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Abstract. Class-incremental learning for semantic segmentation (CiSS)
is presently a highly researched field which aims at updating a seman-
tic segmentation model by sequentially learning new semantic classes. A
major challenge in CiSS is overcoming the effects of catastrophic forget-
ting, which describes the sudden drop of accuracy on previously learned
classes after the model is trained on a new set of classes. Despite latest
advances in mitigating catastrophic forgetting, the underlying causes of
forgetting specifically in CiSS are not well understood. Therefore, in a
set of experiments and representational analyses, we demonstrate that
the semantic shift of the background class and a bias towards new classes
are the major causes of forgetting in CiSS. Furthermore, we show that
both causes mostly manifest themselves in deeper classification layers of
the network, while the early layers of the model are not affected. Finally,
we demonstrate how both causes are effectively mitigated utilizing the
information contained in the background, with the help of knowledge
distillation and an unbiased cross-entropy loss.
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1 Introduction

Semantic segmentation is a long-standing problem in computer vision, which
aims to assign a semantic label to each pixel of an image. However, a funda-
mental constraint of the traditional semantic segmentation benchmarks is that
they assume that all classes are known beforehand and are all learned at once.
This assumption limits the use of semantic segmentation for practical applica-
tions, as within a realistic scenario the model should be able to learn new classes
without requiring a complete retraining of all previous ones. For this reason,
the recently emerged field of class-incremental semantic segmentation (CiSS) fo-
cuses on achieving this goal of incrementally learning new classes. The two main
challenges that CiSS has to overcome are catastrophic forgetting [11,26] of old
classes and the semantic shift of the background class. Recently, several meth-
ods were proposed to mitigate the limitations brought on by these challenges
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[40,28,19,3,8,29]. Contrary to methods in class-incremental image classification,
CiSS methods are mostly based on the concept of knowledge distillation [14].
While significant progress has been made in mitigating the effects of catastrophic
forgetting and the semantic shift of the background class, there is limited un-
derstanding of how the drop in accuracy manifests itself within the CNN-based
semantic segmentation model. The focus of our work is to identify the causes of
forgetting in CiSS. Specifically, we aim at revealing how activation drift, inter-
task-confusion and task-recency bias affect the performance in CiSS and how
existing approaches overcome these effects. Our main contributions are:

1. We study the impact of the semantic shift of the background class on Pas-
calVoc2012 [10] in 3 different task protocols: overlapped, disjoint and a novel
full disjoint setup.

2. We analyse the degree of activation drift in various layers by stitching them
with the previous task’s network and reveal that semantic shift of the back-
ground class is the main cause of the catastrophic drop in performance in
CiSS. Forgetting mainly happens in the decoder layers of the model, where
discriminating features for old classes of the encoder are assigned to new vi-
sually similar classes or to the background class. However, the re-appearance
of previous classes in the background of subsequent training tasks also re-
duces the internal activation drift in the encoder.

3. We introduce Decoder Retraining Accuracy to analyse the degree to which
the decoder of the network contributes to inter-task confusion. We observe
that methods that do not use any form of replay fail to learn discriminating
features for all classes. Specifically, the model is not able to distinguish old
classes from new classes that are visually closely related, e.g. train and bus.

4. In our final analysis, we apply the UNCE loss from [3] to the full disjoint
setting and provide observations that support our inferences.

2 Related Work

2.1 Continual Learning

The majority of research in continual learning is focused on developing methods
to overcome the effects of catastrophic forgetting. This is achieved by dedicating
a subset of parameters to each task either dynamically or explicitly, by penal-
izing updates on important parameters for the previous task during training on
a new task [1,18,7,43], directly storing data from previous task for later replay
[39,35,34,13], as well as knowledge-distillation-based methods, which utilize the
activations of the old network as regularization term during training on new
data [23]. In a recent empirical survey by Masana et al. [25] the best perform-
ing methods on class-incremental image classification all utilize replay to cope
with forgetting [25]. Other surveys and investigations confirm the notion that
class-incremental learning requires some form of replay [41] and that prior reg-
ularization methods might fail at learning discriminating features in the class-
incremental setting [22,16]. For a state-of-the-art overview on class-incremental
image classification we refer to [25].
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2.2 Class-Incremental Semantic Segmentation

When comparing the most successful approaches in class-incremental image clas-
sification [25] and CiSS [40,28,19,3,8,29,17], it is noticeable that contrary to
classification in CiSS most of the recent methods build on the idea of Learning
without Forgetting (LwF) [23] and utilize a knowledge distillation-based loss. In
most CiSS benchmarks knowledge distillation-based approaches even outperform
replay-based methods [17]. As a result, state-of-the-art CiSS approaches mostly
rely on some form of knowledge distillation [14] and do not require any form
of replay. These approaches have been proven to be effective on their respective
benchmarks. However, they require that previously learned classes will reappear
in the future training images, because otherwise they would still suffer from for-
getting, as we will confirm in our experiments. Therefore, recent approaches also
investigated how to integrate exemplar replay into CiSS [24,9,17] or utilizing
unlabelled auxiliary data [42,2].

2.3 Studying effects of Catastrophic Forgetting

Prior work on understanding catastrophic forgetting in deep learning for image
classification used representational analysis techniques such as centered kernel
alignment [20] and linear probing to conclude that deeper layers are dispropor-
tionately the cause of forgetting in CNNs [6,33]. We will confirm this is also true
for CiSS. Other work analyzed the loss-landscape of continually trained models
[30] or investigated how the task sequence [32] and task similarity [33] impact
forgetting. Contrary to prior work, we concentrate on identifying the causes of
forgetting that arise specifically in CiSS, as the semantic shift of background class
and the multi-class nature of semantic segmentation introduce new challenges
into the continual learning setting that are not yet well understood.

3 Problem Formulation

Before going into details about the causes of forgetting, we define the general
task of CiSS. The goal of semantic segmentation is to assign a class out of
a set of pre-defined classes C to each pixel in a given image. A training task
T = {(xm, ym)}Mm=1 consists of a set of M images x ∈ X with X = RH×W×3
and corresponding labels y ∈ Y with Y = CH×W . Given the task T the goal
in semantic segmentation is to learn a mapping fθ : X → RH×W×|C| from the
image space X to a posterior probability vector q. The output segmentation
mask for a single pixel i of the image is obtained as ȳi = arg maxc∈C qi,c. In the
class-incremental learning setting the model fθ is not trained on a single task T
but on a sequence of tasks Tt. Each task Tt extends the previous set of classes
Ct−1 by a set of novel classes St resulting in the new label set Ct = Ct−1 ∪ St.
In this setting, the labels of classes Ct−1 are not included in the training set of
Tt, with the exception of the background class b. After learning a task Tt, the
model is required to correctly discriminate between all the observed classes Ct.
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3.1 Causes of Forgetting in Class-Incremental Learning

The fundamental challenge in class-incremental learning is that during optimiza-
tion of the model on a new Tt, the model is optimized without regard to the
previous classes Ct−1, which leads to catastrophic forgetting of previous classes.
Masana et al. [25] stated four causes of forgetting in class-incremental classifica-
tion.

– Weight Drift: During optimization on Tt, the weights of the model that
were relevant to the previous task Tt−1 are updated without regard to the
previous task, resulting in drop of performance on task Tt−1.

– Activation Drift: A change of the weights of the model directly results in
a change of internal activations and to the output of the model.

– Inter-task confusion: The objective in class-incremental learning is to cor-
rectly discriminate between between all the observed classes Ct. However, as
the classes are never jointly trained, the learned features are not optimized
to discriminate classes from different tasks, as shown in Fig. 1.

– Task-recency bias: In the class-incremental setting, the model is optimized
to predict new classes without regarding the old classes. This leads to a
strong bias for the most recently learned classes. This bias can easily be seen
in the confusion matrix, as shown in Fig. 3a. Furthermore, especially in the
final classification layer, the weights and biases of the classifier layer have
higher magnitudes of the weights vectors for new classes [15]. In CiSS with
the addition of the background class, an additional bias to the background
class can be observed.

In the following we want to investigate how these causes manifest themselves in
CiSS and how existing approaches mitigate these causes.

Task 1 Task 2

Samples of Task 1 Samples of Task 2

Fig. 1: Visualization of task confusion in class-incremental learning. As classes
of Task 1 (circles) and classes of Task 2 (squares) are never trained at the same
time, the classifier never learns to discriminate between circles and squares, which
causes inter-task confusion.

4 Methods to measure forgetting

Purely accuracy based evaluation only allows restrictive insight into the causes
of forgetting of a model. Therefore, in this section, we present the key methods
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that we use in our analysis, including layer matching [5] and decoder retraining
accuracy. We utilize these methods to measure the activation shift between a
model f0 and f1. The model f0 is trained on T0, whereas f1 is initialized with
the parameters of f0 and incrementally trained on T1.

4.1 Layer Matching with Dr. Frankenstein

The Dr. Frankenstein toolset proposed by Csiszárik et al. [5] aims to match
the activations of two neural networks on a given layer by joining them with
a stitching layer, compare Fig. 2. The goal of the stitching layer is to trans-
form the activations of a specific layer of f0 to the corresponding activations of
a model f1. The stitching layer is initialized using least-squares-matching and
is optimized using the loss function the network was trained with. In order to
measure the similarity of the learned representations, the accuracy of the re-
sulting Frankenstein Network is evaluated on the test set and compared to the
initial accuracy of the model f0. The higher the resulting relative accuracy is,
the closer the learned representations of the models are to each other. In our
analysis we omit the stitching layer and directly use the activations of f0 in f1,
as we noticed in our experiments that the initial activations are already very
similar. We attribute this to the fact that the models are closely related because
f1 is initialized with the parameters of f0. Our setup can be seen on the right
side in Sect. 4.1. We denote the resulting Frankenstein Network when layer n of
model f1 is stitched to layer n+1 of model f0 as fn1,0, i.e. the network depicted in
Sect. 4.1 would be f2

1,0. If the accuracy of the resulting Frankenstein network is
not affected, this is clear evidence that the internal representations of f1 were not
altered drastically during training on T1. This analysis will give insight into how
much the activation at a specific layer has changed after training continually,
but will give no insight into a possible positive backward transfer.

Fig. 2: Comparing a) the original Dr. Frankenstein layer matching approach of
using an additional stitching layer as proposed by [5] and b) our approach for
measuring activation drift in continual learning by directly propagating the ac-
tivations of f1 to f0 without a stitching layer.
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4.2 Decoder Retrain Accuracy

Inspired by use of linear probing for continual learning [6], which measures repre-
sentational forgetting by calculating the difference in accuracy an optimal linear
classifier achieves on an old task before and after introducing a new task, we
propose Decoder Retraining Accuracy. To measure the Decoder Retraining Ac-
curacy, we freeze the encoder of the model and retrain the decoder on all classes
with the same training configuration and measure the mIoU on a test set. Instead
of measuring the representational drift as in [6] this will give a measure of how
useful the learned representations of the encoder are to discriminate between
classes of different tasks, effectively measuring the contribution of inter-task-
confusion.

5 Experiments

Datasets: We conduct our experiments using the PascalVoc-2012 [10] dataset,
which contains 20 object classes and a background class. We follow the estab-
lished CiSS PascalVoc-15-5 split that is widely used [8,28,29,3]. The PascalVOC-
15-5 split is a two step incremental learning task, which consists of learning 15
classes (1–15) in the first step T0 and the remaining 5 classes (16–20) in the sec-
ond step T1.4 We follow the two distinct class-incremental settings for Disjoint
and Overlapped proposed by Cermelli et al. [3]. In both settings, only the set of
current classes St is labelled, while the rest is labelled as background b. However,
in the Disjoint setting, the images of the current task Tt only contain pixels of
classes Ct, meaning that images that contain pixels belonging to classes of future
tasks will be discarded in the training set of Tt. In the Overlapped setting, pixels
can belong to any of the classes, but classes that do not belong to current train-
ing set will be labeled as background. Finally, in order to study the impact of
the semantic shift that the background class is subjected to in the Disjoint and
Overlapped setting, we introduce the Fully Disjoint setting. In this setting each
task only contains pixels belonging to the current set of classes, which therefore
avoids the interference that originates from the semantic shift of the background
class. We utilize this setting to study the impact of the semantic background
shift on catastrophic forgetting, but we note that this is an unrealistic scenario,
as in semantic segmentation classes naturally re-appear.

Model: Similar to [17] we use ERFNet [36] in our evaluation, as the underlying
effects of forgetting are similar to more established models like DeepLabV3+
[4], while at the same time ERFNet is more susceptible to forgetting due to its
smaller size, which exaggerates the effect of the causes of forgetting. However,
we confirm our findings in Appendix B with DeepLabv3+ and U-Net [37]. We do
not use any pre-trained models in our experiments, as pre-training is known to

4 As the focus of this paper is to understand the general causes of forgetting in CiSS,
we leave the study of the impact of different splits, more classes and longer task
sequences to future work.
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increase robustness to catastrophic forgetting [12,27]. Instead, we use the same
randomly initialized weights for every method in our experiments.

Methods Compared: In our evaluation, we focus on evaluating naive fine-tuning
approaches, representative regularization and replay methods as these cover the
basic concepts that are considered as potential solutions for CiSS. For prior reg-
ularization methods we consider EWC [18] and MAS [1]. For data regularization
methods we use LwF [23], with the modification of [19], in which the distillation
loss is only applied to the parts of the image that are labelled as background.
We explicitly do not consider incremental improvements of knowledge distilla-
tion based approaches of [8,3,29,24], as our focus is on evaluating the underlying
causes of forgetting. For replay we save 20 samples for each class in the buffer.
For every experiment we also list results for the offline model, which is jointly
trained on all classes in one step. Further information regarding the implemen-
tation details and selected hyperparameters can be found in the supplementary
material.

5.1 Semantic Background Shift and Class Confusion

First, we study the impact of the semantic background shift on forgetting by
comparing the results of the selected CiSS methods on the Overlapped, Disjoint,
and Full Disjoint tasks. These tasks have a varying degree of semantic shift of
the background class. The results are displayed in Table 1. For the Overlapped
and Disjoint tasks, it can be noted that only LwF and Replay effectively learn to
discriminate between all classes. EWC and MAS effectively mitigate forgetting
of old classes (0–15) compared to Fine-Tuning, but they also inhibit the learning
of new classes (16–20). The reason for the low mIoU for EWC and MAS on all
classes can be inferred from the confusion matrix, in which EWC and MAS ex-
hibit a strong bias to the background class and a minor bias towards a few new
classes, shown in in Figs. 3b and 3c. LwF and Replay reduce both biases. In the
Overlapped and Disjoint setting, LwF and Replay achieve similar performance,
as in this setting LwF can effectively replay old classes by discovering them in
the background of new images. However, once these classes do not re-appear in
the background, as is the case in the Full Disjoint task, LwF develops a strong
bias towards selected new classes. In contrast to this, Replay benefits from the
Full Disjoint setting as the training is no longer affected by the semantic back-
ground shift. Similarly, MAS and EWC also show significant improvement in
this setting, as they benefit from the fact that old classes do not appear as back-
ground in the new task, thus not interfering with previously learned knowledge.
This is especially noticeable in the confusion matrices of the Full Disjoint set-
ting, in which the bias towards the background class is greatly reduced5. This
demonstrates that the semantic shift of the background class is a significant
cause of forgetting for prior regularization methods like EWC and MAS and
that it has a noticeable effect on replay as well. The results also indicate that

5 The confusion matrices are shown in the supplementary material.
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knowledge distillation is the most effective method to combat this semantic shift.

Finally, upon a closer look at the semantics of the false positives, we see that
old classes that are falsely assigned to a new class share semantic and visual
properties. In this case bus (6), car (7), boat (5) are assigned to train (19),
whereas cow (10) and horse (13) are classified as sheep (17). The remaining
classes that do not share such a relationship with new classes are falsely classified
as background. This confusion can only be alleviated by either Replay or LwF
when old classes re-appear in the background in subsequent tasks. To clarify
which layers of the model contribute the most to the bias for the background
class and newly learned classes, next up we investigate the internal activation
drift.

1 - 15 16 - 200

(a) Fine-Tuning

1 - 15 16 - 200

(b) MAS

1 - 15 16 - 200

(c) EWC
1 - 15 16 - 200

(d) LwF

1 - 15 16 - 200

(e) Replay (f) Offline

ID Name

0 background
1 aeroplane
2 bicycle
3 bird
4 boat
5 bottle
6 bus
7 car
8 cat
9 chair
10 cow
11 dining table
12 dog
13 horse
14 motorbike
15 person
16 potted plant
17 sheep
18 sofa
19 train
20 monitor

Fig. 3: Confusion matrices after training on PascalVoc-15-5 (disjoint). The con-
fusion matrix for Fine-Tuning a) shows a severe bias to the background class
and the classes of the most recent task (16-20). EWC [18] and MAS [1] decrease
the bias in exchange for worse accuracy on the most recent classes. Replay and
LwF [23] reduce the bias towards new classes and the background.

5.2 Measuring the effect of Activation Drift

We use the Dr. Frankenstein tool set to measure the activation drift for each
layer between the model before and after learning T1, to investigate which layers
are affected the most by the internal activation drift. We follow the setup from
Fig. 2 without an additional stitching layer, meaning that the activations of the
layer n under examination f1 are directly propagated to the layer n + 1 in f0.
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Table 1: Results of Semantic Segmentation on Pascal-VOC 2012 in Mean IoU
(%) on the overlapped, disjoint and full disjoint settings.

PascalVoc 15-5 Semantic Segmentation

Overlapped Disjoint Full Disjoint
Method 0-15 16-20 all 0-15 16-20 all 0-15 16-20 all

Fine-Tuning 4.5 22.2 8.8 4.6 23.0 9.0 5.1 16.3 7.8
MAS [1] 24.1 10.8 21.0 30.6 12.9 26.4 35.6 12.9 30.2
EWC [18] 23.8 11.8 21.0 28.1 10.1 23.8 35.2 10.9 29.4
Replay 41.3 31.5 39.0 42.2 29.1 39.1 48.2 28.8 43.6
LwF [23] 45.8 28.2 41.6 44.4 25.4 39.9 35.9 12.6 30.4

Offline 55.7 47.6 53.8 55.7 47.6 53.8 55.7 47.6 53.8

The resulting Frankenstein Network fn1,0 is then evaluated on the data of the first
task (classes 0–15). The mIoU relative to the initial performance on the first task
is shown in Fig. 4. Overall, we observe that the activations of the early layers
of the network (layers 0–4) stay very stable for every approach and that later
layers are disproportionately affected by activation drift, especially the layers of
decoder. A similar observation was made in prior work on image classification
[6,31]. This confirms that forgetting in CiSS is also mostly affecting deeper layers
of the network. Furthermore, the results show that EWC and MAS effectively
prevent severe activation drift in the deeper layers of the encoder, dropping only
to about 90% of the initial mIoU on the disjoint task, compared to the 30% of
the stitched fine-tuning model. This suggests that forgetting for EWC and MAS
is less severe as accuracy in Table 1 would reveal. The reason for this could be
two-fold: Firstly, the bad accuracy could be attributed to the classifier being
biased towards new classes (task-recency bias) or secondly that the regulariza-
tion methods fail to learn meaningful features that help to discriminate between
old and new classes as they are never trained jointly. While a biased classifier
is fixed more easily, inter-task confusion is a fundamental shortcoming of prior
regularization methods [22].
Another striking phenomenon is the severe change of activations at the third
decoder layer (layer 18) that Fine-Tuning, MAS and EWC show on the Dis-
joint task. The predictions of the specific Frankenstein Networks f17

1,0 and f18
1,0

in Fig. 5, show that f17
1,0 is able to correctly classify old classes (bike, person)

as such, but f18
1,0 assigns the background class to these regions. Therefore, it

can be concluded that the sudden activation change of MAS originates from the
fact that features that were evidence for old classes in f0 are now attributed
evidence for the background class. This validates that the semantic shift of the
background class is mostly affecting the later layers of the decoder and that the
features for old classes are in fact not forgotten, but assigned to the background
class. Similar observations can be made for EWC and Fine-Tuning. In Appendix
D we measure the similarity with Centered Kernel Alignment to support our
observations. When completely avoiding the semantic background shift in the
Full Disjoint task, we observe that activation drift for the fine-tuned model is
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much more pronounced in the middle layers of the encoder (layer 8-15), which
implies that the re-appearance of old classes, even though they are labelled as
background, is mitigating the activation drift in the earlier layers of the model.
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Fig. 4: Activation drift between f1 to f0 measured by relative mIoU on the first
task of the Frankenstein Networks stitched together at specific layers (horizontal
axis). The layers of the encoder are layer 0–15 (grey area), the decoder layers
are 17-20 (white area). The activations in the early layers of the encoder stay
very stable for all methods, whereas EWC, MAS and Fine-Tuning have a severe
drift in activations in the decoder layers of the network, which is clear evidence
that forgetting is mostly affecting later layers in the Disjoint setting.

5.3 The Impact of Inter-task Confusion on the Encoder

As we observed in Sect. 5.2 that the early layers of a model trained with a
continual learning method do not suffer from severe activation drift, in this
experiment we investigate how useful the learned features of the encoder of the
different methods are to discriminate between all classes. Therefore, we measure
Decoder Retrain Accuracy, introduced in Sect. 4.2, for which the decoder of
the model is retrained on all classes and subsequently evaluated on the test
set. The first observation to be made when looking at the retraining accuracy in
Table 3, is that all methods improve after decoder retraining, though EWC, MAS
and Fine-Tuning show bigger improvements than LwF and Replay. This again
confirms that forgetting in the encoder is not as severe for Fine-Tuning, EWC
and MAS as the accuracy indicates. Furthermore, it also verifies that MAS and
EWC are effectively preserving important features for old classes in the encoder,
but that the biased decoder layer might wrongly attribute important features
for old classes to the background class or new classes, which leads to a severe
amount of misclassifications.
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Input Ground Truth LwF MAS MAS f17
1,0 MAS f18

1,0 MAS+UNCE

bicycle bus car horse motorbike person sheep train

Fig. 5: Visualizations of the segmentation maps for LwF, MAS and the resulting
Frankenstein Networks of MAS f17

1,0 and f18
1,0. The predictions of f17

1,0 and f18
1,0

show that up until layer 17 the information for previously learned classes person
and horse is still available, but is assigned to the background in layer 18.

Still, as EWC, MAS and Fine-Tuning do not achieve a comparable mIoU as
LwF or Replay after decoder retraining, it can be concluded that the learned
features of the encoder are less useful for discriminating between all classes.
Specifically the aforementioned related classes bus (6), car (7), boat (5), train
(19), as well as cow (10), horse (13), sheep (17) cannot be effectively classified
after retraining, compare Fig. 6. We hypothesize that Replay does not suffer from
inter-task confusion since old classes are taken into account when optimizing for
new classes, leading to more discriminative features. The same holds for LwF in
the Overlapped and Disjoint setting, in which old classes are effectively replayed,
by using soft-labels for old classes that are discovered in the background.

5.4 Mitigating background bias and the task recency bias

A simple method to reduce the recency bias in the classification layer that is used
in class-incremental classification is to calculate the cross-entropy loss (CE) only
for classes of the current training set [25]. This enforces that errors are only
back-propagated for probabilities that are related to the current set of classes:

`ce(y, q) = −1

I

∑
i∈I

∑
c∈Ct

yi,c log (qi,c) (1)
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1 - 15 16 - 200

(a) MAS (b) MAS-Retrain (c) LwF-Retrain

Fig. 6: Confusion matrices before (a) and after b), c) retraining the decoder on
all classes of PascalVoc2012.

However, in the case of CiSS, this addition has proven to be less effective than
the standard cross-entropy loss [8]. Therefore, an unbiased cross-entropy loss
(UNCE) is proposed in [3], which accounts for the uncertainty of the content
of the background class. This is achieved by comparing the pixels that are la-
belled as background with the probability of having either an old class or the
background predicted by the model:

`ce(y, q) = −1

I

∑
i∈I

∑
c∈C

yi,c log (q̂i,c) (2)

q̂i,c =

{∑
k∈Ct−1

qi,k if c = b

qi,c otherwise
(3)

In addition, Weight Normalization Layers [38] were also successfully used in
classification tasks to address the recency bias [21]. In the next experiment we
study the impact of UNCE and UNCE combined with Weight Normalization to
combat the recency and background bias in CiSS.
The results in Table 2 show that UNCE improves the accuracy for all approaches
on the Disjoint setting. Specifically, the prior regularization methods MAS and
EWC show a significantly higher accuracy compared to the basic cross-entropy
loss. This can be attributed to the fact that UNCE effectively mitigates the
background bias, as we can see in the confusion matrix in Fig. 3f and the seg-
mentation maps in Fig. 5. In addition, the severe activation drift that we observed
in Sect. 5.2 between layer 17 and 18 for MAS completely vanishes with the use
of UNCE. Therefore, UNCE effectively resolves the confusion of the old classes
with the background class. This confirms the assumption that a major cause of
forgetting in Sect. 5.1 was in fact a bias of the classifier towards the background
and the new classes. However, the confusion matrices shows that while the back-
ground bias is severely reduced by using UNCE, the semantic confusion of old
and new classes is amplified.
In the Full Disjoint setting the use of UNCE does not improve the performance
as much as it does in the Disjoint setting. The reason is that in the Full Disjoint
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setting the pixels of old classes do not re-occur and thus the de-biasing effect
of UNCE is decreased. Therefore, the content of the background class plays an
important role to mitigate forgetting. Of the selected approaches, only Replay
benefits from the addition of the Weight Normalization layer. Finally, we note
that EWC and MAS, with the addition of UNCE, show competitive performance
to the remaining approaches and more recent approaches like MiB [3], even with-
out the use of knowledge-distillation or replay. However, we hypothesize that for
longer task sequence and more classes MiB will outperform prior regularization
methods, as they will not be able to learn discriminative features.

Table 2: Results on Pascal-15-5 in mIoU (%) on the disjoint and full-disjoint
settings with: Cross-Entropy Loss (CE), Unbiased Cross-Entropy (UNCE) and
UNCE combined with a Weight Normalization (UNCE+WN). UNCE effectively
reduces forgetting for all approaches, especially for EWC and MAS.

PascalVoc 15-5 (disjoint) PascalVoc 15-5 (full disjoint)

CE UNCE UNCE+WN CE UNCE UNCE+WN
Method 0-15 16-20 all 0-15 16-20 all 0-15 16-20 all 0-15 16-20 all 0-15 16-20 all 0-15 16-20 all

Fine-Tuning 4.6 23.0 9.0 10.4 21.8 13.1 16.5 21.6 17.7 5.1 16.3 7.8 6.0 15.5 8.3 7.7 15.2 9.5
EWC [18] 28.1 10.1 23.8 48.2 11.6 39.4 17.0 9.5 15.2 35.2 10.9 29.4 41.1 9.8 33.6 34.8 9.7 28.8
MAS [1] 30.6 12.9 26.4 45.8 14.4 38.3 41.0 13.9 34.6 35.6 12.9 30.2 39.1 12.3 32.7 32.5 11.8 27.6
LwF [23] 44.4 25.4 39.9 45.3 22.9 40.0 46.6 19.7 40.2 35.9 12.6 30.4 38.0 13.8 32.2 38.8 13.3 32.8
Replay 42.2 29.1 39.1 47.2 31.4 43.5 48.1 31.9 44.3 48.2 28.8 43.6 47.7 28.0 43.0 48.8 28.5 44.0

MiB [3] - - - 48.6 21.7 42.2 49.4 24.1 43.3 - - - 47.6 19.7 41.0 48.6 20.7 42.0

Table 3: Decoder Retraining Results on
Pascal-VOC. mIoUI and mIoUR denote the
mIoU (%) before and after retraining.

PascalVoc 15-5 - Decoder Retraining Accuracy
Overlapped Disjoint Full Disjoint

Method mIoUI mIoUR mIoUI mIoUR mIoUI mIoUR

Fine-Tuning 8.8 28.0 9.0 27.9 7.8 22.0
MAS [1] 21.0 34.3 26.4 36.2 30.2 37.3
EWC [18] 21.0 34.3 23.8 35.1 29.4 36.9
LwF [23] 41.6 45.3 39.9 43.3 30.4 38.1
Replay 39.0 42.6 39.1 42.9 43.6 45.6
Offline 53.8 54.6 53.8 54.6 53.8 54.6

Table 4: Classification Re-
sults on PascalVoc-15-5.

PascalVoc 15-5 Classification
Full Disjoint

Method 0-15 16-20 all
Fine-Tuning 13.6 27.6 17.1
MAS [1] 32.0 27.8 31.0
EWC [18] 27.2 25.4 26.8
LwF [23] 39.6 32.7 37.9
Replay 42.1 34.2 40.1
Offline 51.3 54.8 52.2

5.5 The Role of the Background Class to overcome forgetting

The prior observations show that in CiSS the semantic shift of the background
class is a major cause of a rapid drop in performance if not addressed correctly.
However, if the uncertainty of the content of the background class is taken into
account by either UNCE, Knowledge Distillation or both, the appearance of
old classes in the background can to some extent be used for replay. In the
experiments of the Full Disjoint setting we see that once classes do not reoccur,
these methods are less effective, whereas explicit replay of classes benefits from
avoiding the semantic shift. The ranking of the methods of Full Disjoint setting
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in CiSS is also similar to the ranking of the same methods for class-incremental
image classification, compare Table 4. This indicates that the discrepancy in
performance of LwF and replay in image classification is due to the missing
background class. Looking at it the other way around, this could also mean
that introducing an out-of-set class for image classification could help to reduce
forgetting in the class-incremental setting without requiring explicit replay via
stored samples, as the re-appearing classes in the out-of-set-class play a similar
role as explicit replay.

6 Conclusion

We studied the major causes of catastrophic forgetting in CiSS, answering how
it manifests itself in the hidden representations of the network and how the
background class both causes severe forgetting and decreases activation drift.
Using representational similarity techniques, we demonstrated that forgetting is
concentrated at deeper layers and that re-appearing classes mitigate activation
drift in the encoder even when they are labelled as background. Moreover, we
show that EWC and MAS are effectively reducing representational drift in the
later layers of the encoder, but suffer from severe background and recency bias,
which leads to the sudden drop in accuracy. These biases manifest themselves in
deeper layers of the networks by assigning previous discriminating features for
the previous classes to the background class or visually related classes.
The background bias can be effectively alleviated using an unbiased cross-entropy
loss, which leads to a significant improvement for all methods, when classes
re-appear in the background of new training data. Finally, we find that only
methods that in some form replay old classes during training of new classes can
learn to correctly discriminate between all classes after incremental training, as
otherwise the model fails to learn to discriminate between new and old classes
that share similar visual features. Overall, the results of our work provide a
foundation for deeper understanding of the principles of forgetting in CiSS and
open the door to future directions to explore methods for its mitigation.
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