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Abstract. Coded Aperture Snapshot Spectral Imaging (CASSI) utilizes
a two-dimensional (2D) detector to capture three-dimensional (3D) data,
significantly reducing the acquisition cost of hyperspectral images. How-
ever, such an ill-posed problem desires a reliable decoding algorithm with
a well-designed prior term. This paper proposes a decoding model with
a learnable prior term for snapshot compressive imaging. We expand the
inference obtained by Half Quadratic Splitting (HQS) to construct our
Texture Enhancement Prior learning network, TEP-net. Considering the
high-frequency information representing the texture can effectively en-
hance the reconstruction quality. We then propose the residual Shuffled
Multi-spectral Channel Attention(Shuffled-MCA) module to learn infor-
mation corresponding to different frequency components by introducing
the Discrete Cosine Transform (DCT) bases. In order to overcome the
drawbacks of grouping operations within the MCA module efficiently,
we employ the channel shuffle operation instead of a channel-wise op-
eration. Channel shuffle rearranges the channel descriptors, allowing for
better extraction of channel correlations subsequently. The experimental
results show that our method outperforms the existing state-of-the-art
method in numerical indicators. At the same time, the visualization re-
sults also show our superior performance in texture enhancement.

Keywords: Coded Aperture Snapshot Spectral Imaging (CASSI) · deep
unfolding · residual shuffled multi-spectral channel attention · texture
enhancement · channel shuffle.

1 Introduction

Hyperspectral data has been used in a wide range of applications, including
agriculture[12], vegetation and water resource studies [6], surveillance [33] and
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Universities under Grant NO. JSGP202204; in part by the Jiangsu Provincial Social
Developing Project under Grant BE2018727.
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2 M. Jin et al.

Fig. 1. (a). The data flow of the Coded Aperture Snapshot Spectral Imaging (CASSI)
system. (b.1) The RGB image ; (b.2) The measurement; (b.3) The reconstructed spec-
tral channels. Color for better view.

so on. However, the high spectral resolution of hyperspectral data makes it a cer-
tain difficulty in acquisition and storage. Inspired by the theory of compressed
sensing, compressed imaging system was developed and is now widely employed
for high-speed videos and hyperspectral images. Snapshot Compressive Imaging
(SCI) systems combine compressed sensing with optical sensors, i.e., compress-
ing multiple frames of data into a single snapshot measurement, offering the
advantages of low cost, low bandwidth, and high speed, and becoming a popular
compressed imaging system. As one of the representative SCI systems for hy-
perspectral image acquisition, the Coded Aperture Snapshot Spectral Imaging
(CASSI) [5, 22, 23] system is of tremendous research value.

The compressed imaging systems always rely on a corresponding decoding
algorithm to obtain the original data, and CASSI is no exception. As depicted in
Fig.1, the 3D data is captured by the objective lens first, then modulated by the
coded aperture, dispersed by the dispersion element, and finally overlaps on the
2D detector plane. Thereby, it is plagued by several issues that cause the inverse
problem under the SCI task to be quite challenging. The conventional model-
based computational imaging methods mimic the physical process of imaging
and incorporate the prior term in order to compress the solution space. In the
selection of the prior items, TwIST[2] utilizes the total variation, whereas De-
SCI[11] employs patch-based weighted nuclear norm. These approaches[2, 11, 32,
29] use hand-crafted priors derived from domain knowledge, mainly focusing on
extracting generic features, lacking the application of features for the target data
itself.
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With the development of Convolutional Neural Network(CNN), the CNN-
based methods[28, 18, 16, 3, 17] use the powerful learning ability of neural net-
works to learn features from the data, substantially improving the results. How-
ever, they are also being accused of being uninterpretable. Recently, Zhang et
al.[34] experimentally demonstrate that neural networks have the capability to
express arbitrarily complex functions, which allows CNN to be considered as a
learnable proximal operator. This makes it intuitive to think of viewing a deep
learning network as a feature prior learning module[37] and combining it with
conventional model-based approaches to construct a novel unfolding network for
addressing the SCI problem.

Although researchers[34] have proved that CNN can learn arbitrary patterns,
including high-frequency information[24], they also confirm that the CNNs tend
to learn ’Simple’ patterns, i.e., low-frequency information, first. Redundant low-
frequency information may affect the propagation of high-frequency informa-
tion[1]. So treating channels of the input feature equally obviously cannot be
a reliable solution. The channel attention[9] offers a workaround by applying
channel-wise re-weighting to the input features, which means we can use the
channel attention mechanism to enhance the target information that we need
selectively.

As stated before, the two-dimensional data acquired by the CASSI system
is radially ambiguous, with a significant quantity of missing data. The previous
technologies mainly focused on how to recover incomplete data and did not care
about the texture information lost, resulting in a lack of clarity. The DGSMP[10]
is concerned about this and proposes using a deep unfolding Gaussian Scale
Mixed model with spatial adaptation to learn edge texture information and
obtain state-of-the-art results.

Motivated by these, this paper will construct an unfolding network for pro-
cessing SCI tasks with novel texture-enhancement prior learning term. Firstly,
considering the significance of the texture represented by the high-frequency in-
formation for the image recovery effect and the ability of the channel attention
mechanism to enhance the information selectively, we introduce a Multi-spectral
Channel Attention(MCA) Mechanism for texture learning. Secondly, the con-
ventional MCA would assign the same Discrete Cosine Transform(DCT) base to
multiple frames in each group after grouping channels. Instead of assigning DCT
bases frame by frame[15] resulting in a significant increase in computation, we
prefer to introduce a simple and improved method, i.e., channel shuffle. Then, we
incorporate the MCA with channel shuffle into a basic residual structure to build
the complete texture enhancement prior learning module, so-called the residual
Shuffled MCA or SMCA for simplicity. The skipping connections in the resid-
ual structure ensure that low-frequency information can propagate backward,
allowing the main network to focus on enhancing high-frequency information.
Finally, we unfolded the data fidelity term into a network form, combined it
with the constructed SMCA, and treated it as one stage. Repeating the stage
several times will form a complete network. We did a series of experiments and
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discovered that we received state-of-the-art results on several metrics, with the
visualization demonstrating that the texture was successfully enhanced.

The contribution of our work can be summarised as follows:

1. We propose a novel unfolding network with texture enhancement prior learn-
ing module for SCI tasks.

2. We introduce MCA to selectively enhance the information corresponding to
the different frequencies.

3. We improve the drawback in MCA caused by grouping operation by intro-
ducing channel shuffle and coupling the residual structure to construct the
Shuffled MCA.

4. Experiments demonstrate the superior performance of our method compared
to state-of-the-art methods in terms of numerical evaluation metrics and
visualization results.

2 Related Works

Previous Work. As there are arbitrarily many 3D images X that can be
reduced to the same 2D image y, Snapshot Compressive Imaging (SCI) is an ill-
conditioned problem. In order to choose the most plausible result among the can-
didate set, a proper regularization is required. Conventional model-based meth-
ods usually use hand-crafted priors, such as TwIST[2] and GAP-TV[32] uses
total variation regularization, GMM-online[29] uses Gaussian Mixture Model,
DeSCI[11] uses weighted nuclear norm, etc. Although they all have complete the-
oretical proof but also rely on artificial parameter tuning, while time-consuming,
DeSCI requires even hours to process one single image. Neural networks have
shown great potential in recent years, with much of the CNN-based works taking
recovery to a new level[28, 18, 16, 3, 17]. However, the uninterpretability of CNNs
is undesirable given the existence of a complete physical imaging mechanism in
computational imaging.

Gregor et al.[7] propose to unfold the inference of conventional model-based
methods into neural networks, transforming the methods into parameters learn-
able while still being interpretable and significantly reducing the time cost. Ista-
net[36] and ADMM-net[30] expand the computational flow graph directly into
a network and update the parameters efficiently by back propagation. Ma et
al.[13] propose Tensor ADMM-net, which further relates the iterative steps with
the neural network operations one to one. Zhang et al.[37] then consider using
CNN as the prior term of the network. In this paper, we also try to employ
CNN, which can fit arbitrary functions, construct the prior learning module,
and consider it a learnable proximal operator.

Channel Attention Mechanism. CNNs have achieved impressive outcomes,
but they usually treat the channels of the input features equally and ignore
the correlation between channels. Squeeze-and-Excitation Network(SENet)[9]
believes it is better to directly and explicitly model the dynamic nonlinear de-
pendencies between channels. SENet uses the Global Average Pooling(GAP)
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operation to ’Squeeze’ the information. Otherwise, using the mean value as the
feature descriptor has proved that only the lowest frequency information of the
image is focused on, while high-frequency information is out of consideration.
Thus, CBAM[27] and BAM[19] combine global maximum pooling and GAP
to extract richer information. Recently, FcaNet[20] has considered placing the
”Squeeze” work under the frequency domain by grouping the input features and
then convolving them with the pre-computable 2D DCT bases. They also prove
mathematically that when and only when the lowest frequency component in
DCT bases is selected, it will be equivalent to the GAP operation.

Channel Shuffle. Grouping operation[35, 26] has been widely used in deep
learning, effectively processing different components adaptively with less compu-
tation. However, grouping operation still leads to information imbalance between
groups. In order to address this, ShuffleNet[39, 14] introduced the channel shuf-
fle operation to rearrange the channel order after the group convolution, which
effectively promotes information fusion between groups. CPN[21] proposed intro-
ducing channel shuffle in multi-scale cascaded pyramid networks to enhance the
multi-scale information fusion across channels. SA-Net[38] applies the spatial-
spectral joint attention mechanism to the grouped data separately and improves
the balance between efficiency and performance by applying the channel shuffle
operation over the concatenate feature.

3 Proposed Method

3.1 Reconstruction Model with Learnable Prior for CASSI

We assume the expected 3D spectral information is X ∈ RM×N×λ, the 2D
measurement captured by the CASSI system is the y ∈ RM×(N+k(λ−1)) , where
M andN represent spatial size, the λ is the spectral number, and the k represents
the dispersion coefficient caused by the dispersion elements, then we have:

y = ΦX + n (1)

where, Φ ∈ RM×(N+k(λ−1))×λ is the feed-forward response function describing
the physical process in CASSI. n represents the noise.

The reconstruction model corresponding to the Eq (1) can be written as:

min
X

||y − ΦX||2F + γβ(X ) (2)

where β(·) is the regularization term and γ is the balance parameter. The equa-
tion (2) can be written as an unconstrained optimization problem according to
the Half Quadratic Splitting (HQS) method:

min
X ,Z

||y − ΦX||2F + η||X − Z||2F + γβ(Z) (3)

3799



6 M. Jin et al.

where η is the penalty parameter, Z is the auxiliary variable. The solution to
the equation (3) can be split into the following two sub-problems.

X k+1 = argmin
X

||y − ΦX||2F + η||X − Zk||2F (4)

Zk+1 = argmin
Z

η||X k+1 −Z||2F + γβ(Z) (5)

X sub-problem: fixed variable Z, updated variable X . Equation (4) is a
least squares problem, and the solution can be given directly in closed form as:

X k+1 = (ΦTΦ+ ηI)−1(ΦT y + ηZk) (6)

However, it is computationally expensive to calculate the inverse of ΦTΦ directly,
so gradient descent is employed here to find the approximate solution of (6) :

X k+1 = (1− ϵη)X k − ϵΦTΦX k + ϵΦT y + ϵηZk (7)

where ϵ represents the step size in the gradient descent.
Z sub-problem: fixed variable X , updated variable Z. The formula (5) is

a prior term, which can be expressed as a learnable proximal operator:

Zk+1 = P(X k+1) (8)

To solve the Eq(3) more effectively, we are attempting to convert the model-
based method into a learning-based method by extending the inference into
a deep neural network. This will allow the method to learn targeted features
from the data and apply them to improve performance. In other words, each
iteration is viewed as a sub-module of the network, and K consecutive modules
are connected in sequence to build the unfolding network. The following section
will introduce the proposed texture enhancement prior learning network.

3.2 Texture Enhancement Prior Learning Network: TEP-net

TEP-net consists of three modules, the data fidelity module, the texture en-
hancement prior learning module (TEP-module), the system forward response
and its inverse process learning module. In order to better extract the informa-
tion, we also proposed a novel residual Shuffled Multi-spectral Channel Atten-
tion embedded in the TEP-module, called Shuffled-MCA. Fig.2 demonstrates
the construction of the TEP-net.

Learning System Forward Response and Its Inverse. Φ and ΦT describe
the physical imaging processing and its inverse of the CASSI system, which
is particularly important in CASSI. Since the network involves multiple multi-
plication calculations, considering the high computational complexity of tensor
multiplication and the fact that the coded aperture varies in different systems
and settings. In order to reduce computational complexity and increase the ro-
bustness of the system, we follow the design of [10] and use the cascaded residual
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Fig. 2. The structure of the proposed method. (a): The structure of TEP-net. (b):
Our proposed residual Shuffled Multi-spectral Channel Attention module for texture
enhancement prior learning. (c-d): Structure of the sub-network for learning system
forward response and its inverse process: Φ & ΦT . (c) for learning Φ and (d) for learning
ΦT .

sub-network to learn Φ, ΦT . It is easy to notice from Fig.2(a) that ΦT y repeat-
edly occurs in the model. Since the coded aperture Φorig is known in the actual
experiments, to balance performance and effectiveness, we use ΦT

origy as input
to the model without engaging in additional learning (the top line in Fig.2(a)).

The Data Fidelity Module. As illustrated in Fig.2(a), we present this part via
a data flow diagram. The network inputs are the measurement y and the ΦT

origy

reconstructed using the original coded aperture Φorig. Φ
T
origy will repeatedly feed

into the network as the top line of Fig.2(a) shows. The measurement y will pass
through a randomly initialized ΦT learning sub-network first. Then, the obtained
values ΦT y become the initial value of the network.

Learning Texture Enhancement Prior. Conventional hand-crafted priors
benefit from domain knowledge with complete theoretical analysis but lack in-
formation mining from the target data. Meanwhile, CNNs can fit arbitrary func-
tions and learn from data, allowing CNNs to be viewed as learnable proximal
operators. Thus we propose a residual shuffled multi-spectral channel attention
sub-network for texture enhancement prior learning, which concatenates a fea-
ture extraction term and a shuffled multi-spectral channel attention module with
two skip connections.

As shown in Fig.2(b), the input feature X k ∈ RM×N×λ is first encoded by
the encoder which is a point-wise convolution with L channels.
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Fig. 3. The comparison of the SENet, FcaNet and the proposed Shuffle-MCA.

encoder(·) = conv(·) (9)

Following the encoder is the feature extraction module with a Conv-LeakyReLU-
Conv structure. In this module, both convolution kernels are set to 3 × 3 with
L channels. The LeakyReLU is employed as the activation function.

Feature(·) = conv(LeakyReLU(conv(encoder(·)))) (10)

After feature extraction, the encoded feature will feed into a regular res-
block consisting of the shuffled multi-spectral channel attention module with one
short skip connection. The following is a feature fusion block with L convolution
kernels, each with a spatial size of 3× 3. This feature fusion block can integrate
the sum of features with or without passing the module, and then another point-
wise convolution is used to decode the feature into the required HSI.

Our network naturally contains skip-connections due to the Eq(7). Since our
TEP-module is based on a residual structure, thus the entire network can be
regarded as a simplified Residual-In-Residual structure. As [40] illustrates, these
short and long skip connections will allow the low-frequency information to be
passed backward through them. The main network will be allowed to concentrate
on learning high-frequency information, which is consistent with our intention.

Shuffled Multi-spectral Channel Attention (Shuffled-MCA). We aim to
enhance the high-frequency information of the data while completing it. So we
try to introduce frequency domain information. We refer to the settings of [20]
to set up our shuffled multi-spectral channel attention. The fed feature XK is
first divided into g groups, i.e., XK = {XK

0 ,XK
1 , · · · ,XK

g−1}, each group will be
assigned a group of 2D DCT basis generated by one corresponding frequency
component. Thus,

Freqi = 2DDCTui,vi(Xi) =
H−1∑
h=0

W−1∑
w=0

Xi
:,h,wB

ui,vi

h,w (11)
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where i ∈ {0, 1, · · · , g−1}. Then all the Freqi will be concatenate into one vector,
then we got the output of the ’Squeeze’ part. By assigning each group with
different frequency component, it could effectively weight different information
at the same time.

In the previous approaches, the channel descriptors were fed directly into the
subsequent ’Excitation’ part. However, we assume that although the use of dif-
ferent frequency information is considered, the data within each group still only
extracts information under the same frequency component. Therefore, to further
improve the ’Squeeze’ capability, rather than using channel-wise improvement
like[15], we employ the channel shuffle operation and develop the novel Shuf-
fled Multi-spectral Channel Attention. Fig.3(a) shows the difference among the
structures of our proposed Shuffled-MCA , the original SENet, and FcaNet.

In Fig.3(b), there is a simple illustration of the actual operation of the chan-
nel shuffle. The input feature Fn will be split into g groups, {F1

1 ,F1
2 , · · · ,F

g
i },

where i represents the number of channels within each group. Then, rearrang-
ing the order of {F1

1 ,F1
2 , · · · ,F

g
i }, the output of the channel shuffle would be

{F1
1 ,F2

1 , · · · ,F
g
1 ,F1

2 , · · · ,F
g
i }.

We added the channel shuffle operation between ’Squeeze’ and ’Excitation’.
This operation allows the extraction of information corroding to different fre-
quency components not limited within adjacent channels. By rearranging the
order of channel descriptors it will affect the whole data in as extensive a range
as possible. We also provide ablation experiments about the embedding strate-
gies of channel shuffle. In Fig.3(c), the numerical experiments confirm that the
channel shuffle operation significantly improves the model’s applicability.

4 Experiments

This section will present the details of experiments. First, section 4.1 introduces
the database, experimental setup, etc. Section 4.2 offers the results of numerical
experiments and the visualization results. Section 4.3 is the ablation experiments
related to TEP-net.

4.1 Network Training

In our experiments, two hyperspectral datasets, CAVE[31] and KAIST[4], are
used. We select a portion of the data from CAVE for training, and randomly
crop out a patch with a spatial scale of 96 × 96 as one of the training samples.
After modulating, the data will be spatially shifted by two-pixel intervals. Then,
the spectral dimensions of the shifted data are summed up to produce a two-
dimensional measurement of size 96×150 as one of the network input. In order to
augment the dataset, each training sample will be randomly flipped or rotated.
Meanwhile, 10 images are selected from the KAIST as the test set. For validation
purposes, the KAIST will not be present in the training samples. The KAIST
images were cropped to a spatial size of 256 × 256. Also, instead of using the
traditional binary mask, the real mask obtained from measurements in the real
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system was used[16]. To be consistent with the real system, we choose 28 out of
31 bands for the experiments, with a spectral range of 450nm to 650nm.

We train the network using an end-to-end training approach, where the train-
ing objective is minimizing the Root Mean Square Error (RMSE) between the
reconstructed data and the original data. The model is trained by the Adam
optimizer with the learning rate 0.001. Given that the network uses ReLU or
LeakyReLU as the activation function, the Kaiming Normal[8] was chosen to ini-
tialize the convolutional layers. The experiments were implemented by PyTorch
and trained with a single Nvidia GeForce RTX 2080Ti. The experiments are set
to 200 epochs and take about 20 hours.

4.2 Experiment Comparison

We compare various algorithms, including the traditional iterative algorithm:
TwIST[2],GAP-TV[32] , the deep neural networks: TSAnet[16], PnP-DIP[17]
and the deep unfolding networks: HSSP[25], DGSMP[10]. For all methods, we
use the source code released by the original authors, with TSAnet using their
subsequent supplemented PyTorch version, and we rewrite HSSP in PyTorch.
All learning-based methods have been retrained using the same training set.

Numerical Results The Table 1(1) shows the Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) results for each image on the
KAIST dataset. Our advantage over the iterative algorithm is evident, with a
lead of 8.65dB to 9.95dB in PSNR and 0.2471 to 0.2488 in SSIM. Moreover,
for the learning-based approaches, our method is 6.06dB, 4.69dB higher than
HSSP and TSAnet in the average PSNR , and is 0.0371 and 0.0694 higher in
the average SSIM. Compared to DGSMP, the state-of-the-art method, which is
also a deep unfolding network, the PSNR is 3.27dB higher, and SSIM is 0.037
higher. Due to equipment and time constraints, we only use 30 images from the
CAVE dataset to build the training set and use data augmentation to augment
the training samples to 5000 per epoch, which may explain the performance
degradation of TSAnet and DGSMP. However, our performance also illustrates
the proposed method’s powerful and robust feature capture capability. DGSMP
also claims to work on recovering edges and textures, and the effect shows that
introducing frequency information may achieve better quality.

Since we are dealing with a hyperspectral image reconstruction task, we fur-
ther present the results on four indices, Root Mean Squared Error (RMSE),
Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS), Spectral Angle
Mapper (SAM), and Universal Image Quality Index(UIQI) in Table 1(2). The
SAM describes the level of spectral similarity, which is essential to evaluate the
quality of hyperspectral reconstruction tasks, and smaller SAM means better
spectral fidelity. Among the seven methods, our method has the smallest SAM
value, highlighting our performance on spectral reconstruction. Despite its un-
satisfactory indices such as PSNR and SSIM, we also note that the conventional
method still has comparable spectral fidelity due to its construction approach
from domain knowledge.
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Table 1. Numerical experiments on KAIST dataset. Best in bold.

(1) The PSNRs(dB) and SSIMs of seven methods. (In each cell, PSNR is on the left and SSIM is on the right.)

TwIST[2] GAP-TV[32] HSSP[25] TSAnet[16] PnP-DIP[17] DGSMP[10]
Shuffled MCA

(ours)

scene01 25.25/0.6665 25.64/0.7451 31.44/0.9207 30.47/0.8616 32.04/0.8646 31.19/0.8715 33.79/0.9117

scene02 22.04/0.5541 23.41/0.6052 27.08/0.8664 28.96/0.8071 26.03/0.7136 29.97/0.8457 33.49/0.9038

scene03 22.20/0.7415 23.14/0.7639 21.17/0.7937 26.79/0.8553 29.83/0.8259 29.97/0.8682 33.34/0.9033

scene04 30.33/0.8134 33.04/0.8620 27.81/0.8576 36.89/0.9241 38.03/0.9268 35.33/0.9216 40.02/0.9463

scene05 19.27/0.6411 19.11/0.6684 26.76/0.8902 26.53/0.8261 28.80/0.8438 27.55/0.8357 30.75/0.8951

scene06 24.29/0.6529 26.69/0.7430 31.35/0.9277 29.21/0.8688 29.43/0.8391 30.54/0.9074 33.17/0.9241

scene07 18.26/0.5394 22.10/0.6357 27.97/0.8499 25.68/0.7606 26.84/0.7927 27.86/0.8194 31.75/0.8870

scene08 26.13/0.6985 25.23/0.2112 27.60/0.8832 26.57/0.8389 28.24/0.8302 29.51/0.8840 31.77/0.9015

scene09 22.18/0.7094 24.30/0.6964 21.58/0.7892 28.23/0.8576 28.78/0.8704 29.86/0.8802 33.55/0.9137

scene10 22.60/0.5750 23.95/0.6434 29.73/0.9387 26.85/0.7940 27.52/0.7843 28.67/0.8840 31.46/0.9015

Average 23.36/0.6592 24.66/0.6575 27.25/0.8717 28.62/0.8394 29.55/0.8291 30.04/0.8718 33.31/0.9088

(2) The RMSEs, ERGASs, SAMs and UIQIs of seven methods.

TwIST[2] GAP-TV[32] HSSP[25] TSAnet[16] PnP-DIP[17] DGSMP[10]
Shuffled MCA

(ours)

RMSE 27.22 21.43 13.63 10.2 14.24 8.51 5.85

ERGAS 119.45 93.54 74.86 50.49 62.87 45.37 29.88

SAM 15.54 14.81 20.76 13.4 14.67 13.43 11.59

UIQI 0.4247 0.5473 0.6974 0.6648 0.6672 0.7205 0.7641

Fig. 4. The visualization results for scene02.(a) The corresponding RGB image. (b)
The measurements to be recovered.(c) Zooming in details. (d) Spectral correlation
with 4 positions. (e) The visualization results for scene02.
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Fig. 5. The visualization results for scene05.(a) The corresponding RGB image. (b)
The measurements to be recovered.(c) Zooming in details. (d) Spectral correlation
with 4 positions. (e) The visualization results for scene05.

Visualization. TEP-net introduces a residual shuffled multi-spectral channel
attention mechanism into the framework of deep unfolding networks and places
the hyperspectral image decoding task under the frequency domain. Unlike low-
rank theory and CNNs, which tend to deal more with low-frequency information,
Shuffle-MCA, by assigning different frequency components to different chan-
nels, recovers low-frequency information and enhances high-frequency informa-
tion synchronously. Therefore, our algorithm can effectively enhance the texture,
edges and other regions of the image with significant gradient changes. Fortu-
nately, the visualization supports our hypothesis.

In Fig.4. and Fig.5, the (a) and (b) are the RGB images and the measure-
ments of the testing data, respectively. (d) shows our spectral recovery results,
and the numerical indicators are the correlation coefficients of each pair of spec-
tral response curves between the recovered data and the real data. Higher values
indicate a higher correlation. (e) shows the visualization results obtained by
TwIST[2], GAP-TV[32], TSAnet[16], DGSMP[10] and ours TEP-net, respec-
tively.

For demonstration purposes, we select 4 of the 28 bands. They show that the
results of our image recovery are much closer to the real data, and to clarify this
we also select patches for better view. We are zooming to show that the results
of both iterative methods only have the general shape, with TSA-net being too
smooth to lose details. Although DGSMP also claims that they are focusing on
edge and texture recovering, their results still shows unpleasant artifacts at the
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Fig. 6. Ablation experiments on the embedding of the channel shuffle.

edges and are less stable at complex textures. In contrast, our results recover
both edges and appearance well. Texture enhancement does not mean losing the
capture of low-frequency information. We assume that the residuals of the sub-
network and the self-contained residual structure of the inference process allow
low-frequency information to circulate efficiently over the network. It is easy to
see that our method still achieves superior performance in smoother areas, such
as the bottom of the cup and the side of the cube. More results will show in the
supplementary material.

4.3 Ablation Experiments

The Embedding of the Channel Shuffle. In order to solve the imbalance of
information extraction due to the grouping, the channel shuffle operation will be
added to enhance the network performance. However, it is debatable where to
add it, and we finally decided to add it into the middle of ’Squeeze’ and ’Excita-
tion’. Hence, it will be more beneficial for information extraction by rearranging
channel descriptors obtained by ’Squeeze’ and then putting them into ’Excita-
tion’ to find the correlation between channels. To verify the effectiveness, we did
a set of ablation experiments.

Fig.6. shows the comparison of the three embedding forms. When shuffling
after scales, the results dropped, which is because when shuffling after scales, the
output feature’s channels do not correspond to the residuals anymore, leading
to a mixture of non-corresponding information and resulting in an unpleasant
consequence. Even though the channel shuffle can always have improvement
during the generation of the attention, shuffle before ’Excitation’ still got the
best performance, which also validates our previous point.

We also offer the selection of hyper-parameters in the channel shuffle , the
grouping g. According to Fig.6.(c), the trends of PSNR and SSIM obtained
under different strategies are not consistent, so we chose the strategy g = 16
by observing the generated images. The specific reference images are in the
supplementary material.
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Fig. 7. Reconstruction results of (a) different number of stages. (b) with or without
skip-connections.

The Number of Stages. In deep unfolding networks, we combine traditional
iterative algorithms with deep learning methods, viewing one iteration as one
stage, and connecting K stages in series to construct the network. From this
perspective, the selection ofK is critical, and the selection ofK varies in different
tasks. Fig.7(a), a larger K may lead to a better results, while takes a much longer
to converge. In order to balance computational cost and effectiveness, K = 8 is
selected for the experiments in this paper.

The skip-connections. As we stated previously that our scheme embeds the
channel attention mechanism into a residual structure in the hope of propagating
low frequency information backwards through the residual skipping connection,
in combination with the MCA module to obtain better recovery. In Fig.7(b), we
show the results with or without the skipping connections. We keep the long or
short skipping connections alone, or just the backbone network, and there is a
decrease in performance, indicating that the residual structure took effect in our
task.

5 Conclusion

In this paper, we propose an HQS-based decoding method and expand its infer-
ence into a deep unfolding network that can be trained end-to-end for snapshot
compressive imaging. Then we propose a residual shuffled MCA sub-network for
texture enhancement prior learning and treat it as a learnable proximal operator
of the model. By introducing the DCT bases, the model could effectively enhance
the information corresponding to the different frequency components. Mean-
while, to overcome the shortcoming caused by the grouping operation within
the MCA, we employ the channel shuffle operation to improve the robustness
of the network by rearranging the channel descriptors’ order. The experiments
demonstrate that we have significantly improved the numerical evaluation met-
rics compared to the state-of-the-art methods. The visualization results also
verify the superiority of our texture enhancement learning effect.
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