
Self-Supervised Dehazing Network
Using Physical Priors

Gwangjin Ju1, Yeongcheol Choi2, Donggun Lee1, Jee Hyun Paik2,
Gyeongha Hwang3, and Seungyong Lee1?

1 POSTECH, Pohang, Korea
{gwangjin, dalelee, leesy}@postech.ac.kr

2 POSCO ICT, Pohang, Korea
{ycchoi, jeehyun100}@poscoict.com

3 Yeungnam University, Gyeongsan, Korea
ghhwang@yu.ac.kr

Abstract. In this paper, we propose a lightweight self-supervised de-
hazing network with the help of physical priors, called Self-Supervised
Dehazing Network (SSDN). SSDN is a modified U-Net that estimates
a clear image, transmission map, and atmospheric airlight out of the
input hazy image based on the Atmospheric Scattering Model (ASM).
It is trained in a self-supervised manner, utilizing recent self-supervised
training methods and physical prior knowledge for obtaining realistic
outputs. Thanks to the training objectives based on ASM, SSDN learns
physically meaningful features. As a result, SSDN learns to estimate clear
images that satisfy physical priors, instead of simply following data dis-
tribution, and it becomes generalized well over the data domain. With
the self-supervision of SSDN, the dehazing performance can be easily
finetuned with an additional dataset that can be built by simply col-
lecting hazy images. Experimental results show that our proposed SSDN
is lightweight and shows competitive dehazing performance with strong
generalization capability over various data domains.

1 Introduction

Vision systems are applied to many tasks like autonomous driving, factory
safety surveillance, etc. However, haze artifacts reduce the scene visibility, and
the performance of vision systems could be degraded by reduced visibility. De-
hazing can help vision systems become robust by reducing haze from the scene.

One of the popular approaches in the dehazing task is prior-based. Most of
the existing prior-based dehazing methods are based on Atmospheric Scattering
Model (ASM) [17]. Prior-based methods remove haze by estimating the trans-
mission map, which reflects the amount of haze in the image. Since the methods
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(a) (b) (c)

Fig. 1. Dehazed results of (a) input images by (b) DehazeNet [4] and (c) our method.
While our method is trained on the indoor dataset in a self-supervised manner, it shows
comparative performance to DehazeNet which is trained on the outdoor dataset in a
supervised manner.

are based on physical properties, they show stable performance over a variety of
domains with different image contents.

Recently, deep learning based dazing methods are proposed, which utilize
powerful CNNs. Early method [4] estimates the transmission map of ASM using
CNN. Most deep learning-based dehazing methods are image-to-image trans-
lation approaches like pix2pix [11] and estimate the clear image directly from
a hazy image. More recently, an unsupervised image-to-image translation ap-
proach [5] has been proposed using cycle consistency from CycleGAN [27]. Deep
learning-based methods show high performance in the trained domains and run
fast by GPU acceleration.

Although many approaches are proposed for dehazing, they have limitations.
Most prior-based methods are not designed to utilize GPU, so they run slowly
compared to deep learning-based methods. They also show lower performance
compared to data-driven methods. Deep learning-based methods show high per-
formance but their performance degrades a lot when the data domain changes.
Moreover, building datasets is difficult because acquiring both hazy and clear
images with the same view is almost infeasible.
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Self-Supervised Dehazing Network Using Physical Priors 3

In this paper, inspired by [18] and [17], we propose Self-Supervised Dehazing
Network (SSDN). SSDN estimates disentangled clear image, transmission map,
and atmospheric airlight out of a hazy image. In the training phase, SSDN
learns to satisfy the ASM by reconstructing the hazy image from outputs. To
make the output of SSDN realistic, we exploit physical prior knowledge such
as Dark Channel Prior [10], total variation [21], the relation between hazy and
clear images in color space, and local variance.

To the best of our knowledge, this research is the first attempt to merge
physical prior knowledge and self-supervision on the dehazing task. SSDN has
several advantages that compensate limitations of other approaches. First, SSDN
dehazes images based on ASM, which is physically meaningful and explainable
than other deep learning-based methods. Second, SSDN is implemented as a
lightweight CNN, enabling application to real-time systems. Third, SSDN is
well generalized over data domains thanks to physical prior knowledge. Lastly,
it is easy to build a dataset for SSDN training by simply collecting hazy images
without corresponding clear images. With these advantages, SSDN can be ap-
plied to practical vision systems, especially real-time ones due to its lightweight
structure and stable performance over various data domains.

In summary, our method merges physical prior knowledge with self-supervised
learning to resolve limitations of previous dehazing methods, such as long execu-
tion time, different performance over domains, and laborious dataset building.

2 Related Work

2.1 Prior-Based Methods

Prior-based methods perform dehazing based on the observed characteristics
of hazy images. Most of those method utilizes Atmospheric Scattering Model
[17] that models hazy image based on physics-based knowledge.

One of the most representative methods is the Dark Channel Prior (DCP)
[10]. DCP assumes that at least one of the R, G, and B channel values tends to be
very low for clear images. The Color Attenuation Prior (CAP) [28] assumes that
the difference between saturation and value channel in HSV space is proportional
to the amount of haze. In [3], the Non-local Color Prior (NCP) is proposed,
which is based on the observation that a clear image consists of a small number
of clusters in the RGB color space.

Most prior-based methods are straightforward and more accessible than deep
learning-based approaches. Furthermore, those methods show strong domain
generalization capability. However, the dehazing performance of prior-based meth-
ods is lower than most of the supervised deep learning-based methods.

2.2 Supervised Learning Methods

Recently, the dehazing task was successfully performed using supervised deep
learning methods. These methods exploit a paired dataset of hazy and clear
images to learn to generate clear images from given hazy images.
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DehazeNet [4] takes a hazy image as input and estimates the transmission
map. The estimated transmission map is then used with ASM to dehaze the hazy
image. Feature Fusion Attention Network (FFANet) [19] improved the dehazing
performance by proposing specialized modules for dehazing, such as channel
attention and pixel attention modules. In the supervised learning methods, the
dehazing performance has been improved thanks to the recent advances of deep
learning architectures [13, 16, 25].

Supervised deep learning methods have demonstrated high dehazing perfor-
mance and showed fast inference speed based on GPU acceleration. However,
recent deep learning-based methods are getting to use larger and more complex
networks, and performing them on low-end devices, e.g., embedded systems for
autonomous driving, would not be easy. In addition, it is challenging to build
a paired dataset needed for supervised learning methods. Lastly, these methods
may show poor generalization capability due to the dependency on the dataset.

2.3 Unsupervised Learning Methods

Recently unsupervised learning methods have been proposed to perform de-
hazing without a paired dataset to overcome the difficulty of dataset construc-
tion. Cycle-Dehaze [5] uses cycle consistency loss [27] to train a dehazing network
on an unpaired dataset. D4 (Dehazing via Decomposing transmission map into
Density and Depth) [24] utilizes depth estimation with ASM to build cycle con-
sistency. These methods need no paired dataset but still, it needs both clean and
hazy image sets.

DDIP [7] and You Only Look Yourself (YOLY) [15] perform dehazing based
on ASM. They optimize a network from scratch for each hazy image, without
using any dataset. As these methods perform optimization for a single image,
they are free from domain change and show better performance than other prior-
based methods. However, they take seconds or even minutes to remove haze from
an image, which makes them hard to be used for real-time vision systems.

3 Physical Priors

In this section, we describe physical priors used for our proposed framework.
We first describe priors proposed in previous works and then propose several
priors for the dehazing task based on ASM.

3.1 Conventional Priors

Atmospheric Scattering Model ASM [17] represents the scattering of scene
radiance by the particle in the atmosphere as the following equation:

I = JT +A(1− T ), (1)

where I, J , T , and A denote hazy image, clear scene radiance, transmission
map, and atmospheric airlight, respectively. For a hazy image I ∈ RH×W×C , we
assume the transmission is a multi-channel map T ∈ RH×W×C and the airlight
A is homogeneous, i.e. A ∈ R1×1×C .
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Dark Channel Prior DCP [10] estimates the transmission map based on the
observation that the pixel intensity of at least one channel among RGB channel
is close to 0 in a clear image. It can be represented as follow:

TDCP = 1−min
c

( min
y∈Ω(x)

(
Ic(y)

Ac
)), (2)

where c denotes a RGB color channel and Ω(x) is the window of each pixel.

Total Variation Prior Total variation prior [21] has been used for various
image restoration tasks. It is based on the observation that a clear image tends
to have a quite low total variation (nearly 0) which can be represented as follow:

TV (I) =
∑
i,j

|Ii+1,j − Ii,j |+ |Ii,j+1 − Ii,j | ≈ 0, (3)

where Ii,j denotes the pixel value of I at coordinate (i, j).

3.2 Our Proposed Priors

In ASM, a hazy image is represented as an interpolation between a clear
image and airlight, and it is known that airlight is close to white. We propose
several priors on hazy and clear images with this property.

In RGB color space, the pixel intensity of the hazy image I is higher than
that of the clear image J as I is closer to white than J due to the interpolation
in ASM:

J < I. (4)

In HSV color space, we derive priors on value (brightness) and saturation chan-
nels. For value (brightness) channel, the pixel value of a hazy image is higher
than that of the clear image, again due to the interpolation in ASM. For satu-
ration channel, the saturation of hazy image is lower than that of a clear image,
as mixture with white reduces the saturation.

Jvalue < Ivalue, (5)

Jsat > Isat, (6)

where xvalue is value channel and xsat is saturation channel in HSV space.
The homogeneous airlight A makes the contrast of a hazy image lower than

a clear image. Hence, the local variance of the hazy image is lower than that of
the clear image as follow:

var(J) > var(I), (7)

where var(x) is a local variance operator that computes the variance of each
color channel in a local window centered at x.
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Fig. 2. Overall framework of our proposed SSDN. Given a hazy image, SSDN estimates
clear image, transmission map, and airlight separately.

4 Self-Supervised Dehazing Network

Our self-supervised learning framework for dehazing has been inspired by
CVF-SID [18] but contains important differences to exploit ASM and physical
priors of hazy images. Unlike the denoising problem that CVF-SID handles by
simply exploiting reconstruction loss and variance norm, the dehazing task needs
to consider a complicated haze structure. So we exploit several physical priors
described in Sec. 3 to train our Self-Supervised Dehazing Network (SSDN) based
on ASM.

4.1 Overall Framework

Our proposed SSDN is a multi-variate function, and the structure of SSDN
is a modified U-Net [20] as shown in Fig. 2. The output of SSDN is given by:

Ĵ , T̂ , Â = SSDN(I), (8)

where

– Ĵ ∈ RH×W×C is the estimated clear image.
– T̂ ∈ RH×W×C is the estimated transmission map.
– Â is the estimated airlight. It assumed to be homogeneous, i.e. Â ∈ R1×1×C .

It is estimated by the lowest level feature map followed by global average
pooling, a fully-connected layer, and a Sigmoid layer.

4.2 Self-Supervised Dehazing Losses

In this section, we describe the training objectives used in the proposed
framework. The framework performs dehazing by exploiting the reconstruction
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loss using ASM, the physical priors based loss, and the regularization loss. In our
framework, GAN loss is not available since it is trained only with hazy images.
Excluding GAN loss makes the quantitative performance slightly lower but helps
the domain generalization which is important in practical applications. Sl1(x) in
the following sections is smooth L1 loss introduced in [8] and defined as below.

Sl1(x) =

{
0.5(x)2, if |x| < 1

|x| − 0.5, otherwise.
(9)

ASM Losses We impose the constraint so that the outputs Ĵ , T̂ , and Â of
SSDN satisfy ASM as follow:

Lrec = Sl1(I − (Ĵ T̂ + Â(1− T̂ ))). (10)

If we only use Eqn. (10), the dehazing network will give a trivial solution, i.e.
Ĵ = I. To avoid the trivial solution, we propose auxiliary reconstruction loss
exploiting Eqn. (2):

LDCPrec = Sl1(I − (ĴTDCP +Amax(1− TDCP ))), (11)

where Amax denotes the maximum pixel value of I of each channel and TDCP
is described in Eqn. (2). When the input of SSDN is Ĵ , the clear image output
should be the same as the input and the transmission map output should be 1
as follow:

ĴJ , T̂J , ÂJ = SSDN(Ĵ),

LJrec = Sl1(ĴJ − Ĵ) + Sl1(T̂J − 1). (12)

Since Â is the homogeneous airlight, if we use it as the input of SSDN, the
airlight output is the same to the input and the transmission output should be
0.

ĴA, T̂A, ÂA = SSDN(Â),

LArec = Sl1(ÂA − Â) + Sl1(T̂A). (13)

Additionally, we propose a self-augmentation loss inspired by [18] as follow:

T ′ = T̂ +N(0, σ2
T ),

A′ = Â+N(0, σ2
A),

I ′ = ĴT ′ +A′(1− T ′),
Ĵaug, T̂aug, Âaug = SSDN(I ′),

Laug = Sl1(I ′ − (ĴaugT̂aug + Âaug(1− T̂aug))), (14)

where N(µ, σ2) ∈ R1×1×C is a Gaussian noise for homogeneous changes of T
and A, while σ2

T and σ2
A are hyperparameters. Applying homogeneous changes

helps the self-augmented data Ĵaug to be physically plausible augmentations.
Overall, the loss exploiting ASM is represented as follow:

LASM = λrecLrec + λDCPrecLDCPrec + λJrecLJrec + λArecLArec + λaugLaug,
(15)

where each λ is a weight hyperparameter for each loss term.
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Prior Losses In this section, we define the loss functions reflecting the priors
described in Sec. 3 so that the clear image output Ĵ of SSDN is close to the real
clear image.

First, we use Eqn. (2) as a guidance for T̂ . To reduce halo artifact, Ω in
Eqn. (2) is set to 1× 1. Since DCP may make wrong estimation of the transmis-
sion map in a bright scene, such as a white wall in an indoor or city scene, we
multiply TDCP on loss term to impose low weight on those cases.

LDCP = Sl1((T̂ − TDCP )TDCP ), (16)

where TDCP is defined in Eqn. (2). Secondly, we define the total variation prior
described in Eqn. (3) to the clear image output Ĵ .

LTV = Sl1(TV (Ĵ)). (17)

We implement the priors described in Eqns. (4), (5), and (6) as the following
loss terms:

LPI = Sl1(max(Ĵ − I, 0)), (18)

Lvalue = Sl1(max(Ĵvalue − Ivalue, 0)), (19)

Lsat = Sl1(max(Isat − Ĵsat, 0)). (20)

The local variance prior described in Eqn. (7) is implemented as a loss term as
follow:

Lvar = Sl1(max(var(I)− var(Ĵ), 0)). (21)

We avoid overdehazing and make the output close to the clear image by applying
max(∗, 0) in Eqns. (18), (19), (20), and (21). Lastly, we define the loss for the
airlight from the observation that the airlight is similar to the highest pixel value
of the hazy image:

LA = Sl1(Â−max(I)). (22)

Overall, the loss function reflecting the priors is represented as follow:

Lprior =λDCPLDCP + λTV LTV + λPILPI+

λvalueLvalue + λsatLsat + λvarLvar + λALA.
(23)

where each λ is a weight hyperparameter for each loss term.

Regularization We apply the regularization so that the output of the network
has appropriate values. First, we define the identity loss to prevent that the clear
image output Ĵ is quite different from I as follow:

Lidt = Sl1(Ĵ − I). (24)

Secondly, we impose regularization on the estimated transmission map. In gen-
eral, the transmission map is known to be smooth. Moreover, since the scattering
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coefficient is similar in the range of the visual light, the transmission should be
close to gray. The regularization for the transmission is given by:

LTgray = Sl1(T̂ −meanc(T̂ )), (25)

LTsmooth = Sl1(T̂ −BoxFilter(T̂ )), (26)

where meanc(x) is a channelwise mean operator for pixel x.
Merging each regularization, the final regularization loss function is defined

as:
Lreg = λidtLidt + λTgrayLTgray + λTsmoothLTsmooth, (27)

where each λ is a weight hyperparameter for each loss term.

Total Loss The final objective function is given by:

L = LASM + Lprior + Lreg. (28)

5 Experiments

5.1 Implementation Details

We implement SSDN based on U-Net but replaced normal convolutions and
ReLUs with residual blocks and PReLUs, respectively. For a lightweight frame-
work, we reduce the number of channels and apply channel reductions to skip
connections and decoder outputs as shown in Fig. 2.

In the training phase, we randomly crop each image from the dataset to a
patch with size of 128x128. To obtain the effect of extending the dataset, we
apply random horizontal flip as data augmentation. For the update of network
parameters, Adam optimizer [12] with a learning rate of 1e-4 is used with batch
size of 32 on two TITAN XPs.

There are hyperparameters in Eqn. (28). We empirically set them:
{λrec, λDCPrec, λTgray, λTsmooth, λvar} to 1, {λJrec, λArec, λaug, λDCP , λidt} to
0.1, {λTV , λPI , λvalue, λsat, λA} to 0.01. In Eqn. (14), we define the values of
hyperparameters as σ2

T = 0.3 and σ2
A = 0.2.

5.2 Datasets

We conduct experiments on both indoor and outdoor scenes. For the indoor
case, we train SSDN with RESIDE standard [14] indoor training set. Indoor
set of the Synthetic Objective Testing Set (SOTS) from RESIDE standard is
selected as the indoor test set. We refer to SSDN trained on RESIDE standard
as ours-indoor.

For the outdoor case, we train SSDN with RESIDE beta [14] Outdoor Train-
ing Set (OTS). The synthetic set of Hybrid Subjective Testing Set (HSTS) from
RESIDE standard is selected as the outdoor test set. We refer to SSDN trained
on OTS as ours-outdoor.
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Table 1. Comparison in terms of computational cost on 620x460 images.

Metrics
Supervised Method

DehazeNet[4] MSBDN-DFF[9] DW-GAN[6] TBDN[26]

FLOPs (GMACs) - 183.62 150.61 396.96
Params (M) - 31.35 51.51 50.35

Exec time (s) 1.05 0.03 0.05 0.06

Metrics
Prior-Based Unsupervised Self-Supervised

DCP DDIP YOLY Ours

FLOPs (GMACs) - - - 94.53
Params (M) - - - 16.62

Exec time (s) 0.05 ∼ 600 ∼ 30 0.008

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Dehazing results of ours and other methods. The first two rows from SOTS
indoor, the other two from the HSTS. (a) Input hazy images, (b) DehazeNet, (c) DCP,
(d) DDIP, (e) YOLY, (f) ours-indoor, (g) ours-outdoor, and (h) GT clean images.

5.3 Results

Baselines To compare the performance of our method, we select diverse ap-
proaches to dehazing. For the supervised method, we select DehazeNet [4],
MSBDN-DFF [9], DW-GAN [6], and TBDN [26]. The performance of [6] and
[26] on HSTS are not reported on their paper. We train them on OTS and test
on HSTS as ours-outdoor. Hence, the results of [6] and [26] on Table 3 may not
be the best for them. For the prior-based method, we select DCP [10], which
is the representative method in that area. Lastly, for unsupervised methods, we
select DDIP [7] and YOLY [15], which optimizes a neural network on each image.

Experiment Results Comparisons on computational cost are shown in Ta-
ble 1. For an image with the size of 620 × 460, YOLY and DDIP take about
few minutes and supervised methods take fractions of a second. On the other
hand, our method takes about 0.008 seconds on a TITAN XP since it requires
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Table 2. Quantitative results of other methods and ours on the synthetic indoor
dehazing test set (SOTS).

Metrics
Supervised Method

DehazeNet[4] MSBDN-DFF[9] DW-GAN[6] TBDN[26]
21.14 33.79 35.94 37.61
0.847 0.984 0.986 0.991

PSNR
SSIM

Metrics
Prior-Based Unsupervised Self-Supervised

DCP DDIP YOLY ours-indoor ours-outdoor

PSNR 16.62 16.97 19.41 19.56 19.51
SSIM 0.818 0.714 0.833 0.833 0.827

Table 3. Quantitative results of other methods and ours on the synthetic outdoor
dehazing test set (HSTS).

Metrics
Supervised Method

DehazeNet[4] MSBDN-DFF[9] DW-GAN[6] TBDN[26]
24.48 31.71 30.67 27.22
0.915 0.933 0.973 0.916

PSNR
SSIM

Metrics
Prior-Based Unsupervised Self-Supervised

DCP DDIP YOLY ours-indoor ours-outdoor

PSNR 14.84 20.91 23.82 19.47 19.84
SSIM 0.761 0.884 0.913 0.859 0.851

(a) (b) (c) (d) (e) (f)

Fig. 4. More dehazing results on SOTS dataset by our proposed SSDN. (a), (d) input
hazy images, (b), (e) output dehazed images, and (c), (f) GT clear images. For upper
two rows, the images are sampled from SOTS indoor set and dehazed using ours-indoor,
SOTS outdoor set and ours-outdoor for lower two rows.
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Table 4. Result of ablation study. For each experiment setting, PSNR and SSIM
is measured between the output and SOTS indoor dataset. The first row, hazy-clear
shows the PSNR and SSIM between hazy and clear images in the dataset.

Experiment Name Experiment Setting PNSR SSIM

- hazy-clear 11.97 0.6934
Model 1 Lrec (Eqn. (10)) 11.59 0.6896
Model 2 LASM (Eqn. (15)) 9.08 0.2821
Model 3 LASM , Lprior (Eqns. (15), (23)) 8.60 0.3012
Model 4 L (Eqn. (28)) 19.35 0.8304

(a) (b) (c) (d) (e) (f)

Fig. 5. Results of ablation study. (a) input hazy image, (b) Model 1, (c) Model 2, (d)
Model 3, (e) Model 4 and (f) the GT clear image. The top row shows the RGB image,
and the bottom shows the estimated transmission map.

only a single CNN forward operation. It shows that SSDN can be combined into
real-time vision systems without losing real-time property while others cannot.

The quantitative comparisons of each baseline and our methods are shown
in Tables 2, 3 and Fig. 3. Our methods show worse performance than super-
vised methods and similar performance compared to DCP, DDIP, and YOLY.
However, our methods show a good generalization property since SSDN learns
physical prior knowledge that can be commonly applied to general hazy images.

More dehazed results on SOTS indoor and outdoor dataset by our proposed
SSDN are shown in Fig. 4.

Ablation Study In this section, we show the effect of loss terms (Eqns. (10),
(15), and (23)) by ablation study. The results are shown in Table 4 and Fig. 5.
Model 1 outputs an image same to the input, a trivial solution. Model 2 avoids
a trivial solution but it does not properly learn dehazing, especially for bright
scene such as white wall (Fig. 5 (c)). Model 3 handles bright scene and dehazes
better than Model 2 by applying low weights to white regions and using other
prior losses such as Lprior (Eqn. (23)) (Fig. 5 (d)). Lreg (Eqn. (27)) makes Model
4 avoid over-dehazing of Model 3 to produce a clear dehazed image.

Real World Examples As shown in Fig. 6, the proposed method works on
real-world hazy images although it has been trained only on a synthetic dataset.
In Fig. 6 (b), ours-indoor shows the strong generalization capability.
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(a) (b) (c) (d) (e)

Fig. 6. Dehazing results on real hazy images using SSDN. Both cases show competitive
performance. (a) input hazy images, (b), (c) output RGB images and transmission maps
of ours-indoor, and (d), (e) output RGB images and transmission maps of ours-outdoor.

(a) (b) (c) (d) (e)

Fig. 7. Dehazing results on real extremely hazy images using SSDN. ours-outdoor does
not work properly while finetuned ours-outdoor shows better performance. (a) input
hazy images, (b), (c) output RGB images and transmission maps of ours-outdoor, and
(d), (e) output RGB images and transmission maps of finetuned ours-outdoor.

Despite the generalization capability of SSDN, extremely hazy images is too
different from trained images. In this case, the performance of SSDN can be
easily improved by finetuning process with additional hazy images. Fig. 7 (d)
shows the results of finetuned ours-outdoor with 110 real-world extremely hazy
images.

Vision System Application To show that SSDN can make the vision system
robust to haze, we choose the depth estimation task as an exemplar case. We
use LapDepth [23], a depth estimation framework trained on Make3D dataset
[22]. To simulate hazy weather, we synthesize hazy images out of Make3D test
set. To synthesize hazy images, we extract the transmission maps and airlights
based on DCP from O-HAZE [2] and NH-HAZE [1]. Then, we apply ASM on
RGB images of Make3D. In this strategy, we successfully transfer realistic haze
from O-HAZE and NH-HAZE to Make3D dataset with this process as shown in
Fig. 8.

In Table 5, LapDepth shows large performance degradation on hazy images.
SSDN can compensate for the performance degradation while it had little effect
on execution time, taking about 0.005 seconds even on images with the size of
1704 × 2272 with a TITAN XP. For comparison, we finetune LapDepth on our
synthesized hazy images. It shows better performance on hazy images, while it
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(a) (b) (c) (d) (e) (f)

Fig. 8. Haze synthesis results on Make3D dataset and its dehazed result using SSDN.
(a), (d) original clear images, (b), (e) synthesized hazy images, and (c), (f) dehazed
results by ours-outdoor.

Table 5. Depth estimation results of LapDepth on each experiment setting.

Experiment Setting Dataset SSDN RMSE SSIM

LapDepth Clear images 8.76 0.94
LapDepth Hazy images 11.32 0.92

LapDepth Hazy images X 9.85 0.92

Finetuned LapDepth Clear images 9.16 0.93
Finetuned LapDepth Hazy images 9.09 0.94

makes a degraded performance on clear images. On the other hand, SSDN does
not affect the performance for the clear weather case. It shows that our proposed
SSDN is a practical method for assisting existing vision systems.

6 Conclusion

SSDN disentangles a hazy image into a clear image, transmission map, and
atmospheric airlight based on ASM. To the best of our knowledge, it is the
first approach to merging physical prior knowledge and self-supervision for the
dehazing task. The proposed method shows competitive dehazing performance
to other prior-based methods or unsupervised methods while running extremely
faster than them. Our proposed SSDN shows strong generalization capability and
it can be more stable over various domains by finetuning with simply gathered
additional hazy images. We also showed that SSDN can make existing vision
systems robust to hazy images. Experimental results show that our proposed
SSDN is a practical dehazing method for real-time vision systems.
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