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Abstract. Metric learning aims to build a distance metric typically by
learning an effective embedding function that maps similar objects into
nearby points in its embedding space. Despite recent advances in deep
metric learning, it remains challenging for the learned metric to general-
ize to unseen classes with a substantial domain gap. To tackle the issue,
we explore a new problem of few-shot metric learning that aims to adapt
the embedding function to the target domain with only a few annotated
data. We introduce three few-shot metric learning baselines and propose
the Channel-Rectifier Meta-Learning (CRML), which effectively adapts
the metric space online by adjusting channels of intermediate layers. Ex-
perimental analyses on miniImageNet, CUB-200-2011, MPII, as well as
a new dataset, miniDeepFashion, demonstrate that our method consis-
tently improves the learned metric by adapting it to target classes and
achieves a greater gain in image retrieval when the domain gap from the
source classes is larger.

1 Introduction

The ability of measuring a reliable distance between objects is crucial for a
variety of problems in the fields of artificial intelligence. Metric learning aims
to learn such a distance metric for a type of input data, e.g., images or texts,
that conforms to semantic distance measures between the data instances. It is
typically achieved by learning an embedding function that maps similar instances
to nearby points on a manifold in the embedding space and dissimilar instances
apart from each other. Along with the recent advance in deep neural networks,
deep metric learning has evolved and applied to a variety of tasks such as image
retrieval [31], person re-identification [6] and visual tracking [34]. In contrast
to conventional classification approaches, which learn category-specific concepts
using explicit instance-level labels for predefined classes, metric learning learns
the general concept of distance metrics using relational labels between samples
in the form of pairs or triplets. This type of learning is natural for information
retrieval, e.g., image search, where the goal is to return instances that are most
similar to a query, and is also a powerful tool for open-set problems where we
match or classify instances of totally new classes based on the learned metric. For
this reason, metric learning has focused on generalization to unseen classes, that
have never been observed during training [15, 31, 44]. Despite recent progress of
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(a) few-shot classification (b) few-shot metric learning

Fig. 1: Few-shot classification vs. few-shot metric learning. (a) A few-shot
classifier learns to construct a decision boundary between support examples of
different classes (red and blue). The query (white) is correctly classified as the
red class, but fails to be placed away from blue samples. (b) A few-shot metric
learner learns improved distance relations by adapting the embedding space
online using the support examples, where the contour line represents the points
with the same distance from the query.

deep metric learning, however, it remains exceedingly challenging for the learned
embedding to generalize to unseen classes with a substantial domain gap.

To bridge the generalization gap in metric learning, we investigate the prob-
lem of few-shot metric learning that aims to adapt an embedding function on
the fly to target classes with only a few annotated data. While the problem of
few-shot learning has been actively studied for classification [21, 30], the problem
for metric learning has never been directly investigated so far to the best of our
knowledge. Few-shot metric learning and classification problems share the goal of
adapting to scarce labeled data, but diverge in terms of their training objectives
and evaluation protocols, thus requiring different approaches. As illustrated in
Fig. 1, few-shot classification focuses on forming a decision boundary between
samples of different classes and often fails to measure the relative distance re-
lations between the samples, which are crucial for a retrieval task. Our analysis
also shows that the improvement of classification accuracy does not necessarily
lead to that of retrieval accuracy (Table 7). While one of the main approaches
to few-shot classification is to learn a metric space for nearest-neighbor classi-
fication to generalize to unseen classes [21, 38, 39, 33, 45–47, 24, 7, 18], it exploits
the learned metric in testing without adapting the embedding space to the few-
shot instances online. In this sense, metric-based few-shot classification is very
different from few-shot metric learning that we investigate in this paper.

In this work we introduce three baselines for few-shot metric learning by
adapting existing methods and propose the Channel-Rectifier Meta-Learning
(CRML), which effectively adapts the metric space online by adjusting channels
of intermediate layers. We compare them to conventional metric learning as well
as few-shot classification counterparts on miniImageNet [30], CUB-200-2011 [40],
and MPII [23]. We also introduce a new multi-attribute dataset for image re-
trieval, dubbed miniDeepFashion, where two instances may have an opposite
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similarity relationship over multiple attributes (perspectives), and thus embed-
ding functions are required to adapt to target attributes. Experiments show that
CRML as well as the three baselines significantly improve image retrieval quality
by adapting the model to target classes. Notably, such improvement is significant
when the gap between training and testing domains arises, which conventional
metric learning often fails to bridge.

2 Related work

2.1 Metric learning

Metric learning has been studied extensively in the past decades [32], and has
shown a great success recently using deep embedding networks trained with new
losses. One of the widely studied losses is the pair-wise loss [8, 31, 35, 43] which
minimizes the distance between two instances that have the same label and
separates them otherwise. Such losses include contrastive loss [4, 8, 12], triplet
loss [31, 41], lifted structured loss [35], and multi-similarity loss [43]. Unlike pair-
based losses, proxy-based losses [28, 2, 29, 19] associate proxy embeddings with
each training class as a part of learnable parameters and learn semantic distance
between an instance and the proxies. These previous methods, which we refer
to as conventional metric learning, emphasize the generalization performance on
unseen classes that have never been observed during training. However, they of-
ten suffer from a significant gap between source and target classes [27]. Although
it is very practical to utilize a few labeled data from the target classes on the
fly, online adaptation of the metric has never been explored so far to the best
of our knowledge. Recently, Milbich et al. [27] showcase the effect of few-shot
adaptation as a mean of out-of-distribution deep metric learning, their work does
not present a problem formulation and a method dedicated to few-shot learn-
ing while our work does both of them. In many practical applications of metric
learning, a metric can also be learned with continuous labels of similarity , which
are more informative but costly to annotate [36, 11, 23, 20]. Online adaptation of
metric learning may be particularly useful for such a scenario where we need to
adapt the metric to the target classes with their few yet expensive labels.

2.2 Few-shot classification

Few-shot learning has been actively investigated for classification problems, and
recent work related to ours is roughly categorized into three types: metric-based,
optimization-based, and transfer-learning methods. The key idea of metric-based
methods [21, 38, 39, 33, 45–47, 24, 7, 18] is to learn an embedding space via episodic
training so that the class membership of a query is determined based on its near-
est class representations in the embedding space. Although the metric-based
few-shot classification and few-shot metric learning share the terminology “met-
ric”, they clearly differ from each other in terms of their learning objectives and
practical aspects. While metric-based few-shot classifiers construct a decision
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boundary using a learned metric without online adaptation of embeddings, few-
shot metric learners learn improved metric function by adapting the embeddings
online. In this aspect, N -way 1-shot retrieval task, proposed in Triantafillou et
al. [38], is different from our task, few-shot metric learning. The N -way 1-shot
retrieval task in [38] does not perform any online adaptation of embedding in
the inference time; thus, it is exactly the same as the conventional deep metric
learning. In this work, we focus on instance retrieval problems on an adaptive
embedding space of a few examples, while class discrimination is out of our
interest.

The optimization-based few-shot classification methods [30, 10, 37] learn how
to learn a base-learner using a few annotated data. While two aforementioned
lines of work follow meta-learning frameworks, recent studies suggest that the
standard transfer learning is a strong baseline for few-shot classification [5, 42,
16, 25, 9]. Such transfer learning methods pre-train a model using all available
training classes and leverage the model for testing.

The contribution of this paper is four-fold:

– We introduce a new problem of few-shot metric learning that aims to adapt
an embedding function to target classes with only a few annotated data.

– We present three few-shot metric learning baselines and a new method,
Channel-Rectifier Meta-Learning (CRML), which tackles the limitations of
the baselines.

– We extensively evaluate them on standard benchmarks and demonstrate
that the proposed methods outperform the conventional metric learning and
few-shot classification approaches by a large margin.

– We introduce miniDeepFashion, which is a challenging multi-attribute re-
trieval dataset for few-shot metric learning.

3 Few-shot metric learning

The goal of few-shot metric learning is to learn an embedding function for target
classes with a limited number of labeled instances. In this section, we first revisit
conventional metric learning, and then introduce the problem formulation and
setup of few-shot metric learning.

3.1 Metric learning revisited

Let us assume data X of our interest, e.g., a collection of images. Given an
instance x ∈ X , we can sample its positive example x+, which is from the same
class with x, and its negative example x−, which belongs to a different class from
x. The task of metric learning is to learn a distance function d such that

∀(x, x+, x−), d(x, x+; θ) < d(x, x−; θ). (1)

Deep metric learning solves the problem by learning a deep embedding func-
tion f(·, θ), parameterized by θ, that projects instances to a space where the
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Fig. 2: The problem formulation of few-shot metric learning as an episodic train-
ing.

Euclidean distance is typically used as a distance function d:

d(x, x′; θ) = ∥f(x; θ)− f(x′; θ)∥22. (2)

Note that metric learning focuses on unseen class generalization. The con-
ventional setup for metric learning [35] assumes a set of training classes Ctr

and its dataset Dtr = {(xt, yt)|yt ∈ Ctr}t that contains labeled instances xt
of the training classes. The task of metric learning then is to learn an embed-
ding model using the dataset Dtr so that it generalizes to a dataset of unseen
classes Dun = {(xu, yu)|yu ∈ Cun}u, which contains instances from the classes
not observed in training, i.e., Ctr ∩ Cun = ∅.

3.2 Problem formulation of few-shot metric learning

In contrast to the conventional metric learning, few-shot metric learning uses
annotated instances of the target classes (thus, not totally unseen any more) but
only a few instances per class, which is reasonable in most real-world scenarios.
For simplicity and fair comparison, we applied N -way K-shot setting. Let us
assume a target class set C, which contains N classes of our interest, and its
support set S = {(xs, ys)|ys ∈ C}NK

s=1 , which contains K labeled instances for
each of the target classes; K is supposed to be small. The task of N -way K-shot
metric learning is to learn an embedding model using the support set S so that
it generalizes to a prediction set P = {(xp, yp)|yp ∈ C}Mp=1, which contains M
unseen instances, i.e., S ∩ P = ∅, from the target classes. The generalization
performance is evaluated using instance retrieval on P.

Our goal is to learn such a few-shot metric learning model using a set of
labeled instances from non-target classes, which can be viewed as a meta-learning
problem. In training a few-shot metric learning model, we thus adopt the episodic
training setup of meta-learning [39, 30, 10, 33] as illustrated in Fig. 2. In this
setup, we are given a meta-train set Dmtr and a meta-validation set Dmvl. They
both consist of labeled instances from non-target classes but their class sets, Cmtr

and Cmvl, are disjoint, i.e., C ∩ Cmtr = C ∩ Cmvl = Cmtr ∩ Cmvl = ∅.
A meta-train episode is constructed from Dmtr by simulating a support set

and its prediction set; (1) a support set Smtr is simulated by sampling N classes
from Cmtr then K instances for each of the N classes, and (2) a prediction set
Pmtr, which is disjoint from Smtr, is simulated by sampling other K ′ instances
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for each of the N classes. A meta-validation episode is constructed from Dmvl

likewise. The meta-trained few-shot metric learning model is tested on meta-test
set E = {(Sm,Pm)}m from the target classes C.

4 Methods

We introduce three baselines for few-shot metric learning (Sec. 4.1-4.3) by adapt-
ing existing few-shot learning methods, representative for few-shot classification
and appropriate for few-shot metric learning in the sense that it adapts the
embedding spaces online. We then discuss the limitations of the baselines and
propose our method that overcomes the limitations (Sec. 4.4).

4.1 Simple Fine-Tuning (SFT)

As the first simple baseline for few-shot metric learning, we use the standard
procedure of inductive transfer learning. In training, the embedding model f is
trained on meta-training set Dmtr from scratch with a metric learning loss; this
is done in the same way with conventional metric learning, not involving any
episodic training. In testing with an episode (S,P), the trained model f(x; θ0)
is simply fine-tuned using the target support set S by computing gradients with
respect to a metric learning loss on S:

θ′ = θ0 − α∇θL(S; θ0). (3)

After fine-tuning, the model is tested on P. We choose the number of updates
that shows the highest performance on the (meta-)validation set.

4.2 Model-Agnostic Meta-Learning (MAML)

As the second baseline for few-shot metric learning, we employ MAML [10],
which meta-learns a good initialization for few-shot adaptation via episodic train-
ing. Given a meta-train episode (Smtr

k ,Pmtr
k ), the meta-training process consists

of inner and outer loops. In the inner loop, the parameters of a base-learner are
updated using a meta-learner and the support set Smtr

k . In MAML, the base-
learner corresponds to the embedding model f , and the meta-learner corresponds
to the initializer θ0 for the embedding model. The inner loop updates the base
learner using Smtr

k by a few gradient descent steps:

θ1 = θ0 − α∇θL(Smtr
k ; θ0), (4)

where α is the step size of inner-loop updates. In the outer loop, the meta-learner
is updated using the loss of the updated base-learner on the prediction set Pmtr

k :

θ′0 = θ0 − η∇θL(Pmtr
k ; θ1), (5)

where η is the step size of outer-loop updates. This meta-optimization with
episodic training seeks to learn the initialization of the embedding model that
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generalizes well to unseen classes. For computational efficiency, we use the first-
order approximation of meta-gradient update as in [10].

The meta-testing procedure with an episode (S,P) is the same as that of the
inner loop; the meta-trained model f(x; θ′0) is evaluated by fine-tuning it on S
with a few gradient steps and testing it on P. We choose the number of steps
that shows the highest performance on the Dmvl.

4.3 Meta-Transfer Learning (MTL)

As the third baseline, we adapt MTL [37] for few-shot metric learning. MTL first
pre-trains an embedding model f on the meta-training set Dmtr and then con-
ducts an optimization-based meta-learning process while freezing all the layers
except for the last fully-connected one. Here, the base-learner is the last fully-
connected layer ψ and the meta-learner consists of two groups: a set of channel
scaling/shifting parameters Φ = {(γl, βl)}l and the initialization of the last fully-
connected layer ψ0. The channel-scaling/shifting parameters are applied to the
frozen convolutional layers of the embedding model f so that the parameters of
each conv layer are scaled by γl and shifted by βl:

ConvlCSS(X;W l, bl, γl, βl) = (W l ⊙ γl) ∗X + (bl + βl), (6)

where W l and bl are the weight and bias of each convolution layer, ⊙ is channel-
wise multiplication, and ∗ is convolution. For example, if the 3 × 3 convolution
kernel is size of 128 × 64 × 3 × 3, then channel-scaling parameter is size of
128× 64× 1× 1.

In the inner loop of the meta-training, the last fully-connected layer is fine-
tuned on Smtr

k from the initialization ψ0. In the outer loop, the set of channel-
scaling/shifting parameters Φ and the initialization of the last fully-connected
layer ψ0 are meta-updated using the prediction loss.

In meta-testing with an episode (S,P), following the process of the inner
loop, only the last layer ψ is updated via a few gradient steps from the meta-
learned initialization ψ0 using S, and the fine-tuned model is tested on P.

4.4 Channel-Rectifier Meta-Learning (CRML)

In this subsection we discuss limitations of the aforementioned baselines and
then propose a simple yet effective method for few-shot metric learning.

The main challenge in few-shot metric learning is how to effectively adapt
the vast metric space using only a few examples while avoiding the danger of
overfitting; as expected, the issue of overfitting is particularly critical in few-shot
learning since only a few annotated examples are given for adaptation online.
Updating all learnable parameters during meta-testing, as typically done in sim-
ple fine-tuning (Sec. 4.1) and MAML (Sec. 4.2), often causes quick over-fitting. A
reasonable alternative is to fine-tune a part of the network only, e.g., the output
layer as in MTL (Sec. 4.3), with all the other parts frozen. This partial update
strategy is shown to be effective for classification problems where class decision
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Algorithm 1 Channel-Rectifier Meta-Learning
Input: Meta training set Dmtr, learning rate α, η, pre-trained embedding model f
Output: The set of initialization of channel-scaling/shifting parameter Φ0 =
{(γl

0, β
l
0)}l

1: Initialize γl ← 1, βl ← 0
2: for (Smtr

k ,Pmtr
k ) ∈ Dmtr do

3: Φ1 ← Φ0 − α∇ΦL(Smtr
k ; f, Φ0) // Inner loop

4: Φ0 ← Φ0 − η∇ΦL(Pmtr
k ; f, Φ1) // Outer loop

5: end for

boundaries can be easily affected by the specific part. In metric learning, how-
ever, fine-tuning the output layer or other specific layer online turns to hardly
change the metric space, i.e., distance relations among embeddings (Sec. 5.2).

To tackle the issue, we propose the Channel-Rectifier Meta-Learning (CRML)
that meta-learns how to rectify channels of intermediate feature layers. The main
idea is inspired by channel scaling/shifting of MTL (Eq. (6)), which is shown to
be effective in adapting pretrained layers but never used in online adaptation.
Unlike MTL, we propose to leverage the channel scaling/shifting module, dubbed
channel rectifier, for online adaptation. In other words, we set the channel recti-
fier Φ = {(γl, βl)}l as a base-learner and its initialization Φ0 as a meta-learner. In
this setup, we pre-train an embedding model f on the meta-training set Dmtr and
all the pre-trained parameters are frozen during the subsequent meta-learning
process. Instead, in the meta-training stage, we update the channel rectifier Φ in
the inner loop (Eq. (4)) while updating the initialization of the channel rectifier
Φ0 in the outer loop. This meta-learning process of CRML is summarized in Alg.
1, where we describe a single-step inner loop with meta-batch of size 1 for the
sake of simplicity.

In meta-testing with an episode (S,P), only the channel rectifier Φ is fine-
tuned by the support set S with a few gradient steps from the learned initializa-
tion Φ0, and the fine-tuned model is tested on P. Note that the CRMLallows the
channel rectifier to effectively exploit the support set to adapt the embedding
function online.

5 Experiments

5.1 Experimental Settings

Datasets and scenarios. We evaluate CRML and three baselines on two stan-
dard few-shot learning datasets, miniImageNet [30] and CUB-200-2011 [40]. The
miniImageNet dataset is a subset of the ImageNet [22] and consists of 60,000 im-
ages categorized into 100 classes with 600 images each. We use the splits divided
into 64/16/20 classes for (meta-)training, (meta-)validation, and (meta-)testing,
which has been introduced by [30]. The CUB-200-2011 (CUB) is a fine-grained
classification dataset of bird species. It consists of 200 classes with 11,788 im-
ages in total. Following the evaluation protocol of [14], the split is divided into
100/50/50 species for (meta-)training, (meta-)validation, and (meta-)testing. We
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also use the MPII dataset, a human pose dataset, to train the metric learning
model with continuous labels. Following the split of [23], 22,285 full-body pose
images are divided into 12,366 for (meta-)training and 9,919 for (meta-)testing.
Following [20], the label for a pose pair is defined as a pose distance, the sum
of Euclidean distances between body-joint locations. To verify the influence of
the domain gap between the source and the target classes, we conduct cross-
domain experiments [5], which is designed to have a significant domain gap
between training and evaluation; (meta-)training set consists of all samples in
miniImageNet where each (meta-)validation and (meta-)test set consists of 50
classes from CUB. Lastly, we propose a new multi-attribute dataset for few-
shot metric learning, dubbed miniDeepFashion. The miniDeepFashion is built
on DeepFashion [26] dataset, which is a multi-label classification dataset with
six fashion attributes. It consists of 491 classes and the number of all instances
in the dataset amounts to 33,841. The details of miniDeepFashion is in Sec. 5.5.

Evaluation metrics. We use two standard evaluation metrics, mAP (mean
value of average precision) [3] and Recall@k [17], to measure image retrieval
performances. Recall@k evaluates the retrieval quality beyond k nearest neigh-
bors while mAP evaluates the full ranking in retrieval. Since the MPII dataset for
the human pose retrieval is labeled with continuous real values, we employee two
metrics defined on continuous labels following [20]: mean pose distance (mPD)
and a modified version of normalized discounted cumulative gain (nDCG). The
mPDk evaluates the mean pose distance between a query and k nearest im-
ages. The modified nDCGk evaluates the rank of the k nearest images and their
relevance scores. The details about evaluation metrics are specified in the sup-
plementary material.

Implementation details. We use ResNet-18 [13] for the main backbone from
scratch. We append a fully-connected layer with the embedding size of 128 fol-
lowed by l2 normalization on top of the backbone. We use the multi-similarity
loss [43] for training all the baselines and ours, CRML. For the human pose
retrieval task on the MPII, we use ResNet-34 with the embedding size of 128,
which is pre-trained on ImageNet [22] for a fair comparison with [20]. We fine-
tune the network with log-ratio loss [20] using from 25 to 300 pairs out of all
possible

(
12366

2

)
≈ 7.6×107 pairs. Complete implementation details are specified

in the supplementary material.

5.2 Effectiveness of few-shot metric learning

Few-shot metric learning is effective on discrete-label benchmarks. We
first compare few-shot metric learning to conventional metric learning (DML)
in Tables 1, 2, and 3. All the few-shot metric learning methods consistently
outperform DML not only on the 5-way 5-shot setting, which is standard for
few-shot learning but also on the full-way 5-shot setting, which is standard for
image retrieval. The result also shows that only five shots for each class is enough
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Table 1: Performance on
miniImageNet.

5-way 5-shot 20-way 5-shot
Method mAP R@1 R@2 R@4 mAP R@1 R@2 R@4
DML 46.9 73.5 84.1 91.2 21.0 49.2 62.6 74.2
FSMLSFT 63.3 78.6 85.7 91.8 29.9 52.6 65.1 75.3
FSMLMAML 65.9 79.8 87.5 92.2 28.6 52.7 65.6 76.3
FSMLMTL 56.5 77.2 86.7 92.6 24.0 50.0 64.6 76.2
CRML 69.2 83.2 89.9 93.8 30.7 56.3 68.6 78.5

Table 2: Performance on CUB-200-
2011.

5-way 5-shot 50-way 5-shot
Method mAP R@1 R@2 R@4 mAP R@1 R@2 R@4
DML 57.8 81.4 88.6 93.6 26.3 51.8 62.5 72.2
FSMLSFT 79.9 87.7 91.6 93.8 31.1 55.3 66.2 74.8
FSMLMAML 82.0 89.5 93.2 95.4 33.2 54.6 66.3 75.7
FSMLMTL 71.9 86.2 91.4 94.5 30.2 54.3 65.2 73.6
CRML 82.7 90.0 93.5 95.5 33.9 58.1 68.4 76.5

Table 3: Performance on cross-domain.
5-way 5-shot 50-way 5-shot

Method mAP R@1 R@2 R@4 mAP R@1 R@2 R@4
DML 36.2 57.5 73.2 86.1 6.1 19.6 29.0 41.1
FSMLSFT 49.4 65.2 77.1 86.0 9.8 24.1 35.2 47.8
FSMLMAML 51.5 67.0 78.8 87.2 10.0 23.7 35.4 48.8
FSMLMTL 40.3 62.7 28.7 41.1 6.8 20.0 29.9 42.8
CRML 56.4 71.0 81.5 88.9 10.9 27.0 38.3 51.1

Table 4: Performance on
miniDeepFashion.

5-way 5-shot 20-way 5-shot
Method mAP R@1 R@2 R@4 mAP R@1 R@2 R@4
DML 31.8 50.3 65.8 80.2 11.3 26.1 37.3 50.2
FSMLSFT 35.2 51.3 66.1 79.8 12.5 26.4 37.8 50.4
FSMLMAML 38.2 53.5 67.6 80.2 13.3 27.7 39.1 52.1
FSMLMTL 35.2 52.2 66.8 79.9 12.3 26.8 38.0 50.6
CRML 38.3 50.7 66.3 80.2 13.0 27.8 39.1 52.0

to boost the image retrieval quality regardless of the number of classes to re-
trieve. Such improvement is clear not only in Recall@k, i.e., the measurement of
top-k nearest neighbors, but also in mAP, i.e., the quality of all distance ranks.
More importantly, the proposed CRML outperforms all baselines in the most
settings, improving over MAML and SFT baselines by a large margin on the
miniImageNet and the cross domain setting. CRML is trained to rectify the
base feature maps by learning a small set of channel scaling and shifting param-
eters and thus effectively avoids overfitting to the few-shot support set from an
unseen domain. In contrast, both the MAML and the SFT baselines update all
parameters in the embedding functions online, thus being vulnerable to overfit-
ting to the small number of support set. Note that the worst model is the MTL
baseline, which fine-tunes the last fully-connected layer while all the other layers
frozen, suggesting that fine-tuning only a single output layer in the embedding
function is insufficient for online adaptation. Note that simple fine-tuning (SFT)
often performs comparable to meta-learning baselines (MAML and MTL) as
recently reported in transfer learning based few-shot learning work [5].

Few-shot metric learning is effective on continuous-label benchmarks.
We also evaluate few-shot metric learning on the human pose retrieval on MPII
to demonstrate its applications and show its effectiveness. Given a human image
with a certain pose, the goal of the human pose retrieval is to retrieve the most
similar image of a human pose, where the supervisions in MPII consist of a con-
tinuous value on a pair-wise similarity. Since such labels are expensive to collect,
few-shot learning is a practical solution for this problem, while the standard
image classification approach is unlikely to applied due to the pair-based form
of supervisions. Table 5 summarizes the retrieval performances with increas-
ing numbers of the pair-wise supervisions. The retrieval performance gradually
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Table 5: Performance on MPII [1]. For
nDCG1, the higher the better, and for
mPD1, the lower the better. † and ‡ de-
notes the performances from [23] and
[20].

#(pair labels used)
Metric 0 25 50 100 200 300 76M† 76M‡

nDCG1 40.4 41.2 41.5 41.9 42.4 43.0 70.8 74.2
mPD1 31.5 30.9 30.8 30.7 30.3 29.9 17.5 16.5

Table 6: Adaptation growth rate1(%)
of CRMLon three datasets. The models
are trained and evaluated in the 5-way
5-shot setting on each dataset.
Metric → mAP (%) recall@1 (%)
Dataset → CUB mini cross CUB mini cross
before adapt. 72.2 58.1 41.8 87.5 80.7 65.3
after adapt. 82.7 69.2 56.4 90.0 83.2 71.0
growth rate (%) 14.5 19.0 34.8 2.8 3.1 8.7

improves as the number of labels increase, although the source classes (object
classes in ImageNet [22]) used for pre-training deviate from the target classes of
human poses. Few-shot adaptation achieves 7.7% of the state-of-the-art perfor-
mance [20] trained with full supervisions using only 0.00039% of supervisions.

Please refer to the supplementary material for qualitative visualizations of
our method and more experiments about effectiveness of few-shot metric learning
with 1) 10 shots, 2) additional metric learning losses, 3) qualitative results.

5.3 Influence of domain gap between source and target

To verify the influence of the domain gap between the source and the target
classes, we conduct cross-domain experiments. Table 3 shows the results of the
5-way and 50-way 5-shot experiments on the cross-domain setting. Due to the
substantial domain gap between the source and target classes, the performances
are much lower than those on CUB experiment in Table 2. However, the perfor-
mance improvement is between 1.5 and 2 times higher than that of CUB. We
observe that CRML results in remarkable improvement, which implies CRML is
learned to properly rectify the base features adapted to given a support set.

We investigate the correlation between domain gap and effects of few-shot
adaptation. For miniImageNet, we randomly sample 60 instances from each
target class in to match the prediction set size equal to that of CUB for a fair
comparison. Note that the CUB is fine-grained thus has the smallest domain gap,
while the cross-domain setting has the biggest. For each dataset, we measure
the ratio of performance improvement from online adaptation and refer to it
as adaptation growth rate. As shown in Table 6, the growth rate increases as
the domain gap arises. It implies that few-shot metric learning is more effective
when the target classes diverge more from the source classes.

5.4 Few-shot metric learning vs. few-shot classification

To verify the differences between few-shot metric learning and few-shot classifi-
cation, we compare them both in image retrieval and classification. We evaluate
different types of few-shot classification methods for comparison: transfer-based
(Baseline [5], Baseline++ [5]), optimization-based (MAML [10]), and metric-
based (MatchingNet [39], ProtoNet [33], FEAT [45]) methods. Note that as
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Table 7: Classification and image retrieval performances of few-shot classifica-
tion and few-shot metric learning methods on miniImageNet in a 5-way 5-shot
setting. TTA stands for test-time adaptation via gradient descents.

Classification Image retrieval
Method Accuracy Recall@1 mAP

Transfer-based few-shot classification
Baseline [5] 62.21 74.04 53.14
Baseline++ [5] 74.88 78.97 65.22

Metric-based few-shot classification
MatchingNet [39] 67.42 69.70 51.10
+TTA 71.50 71.05 52.51
ProtoNet [33] 74.46 71.04 51.73
+TTA 77.15 71.89 51.78
FEAT [45] 80.37 79.15 49.73
+TTA 80.59 79.31 51.72

Optimization-based few-shot classification
MAML [10] 68.80 75.81 57.03

Few-shot metric learning
FSMLSFT 69.92 79.14 65.22
FSMLMAML 72.69 79.77 65.86
FSMLMTL 70.34 77.19 56.50
CRML 76.64 83.22 69.15

mentioned earlier, unlike the transfer-based and optimization-based methods,
the metric-based ones in their original forms do not use online adaptation to
the given support on test time. For a fair comparison, we thus perform add-on
online adaptation, which is denoted by TTA, for the metric-based methods by
a few steps of gradient descent using the support set.

We observe that there is little correlation between the classification accuracy
and the image retrieval performances as shown in Table 7. All the few-shot metric
learning methods outperform few-shot classification methods on image retrieval
in terms of Recall@1 and mAP, while their classification accuracies are lower
than those of few-shot classification methods. Interestingly, only Baseline++
shows competitive results with few-shot metric learning on image retrieval; we
believe it is because the learned vectors in Baseline++ behave similarly to prox-
ies in proxy-based metric learning methods. The results imply that few-shot
classification learning and few-shot metric learning are distinct and result in dif-
ferent effects indeed. Note that even metric-based few-shot classification is not
adequate for organizing the overall metric space, and additional test-time adap-
tation contributes insignificantly to improving the image retrieval performances.

5.5 Results on miniDeepFashion

Our design principle for the miniDeepFashion is to make a binary (similar/dis-
similar) relationship between two instances inconsistent across the non-target
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Table 8: The split of
miniDeep Fashion.

splits attribute #instances(#classes)

Cmtr
fabric (99)

27,079part (95)
style (127)

Cmvl shape (76) 7,600

C category (37) 8,685texture (57)
total 33,841

Belted trench coat Open-shoulder shift dress

attribute:class attribute:class

part:belted part:belted

category:coat category:dress

Cami trapeze dress Dotted cami dress

attribute:class attribute:class

shape:cami shape:cami

texture:watercolor texture:dots

Fig. 3: Two example pairs sharing attributes.
Blue rows denote positive pairs on one attribute,
and red rows denote negative pairs on the other.

and target classes. We thus split six attributes, each of which indicates a seman-
tic perspective that categorizes instance into (meta-)training, (meta-)validation,
and (meta-)testing as shown in Table 8. For example, a trench coat and a shift
dress are either a positive pair in terms of parts they share, or a negative pair
in terms of their categories as shown in Fig. 3. As existing few-shot learning
datasets [30, 40] do not assume such semantic switch, one embedding space is
enough for a global information. In contrast, the assumption is no longer valid
on miniDeepFashion, thus online adaptation is inevitable; this feature is well-
aligned with the goal of few-shot metric learning. miniDeepFashion is built on
DeepFashion [26] dataset, which is a multi-label classification dataset with six
fashion attributes. We construct miniDeepFashion by randomly sampling 100
instances from each attribute class. The number of classes in each attribute
and the number of instances in each split is shown in Table 8. Also, the class
configuration for each attribute is in the supplementary materials.

Table 4 shows the results on miniDeepFashion. We observe that it is excep-
tionally challenging to reexamine distance ranking between instances online when
the context of target class similarity switches from that of (meta-)training class.
CRML and the baselines result in moderate performance growth from DML,
opening the door for future work. Figure 4 shows the qualitative retrieval results
of DML and CRML on the miniDeepFashion. The leftmost images are queries
and the right eight images are top-eight nearest neighbors. As shown in Fig. 4,
DML is misled by similar colors or shapes without adapting to target attributes,
texture and category, only retrieving images of common patterns. In contrast,
CRML adapts to attribute-specific data, thus retrieving correct images. For ex-
ample, when the query is blue chinos, while DML only retrieves the blue pants
regardless of the category, CRML retrieves the chinos successfully irrespective
of the color (Fig. 4 (a)). Note that miniDeepFashion benchmark has an original
characteristics that requires online adaptation to a certain attribute of given
a support set, thus this benchmark makes more sense for evaluating few-shot
metric learning in comparison to prevalent few-shot classification benchmarks.
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Fig. 4: Retrieval results on the (a) texture and (b) category attribute in mini -
DeepFashion. The leftmost images are queries, and the right images are top-eight
nearest neighbors. Green and red boxes are positive and negative images.

6 Conclusion

We have presented a few-shot metric learning framework and proposed an effec-
tive method, CRML, as well as other baseline methods. All the few-shot metric
learning methods consistently outperform the conventional metric learning ap-
proach, demonstrating that they effectively adapt the learned embedding using
a few annotations from target classes. Moreover, few-shot metric learning is
more effective than classification approaches on relational tasks such as learning
with continuous labels and multi-attribute image retrieval tasks. For this direc-
tion, we have introduced a challenging multi-attribute image retrieval dataset,
miniDeepFashion. We believe few-shot metric learning is a new promising di-
rection for metric learning, which effectively bridges the generalization gap of
conventional metric learning.
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