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Abstract. Few existing image defogging or dehazing methods consider
dense and non-uniform particle distributions, which usually happen in
smoke, dust and fog. Dealing with these dense and/or non-uniform dis-
tributions can be intractable, since fog’s attenuation and airlight (or
veiling effect) significantly weaken the background scene information in
the input image. To address this problem, we introduce a structure-
representation network with uncertainty feedback learning. Specifically,
we extract the feature representations from a pre-trained Vision Trans-
former (DINO-ViT) module to recover the background information. To
guide our network to focus on non-uniform fog areas, and then remove the
fog accordingly, we introduce the uncertainty feedback learning, which
produces uncertainty maps, that have higher uncertainty in denser fog
regions, and can be regarded as an attention map that represents fog’s
density and uneven distribution. Based on the uncertainty map, our feed-
back network refines our defogged output iteratively. Moreover, to handle
the intractability of estimating the atmospheric light colors, we exploit
the grayscale version of our input image, since it is less affected by vary-
ing light colors that are possibly present in the input image. The exper-
imental results demonstrate the effectiveness of our method both quan-
titatively and qualitatively compared to the state-of-the-art methods in
handling dense and non-uniform fog or smoke.

1 Introduction

Atmospheric particles, such as fog, haze, dust and smoke particles, can degrade
the visibility of a scene significantly as shown in Fig. 1. These particles can be
modeled as [3]:

I(x) = J(x)t(x) + (1− t(x))A, (1)

† Our data and code is available at: https://github.com/jinyeying/FogRemoval
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Fig. 1. Visual comparisons of different methods: the state-of-the-art CNN-based
method [1] and transformer-based method [2] in dense and/or non-uniform fog.

where I is an observed RGB color vector, x is the pixel location. J is the scene
radiance. A is the atmospheric light, and t is the transmission. The first term
is called direct attenuation, and the second term is called airlight. Transmission
t can be modeled as t(x) = exp(β(x)d(x)), where β is the particle attenuation
factor that depends on the density of the particle distribution and the size of
particles; while d is the depth of the scene with respect to the camera. Most ex-
isting methods assume the uniformity of the particle distributions, which means
they assume β to be independent from x. Note that, in this paper, we deal with
fog, haze, atmospheric dust and smoke that can be dense and/or non-uniform.
However, for clarity, we write fog to represent them.

Many methods have been proposed to deal with fog degradation. Existing
fully supervised CNN-based methods [4–10] require clean ground truths, which
are intractable to obtain particularly for non-uniform fog. Synthetic images,
unfortunately, cannot help that much for dense and/or non-uniform fog. Syn-
thesizing non-uniform fog is difficult and computationally expensive, and dense
synthetic fog has significant gaps with real dense fog. Semi-supervised meth-
ods [11–14] adopt the domain adaptation. However, the huge domain gap be-
tween synthetic and real dense and/or non-uniform fog images is not easy to
align. Unsupervised methods [15–18, 1] make use of statistical similarity between
unpaired training data, and are still less effective compared with semi-supervised
or supervised methods. Importantly, unsupervised methods can generate hallu-
cinations, particularly in dense fog areas. Recently, ViT-based dehazing meth-
ods [2, 19] have been proposed; however, memory and computation complexity
slow down the convergence [20], causing unreliable performance on real-world
high-resolution non-uniform fog images.

In this paper, our goal is to remove fog, particularly dense or non-uniform
fog, or a combination of the two (dense and non-uniform). Unlike non-dense uni-
form fog, where the human visual perception can still discern the background
scenes, dense and/or non-uniform fog significantly weakens the information of
the background scenes (see Fig. 1). To achieve our goal, first, we exploit the rep-
resentation extracted from DINO-ViT [21], a self-supervised pre-trained model
in order to recover background structures. DINO-ViT captures visual represen-
tations from data, e.g., scene structure representations, based on self-similarity
prior [22]. Second, since the recovery of the A is challenging [23], to avoid the
direct recovery of A, we introduce a grayscale feature multiplier to learn fog
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degradation in an end-to-end manner. Grayscale images are less affected by
multi-colored light sources (skylight, sunlight, or cars’ headlights, etc.) as well
as the colors of the particle scattered lights (whitish for fog, yellowish or reddish
for haze or atmospheric dust or smoke). We can multiply the grayscale features
and our feature multiplier (derived from the model in Eq. (1)), to ensure our
features are unaffected by the airlight and thus are more reliable when applied
to our multiplier consistency loss.

Third, we propose an uncertainty-based feedback learning that allows our
network to pay more attention to regions that are still affected by fog based
on our uncertainty predictions, iteratively. Since the network usually has high
uncertainty on the dense fog regions (because background information is washed
out by the fog and the input image contains less background information in
those regions), we can use an uncertainty map as an attention cue to guide the
network to differentiate dense fog region from the rest of input image. In one
iteration, if our output still contains fog in some regions, the uncertainty map
will indicate those regions, and in the next iteration, our method will focus on
these regions to further defog them.

To sum up, our main contributions and novelties are as follows:

– To the best of our knowledge, our method is the first single-image defog-
ging network that performs robustly in dense non-uniform fog, by combining
structure representations from ViT and features from CNN as feature reg-
ularization. Thus, the background information under fog can be preserved
and extracted.

– We propose the grayscale feature multiplier that acts as feature enhancement
and guides our network to learn to extract clear background information.

– We introduce the uncertainty feedback learning in our defogging network,
which can refine the defogging results iteratively by focusing on areas that
still suffer from fog.

Experimental results show that our method is effective in removing dense and/or
non-uniform fog images, outperforming the state-of-the-art methods both quan-
titatively and qualitatively.

2 Related Works

Non-learning methods introduced priors from the atmosphere scattering model.
Tan [24] estimates the airlight to increase contrast, Fattal [25] estimates trans-
mission, which is statistical uncorrelated to surface shading, He et al. [26] intro-
duce the dark channel prior, Berman et al. [27] propose a haze-line constraint,
and Meng et al. [28] estimate transmission using its minimum boundary.

CNN-based methods allow faster results [29–32]. DehazeNet [4] and MSCNN [33]
use CNN, DCPDN [6] trains densely connected pyramid network to estimate
transmission map. AODNet [5], GFN [34], [35] applies CGAN, EPDN [7] ap-
plies pix2pix, they end-to-end output clear images. Griddehazenet [8] designs
attention-based [36] grid network, MSBDN [9] designs boosted multi-scale de-
coder, FFA-Net [37] proposes feature fusion attention network, AECR-Net [10]
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Fig. 2. The pipeline of our network, which consists of (i) grayscale feature multiplier
(top left), (ii) structure representation network (right), and (iii) uncertainty feedback
learning (middle). The grayscale feature multiplier (MY) provides features (red) from
CNN, and guides the RGB network to enhance features. The structure representation
network provides structure representations (purple) from fixed and pre-trained DINO-
ViT, to recover background information.

applies contrastive learning. Few fully-supervised methods [38–40] are proposed
to deal with Dense-Haze [41]. All these methods employ fully supervised learning
and hence require ground truths to train their networks. However, obtaining a
large number of real dense or non-uniform fog images and their corresponding
ground truths is intractable. Semi-supervised methods [11–14] have been intro-
duced, unfortunately, they still suffer from gaps between synthetic and real fog
images. Unsupervised methods [15–18, 1] are mainly CycleGAN-based. However,
the generated images can easily render artefacts (structures that are not origi-
nally in the input image) when unpaired training data is used. Though all these
methods perform well on normal fog dataset, they are CNN-based, and tend
to perform poorly on dense and non-uniform fog [2] since CNN fails to model
long-range pixel dependencies [42].

Recently, ViT-based dehazing [2, 19] has made progress. DehazeFormer [19]
is trained on synthetic fog images (RESIDE outdoor dataset [43]), which are not
realistic and cause unreliable performance on real-world fog images. DeHamer [2]
combines CNN and Transformer for image dehazing; however, memory and com-
putation complexity slow down the convergence [20], causing inefficient perfor-
mance on real-world high resolution fog images. In contrast, our method exploits
features from both ViT and CNN.

3 Proposed Method

Fig. 2 shows the pipeline of our architecture, which consists of three parts: (i)
grayscale feature multiplier, (ii) structure representation network, and (iii) uncer-
tainty feedback learning. Since grayscale images are less affected by multi-colored
light sources and colorful particle scattered lights, we develop a grayscale net-
work to guide our RGB network. Hence, in our pipeline, we have two parallel
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(a) Input I (b) Gray ĴY (c) M(ĴY) (d) Output Ĵ (e) M(Ĵ)

Fig. 3. Visualization of the features extracted from the grayscale feature multiplier.
(a) Input fog image I, (b) Grayscale output image ĴY, (c) Sample feature map for ĴY,
(d) Output fog-free image Ĵ, and (e) Sample feature map for Ĵ. We can observe that
features in (c) for the grayscale fog images are less affected by fog, and can effectively
guide the features in (e) owing to our multiplier consistency loss.

subnetworks: one for processing the grayscale input image, and the other one for
processing the RGB input image.

3.1 Grayscale Feature Multiplier

Feature Multiplier Dense and/or non-uniform fog suffers from low contrast
and degraded features. To extract clear background features, we design a sub-
network to predict the amount by which these features should be enhanced.
Considering the fog model in Eq. (1) and to avoid the challenges of predict-
ing atmosphere light A [23], we turn the relationship between fog I and clear
images J into a multiplier relationship: J(x) = I(x)M(x), which is called M

feature multiplier [44], where M(x) = I(x)+t(x)A−A
I(x)t(x) .

The feature multiplier M depends on atmospheric light A and transmission
t(x), which are both unknown. Moreover, A is an RGB color vector; implying
that in order to estimate M, there are four unknowns in total for each pixel: 3
for the RGB values of A and 1 for t. These unknowns influence the accuracy
of the network in learning the correct value of M. To overcome the difficulty,
we propose to employ a grayscale feature multiplier, where all variables in the
grayscale feature multiplier become scalar variables. Consequently, the number
of unknowns the network needs to learn is reduced to only two variables for each
pixel: t(x) and A. Note that, to avoid the direct recovery of A, our network
implicitly includes A in the feature multiplier.

Grayscale-Feature Multiplier We feed the grayscale image, IY, to our grayscale
encoder, which estimates the grayscale feature multiplier MY. We multiply
grayscale features and MY before feeding them to our grayscale decoder. We
train the grayscale network independently from the RGB network, using both
synthetic and unpaired real images. Once the grayscale network is trained, we
freeze it, and employ it as the guidance for training the RGB network.

As for the RGB network, the RGB encoder takes the RGB image as input, I,
and estimates the color feature multiplier MI. Having estimated MI, we multiply
it with the RGB features and feed the multiplied features to our RGB decoder.
As shown in Fig. 2, we constrain the learning process of our RGB network by
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(a) Input I (b) Gray ĴY (c) S(ĴY) (d) Output Ĵ (e) S(Ĵ)

Fig. 4. Visualization of structure representations. (a) Input fog image I, (b) Grayscale
output image ĴY, (c) DINO-ViT keys for ĴY, (d) Output fog-free image Ĵ, and (e)
DINO-ViT keys for Ĵ. We can observe that DINO-ViT representations in (c) capture
structure scene/object parts (e.g. cars, trees, buildings), and are less affected by fog.

imposing a consistency loss between the grayscale feature multiplier, MY, and
the RGB feature multiplier MI. We call this loss a multiplier consistency loss.

Multiplier Consistency Loss To constrain the RGB feature multiplier MI,
we utilize the grayscale feature multiplier MY as guidance. Based on the Gray
World assumption [45], we define the multiplier consistency loss as:

Lmultiplier = ‖MI −MY‖2 , (2)

where MI and MY are the feature multipliers of the RGB and grayscale images.
To construct this loss, first, we train our grayscale network independently from
our RGB network. By training the grayscale network on both synthetic and real
images, MY is optimized. Once the training is completed, we freeze the grayscale
network. Subsequently, we train our RGB network.

In this training stage, the network losses are the same as those in the grayscale
network, except all the images used to calculate the losses are now RGB images.
Unlike the training process of the grayscale network, however, we need to apply
the multiplier consistency loss Lmultiplier to train the RGB network. Note that,
the reason we use the loss to enforce MI and MY to be close, and do not use
MY as the feature multiplier for the RGB network (i.e., MI = MY) is because
we intend to train the RGB convolution layers; so that, in the testing stage, we
do not need the grayscale network.

3.2 Structure Representation Network

A few methods [22, 46–48] have exploited self-similarity-based feature descrip-
tors to obtain structure representations. Unlike these methods, to reveal the
clear background structures, we use deep spatial features obtained from DINO-
ViT [49], which has been proven to learn meaningful visual representations [50].
Moreover, these powerful representations are shared across different object classes.
Specifically, we use keys’ self-similarity in the attention model, at the deepest
transformer layer. In Fig. 4, we show the Principal Component Analysis (PCA)
visualization of the keys’ self-similarity and demonstrate the three top com-
ponents as RGB at layer 11 of DINO-ViT. As one can observe, the structure

2046



Structure Representation and Uncertainty Feedback for Fog Removal 7

Input I Uncertainty θ Output Input I Uncertainty θ Output

Fig. 5. Uncertainty maps of O-HAZE [51] dataset. The (b) uncertainty map indicates
the fog intensity.

representations capture the clear background parts, which helps the network
significantly preserve the background structures.

Dino-ViT Structure Consistency Loss Our Dino-ViT structure consistency
loss encourages the deep-structure representations of the RGB output to be
similar to the grayscale features, since the grayscale features are robust to fog:

Lstructure =
∥∥∥S(Ĵ)− S(ĴY)

∥∥∥
F
, (3)

where S is the self-similarity descriptor, defined by the difference in the self-
similarity of the keys extracted from the attention module, with n×n dimension,
where n is the number of patches. ‖·‖F is the Frobenius norm. The self-similarity
descriptor is defined as:

S(Ĵ)ij = cos-sim(ki(Ĵ), kj(Ĵ)) = 1− ki(Ĵ) · kj(Ĵ)∥∥∥ki(Ĵ)
∥∥∥ · ∥∥∥kj(Ĵ)

∥∥∥ , (4)

where cos-sim(·) is the cosine similarity between keys, ki are the spatial keys.

3.3 Uncertainty Feedback Learning

Uncertainty Map The main challenge of dealing with dense non-uniform fog
distributions is how to differentiate the dense fog regions from the light fog
regions. To address this problem, we exploit an uncertainty map as an attention
map to guide the network to differentiate dense fog regions from the rest of
the input image. Since the network produces higher uncertainty for the denser
fog regions. Each value in the uncertainty map represents the confidence of the
defogging operation at the corresponding pixel (i.e. the variance). The higher
the value, the more uncertain the network’s prediction for that pixel.

To generate an uncertainty map together with the defogged result, we add
a multi-task decoder to our network. Note that the defogged result and the
uncertainty map are decoded from the same features, since there is only one
encoder. We assume that the defogged output Ĵ follows a Laplace distribution,
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Fig. 6. Architecture of the uncertainty feedback learning. This network refines the
performance of the RGB network.

where the mean of this distribution is the clear ground truth Jgt [52, 53]. Under
this assumption, we can define a likelihood function as follows:

p(Jgt|I) =
1

2θ
exp(−

∥∥∥Ĵ− Jgt
∥∥∥
1

θ
), (5)

where θ is the variance of the Laplace distribution. In our implementation,
we define this variance as the uncertainty of the defogged output Ĵ. There-
fore, Eq. (5) includes both outputs generated by our multi-task network. Tak-
ing the logarithm of both sides of Eq. (5) and maximizing it, we can obtain:

arg maxθ ln p(Jgt|I) = −‖
Ĵ−Jgt‖

1

θ − ln θ.

For the first term in this likelihood−‖
Ĵ−Jgt‖

1

θ , we simply convert the negative
sign to positive and put it into the loss function. The second term − ln θ, we
convert it to ln(θ + 1) to avoid negative infinity when θ is zero. Hence, the
uncertainty loss we will minimize is expressed as follows:

Lunc =

∥∥∥Ĵ− Jgt
∥∥∥
1

θ
+ ln(θ + 1). (6)

Uncertainty Feedback Learning Unfortunately, the results of our baseline
network might still suffer from the remaining fog. There are two possible rea-
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sons. First, the effectiveness of our multiplier consistency loss depends on the
grayscale network’s performance. While we can see in our ablation studies that
this grayscale guidance improves the defogging performance, the grayscale net-
work cannot completely remove fog all the time. Second, our discriminative loss
cannot fully suppress fog for any input image, since we do not have paired train-
ing ground truths for real images.

To address this problem, we introduce uncertainty feedback learning, which
the architecture is shown in Fig. 6. We provide our network extra attention to
the different densities of fog based on our network-generated uncertainty maps.
Specifically, we introduce uncertainty feedback learning to make our network
focus on areas where fog is still visible and to defog these areas iteratively. In
one iteration, if our output still contains fog in some regions, then the uncertainty
map will indicate those regions, and in the next iteration, our method will focus
on these regions to further defog them.

As shown in Fig. 6, we feedforward the uncertainty map together with the
input image into the feedback encoder, producing a new feedback feature mul-
tiplier MFB. We multiply this multiplier with the RGB features, and feed the
multiplication result to the RGB decoder, generating the enhanced output, Ĵ1.
To train our RGB network and the feedback network, we use real images (that
do not have ground truths) and apply only the discriminative loss. We compute
the loss of this output Ĵi (where i is the index of the iterations) with the same
loss functions as the initial output image Ĵ, and backpropagate the errors. We
iterate this process a few times to obtain the final output. The number of itera-
tions is constrained by the GPU memory. From our experiments, we found that
the uncertainty map tends to be unchanged after two or three iterations.

3.4 Overall Losses

In training our network, we use both synthetic images with ground truths and
real images without ground truths. For both the grayscale and RGB networks,
we feedforward a set of synthetic images into the network, which outputs the
predicted clear synthetic images. For the same batch, we feedforward a set of real
images into the network, producing the predicted real images. Having obtained
the predicted clear images of both the synthetic and real images, we then train
the discriminators in the grayscale channel of the grayscale and RGB networks.
Training discriminators requires a set of reference images, which must be real
and clear (without fog). Our reference images include the ground truth images of
the synthetic fog images (paired), and other real images that with no correlation
to our input images (unpaired).

We multiply each loss function with its respective weight, and sum them
together to obtain our overall loss function:

L = λmLmultiplier + λsLstructure + λuLunc + LMSE + λdLdis, (7)

where λ are the weights for the respective losses. λm = 1, λu = 1, their values
are obtained empirically. λs = 0.1, λd = 0.005, their values are followed default
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Table 1. Quantitative results on Dense-HAZE, NH-HAZE, O-HAZE and self-collected
smoke datasets.

Method
Dense-HAZE [41] NH-HAZE [56] O-HAZE [51] SMOKE

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DCP [26] 10.06 0.39 10.57 0.52 16.78 0.65 11.26 0.26

DehazeNet [4] 13.84 0.43 16.62 0.52 17.57 0.77 - -

AODNet [5] 13.14 0.41 15.40 0.57 15.03 0.54 - -

GDN [8] - - - - 23.51 0.83 15.19 0.53

MSBDN [9] 15.37 0.49 19.23 0.71 24.36 0.75 13.19 0.34

FFA-Net [37] 14.39 0.45 19.87 0.69 22.12 0.77 - -

AECR-Net [10] 15.80 0.47 19.88 0.72 - - - -

DeHamer’22 [2] 16.62 0.56 20.66 0.68 17.02 0.43 13.31 0.28

Ours 16.67 0.50 20.99 0.61 24.61 0.75 18.83 0.62

setting. LMSE is the Mean Squared Error (MSE) loss (applied only to synthetic
images), Ldis is the discriminative loss.

4 Experimental Results

Implementation We use two sets of data to train our networks: real fog images
and reference clear images, synthetic fog images and their ground truth. For the
real fog images, we train on self-collected and Internet fog images. For the clear
reference images, we collect clear images from Google Street View and Internet.
For synthetic training images, we render fog images (Eq. 1) from clear images,
taken from Cityscapes [55], which provides 2,975 pairs of RGB images and their
disparity maps. Subsequently, we fine-tune the model on different datasets. For
self-collected smoke images, we fine-tune the model on the 110 self-collected
smoke images and clean pairs, and 100 unpaired Internet clean references. We
also collect 12 other pairs of fog data for evaluation. Our data is publicly avail-
able.

Datasets We collected real smoke data by ourselves. We used a fog machine
to generate fog, where we fixed the camera pose to record fog images and their
paired ground truth. Ancuti et al. [51] propose the O-HAZE dataset consisting of
45 pairs of hazy/clear scenes using a smoke generator to simulate the atmospheric
scattering effect in the real world. Using the same smoke generator equipment,
Ancuti et al. [41] also propose the Dense-HAZE and NH-HAZE [56, 57], which
both consist of 55 pairs of hazy/clear scenes, 45 training, 5 validation and 5
test images. The scenes in the Dense-HAZE and NH-HAZE datasets are similar
to the O-Haze dataset, but the smoke density is much higher and more non-
homogeneous.

Baselines We evaluate our method against the non-learning method Non-Local
Image Dehazing (NLD) [27], state-of-the-art transformer-based dehazing meth-

2050



Structure Representation and Uncertainty Feedback for Fog Removal 11

Input Ours Dehamer’22 [2] DehazeF.’22 [19] D4’22 [1]

PSD’21 [13] 4K’21 [54] MSBDN [9] DAN [12] GDN [8]

Input Ours Dehamer’22 [2] DehazeF.’22 [19] D4’22 [1]

PSD’21 [13] 4K’21 [54] MSBDN [9] DAN [12] GDN [8]

Input Ours Dehamer’22 [2] DehazeF.’22 [19] D4’22 [1]

PSD’21 [13] 4K’21 [54] MSBDN [9] DAN [12] GDN [8]

Fig. 7. Qualitative evaluation results on real fog machine and O-Haze [51] images.

ods [2, 19], CNN-based methods: GridDehazeNet (GDN) [8], Domain Adapta-
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Input Ours Dehamer’22 [2] DehazeF.’22 [19] D4’22 [1]

PSD’21 [13] 4K’21 [54] MSBDN [9] DAN [12] GDN [8]

Input Ours Dehamer’22 [2] DehazeF.’22 [19] D4’22 [1]

PSD’21 [13] 4K’21 [54] MSBDN [9] DAN [12] GDN [8]

Fig. 8. Comparison results on commonly used test foggy images. (a) Input images. (b)
Our results. (c)∼(g) Results of the state-of-the-art methods.

tion Network (DAN) [12], Multi-Scale Boosted Dehazing Network (MSBDN) [9],
4KDehazing (CVPR21) [54], PSD (CVPR21) [13], D4 (CVPR22) [1], etc.

Qualitative Comparisons Comparisons on the self-collected fog and O-HAZE
dataset are shown in Fig. 7. The baseline methods do not perform well on the
images. Some results are too dark, and some still have fog left. Also, since the
generated fog is not uniform in the Dense-Haze and NH-Haze datasets, some fog
still remains. The deep learning baselines are not able to defog such dense fog
adequately.

Figs. 8 to 9 show the input dense non-uniform fog images, our defogging re-
sults, and the results of the state-of-the-art methods. Due to the uniform and/or
severe fog density, the input images are degraded by multiple factors like blur,
contrast, sharpness, and color distortion. As shown in the figures, our method
outperforms the state-of-the-art methods on real dense fog images.
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Input Ours Dehamer’22 [2] DehazeF.’22 [19] D4’22 [1]

PSD’21 [13] 4K’21 [54] MSBDN [9] DAN [12] GDN [8]

Input Ours Dehamer’22 [2] DehazeF.’22 [19] D4’22 [1]

PSD’21 [13] 4K’21 [54] MSBDN [9] DAN [12] GDN [8]

Fig. 9. Comparison results on real dense fog images. (a) Input images. (b) Our results.
(c)∼(g) Results of the state-of-the-art methods. Our results show better visibility.

Quantitative Comparisons We also conduct quantitative evaluations on O-
HAZE, NH-Haze and Dense-Haze, which are shown in Table 1. We measure the
restoration performance using the Peak Signal-to-Noise Ratio (PSNR) and the
Structural Similarity (SSIM); higher is better. Our method achieves the best
PSNR, SSIM performance.

4.1 Ablation Studies

We conduct ablation studies to analyze the characteristics of the proposed algo-
rithm. We first evaluate the grayscale feature multiplier, if the grayscale network
is removed, the RGB network will have no guidance from grayscale and the re-
sults are shown in Fig. 10b. To show the effectiveness of using ViT, we remove
the structure consistency loss, the results are shown in Fig. 10d. We then remove
the uncertainty feedback network from our model. After training with the same
semi-supervised training strategy and the same loss functions, the results are
shown in Fig. 11b. We can observe that the results are not as effective as those
using the feedback network. In Fig. 11c, we replace our multiplier generator with
the normal generator. Therefore, we can observe more fake content, such as the
fake leaves on the tree. Finally, Fig. 11d shows the results of using the MSE loss
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Input w/o Gray Lm ViT S(ĴY) w/o ViT Ls Output

Fig. 10. Ablation studies on (b) without using our grayscale multiplier consistency loss
Lmultiplier, and (d) without using our Dino-ViT structure consistency loss Lstructure. (e)
is our final output. (c) shows DINO-ViT capture scene structure, helping the network
to recover the background information.

Input w/o feedback w/o Lm w/ LMSE only Output

Fig. 11. Ablation studies on (b) without uncertainty feedback network; (c) without
multiplier consistency loss; (d) defogging results from our model with the MSE loss
only. (e) is our final output.

only. The typical results of fully supervised deep learning methods trained on
synthetic images are unsatisfactory. Some fog still remains, details are lost, and
some regions are considerably dark.

5 Conclusion

We have proposed a learning-based defogging method that targets dense and/or
non-uniform fog. Our method combines the structure representations from ViT
and the features from CNN as feature regularization that can guide our network
to recover background information. Our pipeline consists of a grayscale network
and an RGB network. We introduced the grayscale feature multiplier, which is
designed to enhance features. Aside from the new structure loss and multiplier
consistency loss, we also introduced uncertainty feedback learning that refines
the performance of the RGB generator network. Experimental results show that
our method works for dense and/or non-uniform fog, and outperforms the state-
of-the-art methods.
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