
shadow detection results on ISTD. As shown in Table 1, our model achieves
the best performance against ST-CGAN [29], DSDNet [35], BDRAR [37] and
DSC [11]. Tt is worth mentioning that DSDNet, BDRAR, and DSC are elab-
orately designed for the shadow detection task only. Nevertheless, we can still
outperform DSDNet, DSC and BDRAR by 33.18%, 46.1% and 57.6%. More
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10 L.P. Jie and H. Zhang

importantly, compared with the existing jointly training frameworks ST-CGAN
and ARGAN for shadow detection and removal, our performance surpasses theirs
significantly by 83.14% and 27.86%.

(€Y (b) (© (d) (e) ® (2 (h) ®

Fig.5: Qualitative comparison on ISTD [28] dataset. From left to right: (a) in-
put shadow image; (b) shadow mask; (¢) Guo et al. [10]; (d) ST-CGAN [29];
(e) DSC [11]; (f) DHAN [3]; (g) Auto-Exposure [7]; (h) ours; (i) ground truth
shadow-free image. Best viewed on screen.

4.4 Comparison with State-of-the-art Shadow Removal Methods

We compare the performance of our network with different state-of-the-art meth-
ods since some only provide their performance on one or two benchmark datasets.
Comparison on ISTD Dataset. On the ISTD dataset, we compare with 8
other methods: Guo et al. [10], Zhang et al. [34], MaskShadow-GAN [12], ST-
CGAN [29], DSC [11], DHAN ([3], CANet [2], Auto-Exposure [7]. As can be
seen from Table 2, our method achieves the best performance. In particular, our
method outperforms Guo et al. [10], Zhang et al. [34], MaskShadow-GAN [12],
ST-CGAN [29], DSC [11], DHAN [3|, CANet [2], Auto-Exposure [7] by 45.91%,
41.03%, 32.12%, 32.66%, 24.59%, 21.04%, 18.21%, 15.03%, respectively. We also
visualize our predicted shadow-free images in Fig. 5. Qualitatively our method
generates satisfactory predictions on the ISTD benchmark dataset.

Comparison on the ISTD+ Dataset. On the ISTD+ dataset, we compare
with 8 other methods: Guo et al. [10], Zhang et al. [34], ST-CGAN [29], Deshad-
owNet [22], MaskShadow-GAN [12], Param+M+D-Net [20], SP+M-Net [19],
Auto-Exposure [7]. As presented in Table 3, our method achieves the best perfor-
mance. Specifically, our model surpasses Guo et al. [10], ST-CGAN [29], Deshad-
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Table 1: Quantitative comparison of shadow detection performance on ISTD [28].
The best and the second best results are highlighted in bold and underlined,
respectively.

Method BER Shadow Non-Shadow

ST-CGAN [29] 8.60 7.69 9.23
DSDNet [35] 2.17  1.36 2.98
BDRAR [37] 2.69 0.50 4.87
DSC [11]  3.42 3.85 3.00
ARGAN [4] 201 - -
Ours 1.45 1.65 1.26

Table 2: Quantitative comparison of shadow removal on ISTD [28]. The best and
the second best results are highlighted in bold and underlined, respectively.

Method / RMSE  Shadow Non-Shadow All

Input Image 32.12 7.19 10.97

Guo et al. [10] 18.95 746 9.30
Zhang et al. [34] 14.98 7.29 8.53
MaskShadow-GAN [12] 12.67 6.68 7.41
ST-CGAN [29] 10.33 6.93 7.47
DSC [11] 9.76 6.14  6.67
DHAN [3] 8.14 6.04  6.37
CANet [2] 8.86 607  6.15
Auto-Exposure [7] 7.77 5.56 5.92
Ours 7.65 4.52 5.03

Table 3: Quantitative comparison of shadow removal on ISTD+ [19]. The best
and the second best results are highlighted in bold and underlined, respectively.

Method / RMSE  Shadow Non-Shadow All

Input Image 40.2 2.6 8.5
Guo et al. [10] 22.0 3.1 6.1
Zhang et al. [34] 13.3 - -
ST-CGAN [29] 13.4 7.7 8.7
DeshadowNet [22] 15.9 6.0 7.6
MaskShadow-GAN [12] 124 4.0 5.3
Param+M-+D-Net [20] 9.7 3.0 4.0
SP+M-Net [19] 7.9 3.1 3.9
Auto-Exposure [7] 6.5 3.8 4.2
Ours 6.69 2.46 3.15
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Table 4: Quantitative comparison of shadow removal on SRD [22]. The best and
the second best results are highlighted in bold and underlined, respectively.

Method / RMSE Shadow Non-Shadow All

Input Image 40.28 4.76 14.11
Guo et al. [10]  29.89 6.47 12.60
DeshadowNet [22] 11.78 4.84 6.64
Auto-Exposure [7] 8.56 5.75 6.51
DSC [11] 10.89 499 623
CANet [2] 7.82 58 598
DHAN [3] 8.94 480  5.67
Ours 8.03 3.27 4.93

Fig. 6: Qualitative comparison on SRD [22] dataset. From left to right: (a) input
shadow image; (b) DSC [11]; (¢) DHAN [3]; (d) ours; (e) ground truth shadow-
free image. Best viewed on screen.

owNet [22], MaskShadow-GAN [12], Param+M+D-Net [20], SP+M-Net [19],
Auto-Exposure [7] by 48.36%, 63.8%, 58.55%, 40.57%, 21.25%, 19.23%, 25%,
respectively.

Comparison on the SRD Dataset. On the SRD dataset, we compare with 6
other methods: Guo et al. [10], DeshadowNet [22], Auto-Exposure [7], DSC [11],
CANet [2], DHAN [3]. As shown in Table 4, our method achieves the best perfor-
mance. Quantitatively, our model outperforms Guo et al. [10], DeshadowNet [22],
Auto-Exposure [7], DSC [11], CANet [2], DHAN |[3] by 60.87%, 25.75%, 24.27%,

4422



MGRLN-Net: Joint Single-Image Shadow Detection and Removal 13

Table 5: Ablation studies of modules Table 6: Ablation study on hyper-

in our model. parameter N in the recurrent refine-

baseline RL FR RR All ment module.
v X X x 7.95 N Shadow Non-Shadow All
v v X x 643 1 8.17 4.88 5.42
v X v x 593 2 7.65 4.52 5.03
v v v x 5.80 3 795 4.62 5.16
v v o x v 532 4 811 4.56 5.14
v v v Vv 5.03

20.87%, 17.56%, 13.05%, respectively. Meanwhile, we also produce qualitatively
satisfactory shadow-free predictions. As illustrated in Fig. 6, our method can
predict a better consistent appearance as the ground truth shadow-free image.

4.5 Ablation Studies

To evaluate the effectiveness of our proposed modules and the impact of different
hyperparameter settings, we conduct an extensive ablation study in this section.

baseline w/FR w/RL w/RR

Fig. 7: Shadow removal results. From left to right are: prediction of the baseline
model, prediction of the baseline with FR submodule, prediction of baseline with
FR and RL submodules, prediction of the proposed model with all submodules,
and ground truth shadow-free image.

Effectiveness of our network. To deeply analyze how different components
affect performance, we first train a baseline model which only contains the fea-
ture extractor, the upsampling fusion block. Then we gradually add the Residual
Learning (RL), the Feature Reassembling module (FR), and the Recurrent Re-
finement module (RR). As can be seen from Table 5, the RL module performs
the best in terms of performance improvement. Every submodule in the shadow
removal module is positive, and we achieve the best performance with all of
them. It can be also seen from Fig. 7 that as FR, RR, and RL are gradually
equipped with the baseline model, our predicted shadow-free images continue to
improve.

Settings of Times N. Our recurrent refinement module contains a ConvGRU
unit, which means we can run it recurrently without adding more training pa-
rameters. However, more running loops will lead to more time-consuming. We
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14 L.P. Jie and H. Zhang

choose four different values N = 1,2,3,4. As shown in Table 6, N = 2 achieves
the best performance, but N = 3 and N = 4 show nearly the same performance.

R
-

input images ground truths our results

Fig. 8: Failure cases on shadow removal.

4.6 Failure Cases

Despite the superior performance, our method fails with some hard cases. As
shown in the second row of Fig. 8, when the handbag is completely shadowed,
the original red color can not be fully recovered.

5 Conclusion

This paper proposes a mask-guided residual learning network for joint single-
image shadow detection and removal. We design a compact and efficient shadow
detection module to generate shadow masks and feed them into our shadow
removal module. To transfer context features between shadow detection and
shadow removal, we reassemble and refine the features to generate shadow re-
moval context features, which are further used to learn residual RGB maps to
compensate for the input shadow map. Meanwhile, the predicted shadow mask
serves as the guidance weight for fusing the residual and original RGB map,
which helps to generate better transition effects in the penumbra regions. Exten-
sive experiments demonstrate that our proposed network achieves state-of-the-
art shadow detection and removal performance on three widely used benchmark
datasets ISTD, ISTD+-, and SRD.
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