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Abstract. We investigate the geometric complexity of decision bound-
aries for robust training compared to standard training. By considering
the local geometry of nearest neighbour sets, we study them in a model-
agnostic way and theoretically derive a lower-bound R∗ ∈ R on the per-
turbation magnitude δ ∈ R for which robust training provably requires
a geometrically more complex decision boundary than accurate training.
We show that state-of-the-art robust models learn more complex deci-
sion boundaries than their non-robust counterparts, confirming previous
hypotheses. Then, we compute R∗ for common image benchmarks and
find that it also empirically serves as an upper bound over which label
noise is introduced. We demonstrate for deep neural network classifiers
that perturbation magnitudes δ ≥ R∗ lead to reduced robustness and
generalization performance. Therefore, R∗ bounds the maximum feasi-
ble perturbation magnitude for norm-bounded robust training and data
augmentation. Finally, we show that R∗ < 0.5R for common bench-
marks, where R is a distribution’s minimum nearest neighbour distance.
Thus, we improve previous work on determining a distribution’s maxi-
mum robust radius.

1 Introduction

The decision boundary learned by a classifier is a crucial property to study
[1–3]. Its geometric complexity, i.e. its number of linear segments, is an indica-
tion of the train distribution’s complexity and the difficulty of learning [4–6],
its margin to the train samples defines its robustness [1, 2, 7] and studying its
general position in input space is used for explaining model predictions [8]. Deep
neural network classifiers have over the past years reached or even surpassed
human-level performance in computer vision tasks [9, 10]. However, despite re-
cent progress [11] they still remain vulnerable to a large variety of distribution
shifts [12–16]. In light of this brittleness [12, 13, 17] and the observation that
robust training methods cause non-robust accuracy to deteriorate [18, 17, 19–
22], several recent works have hypothesized that robust training might require
different, and possibly geometrically more complex, decision boundaries than
standard training [23–26, 17, 1]. If this hypothesis is true, the need for greater
capacity [26] and increased sample complexity of robust training (see Section 2
for overview) could partially be explained. As the decision boundary learned by
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(a) Original. (b) Perturbed.

Fig. 1: Illustration of the main idea in d = 2 dimensions. (a) The input distri-
bution is separated into sets Sj of linearly separable nearest neighbours. (b) If
Sj changes and is no longer linearly separable, the complexity of the decision
boundary (d.b.) increases.

a deep classifier is build on top of a largely opaque feature representation [23, 27],
is high-dimensional, highly non-linear and could theoretically consist of multiple
disconnected decision regions [28] its study is a challenging problem.

In this paper we take a model-agnostic approach to studying decision bound-
aries. We assume the existence of an accurate decision boundary, obtained by
minimizing the train loss, which perfectly separates the input data’s classes and
give a comparative study of the robust decision boundary that would be required
if the data was altered by worst-case perturbations of its samples. To achieve
this, we divide the input distribution into linearly separable sets S of nearest
neighbours and investigate the perturbation magnitudes required to make them
non-linearly separable. This approach allows us to make the following contribu-
tions:

– On the theoretical side, we derive a lower bound R∗ ∈ R in l2-norm on
the perturbation magnitude δ ∈ R in l2-norm in input space for which the
geometric complexity of a robust decision boundary provably increases com-
pared to an accurate decision boundary. (See Section 3).

– Since R∗ is efficiently computable, we show for common image benchmarks
that state-of-the-art robust deep classifiers indeed learn geometrically more
complex decision boundaries than their accurate counter parts and that they
are better calibrated in low-density regions. (See Section 4).

– When computing R∗ for common image benchmarks, we find that perturba-
tion magnitudes δ ≥ R∗ introduce label noise and demonstrate that this leads
to decreased robustness and generalization performance. (See Section 5).

As the geometric complexity of decision boundaries is a crucial factor for
the sample complexity of a learning problem [4–6], showing under which pertur-
bation magnitudes decision boundaries increase in complexity is important for
the selection of hypothesis classes. Further, as label noise is known to be one of
the reasons for the lack of robustness [27], bounding the maximum perturbation
magnitude for which norm-bounded robust training and data augmentation is
possible for these benchmarks, is crucial in practical applications.
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Comparing Complexities of Decision Boundaries for Robust Training 3

Finally, we show that R∗ is a more accurate approximation of a distribution’s
robust radius. Previous work [29] utilized the minimum nearest neighbour dis-
tance between any two samples in the dataset, R ∈ R. We show that R∗ < 0.5R
for common image benchmarks.

2 Related Work

Learned representations of standard training It has been shown that part of the
adversarial vulnerability of deep classifiers stems from common image bench-
marks containing highly predictive yet brittle features [30, 31]. These features
are usually not aligned with those used by humans for classification [32], so
small-norm and non-semantic changes to inputs are often sufficient to change the
classification decisions of otherwise well-performing classifiers [12, 13, 33]. Since
neural networks were shown to rely on simple features for classification [34, 27,
35–37], even in the presence of complex ones with better predictive power [23],
models were found to learn feature representations on top of superficial statisti-
cal regularities [38, 39] like texture [40–42] and non-semantic pixel subsets [43,
44]. As decision boundaries are functions of the learned representation, this sim-
plicity bias and the presence of non-semantic but highly predictive features leads
to boundaries that are accurate but not robust. These observations led several
authors to suggested that robust training might require more complex decision
boundaries than accurate training [24–26, 17, 1]. In this work we confirm this
hypothesis and further show that in the low-density region where the decision
boundary is supposed to lie [45], state-of-the-art robust classifiers are largely
better calibrated than non-robust ones.

Sample complexity Several studies argue that adversarial training has a larger
sample complexity than standard training. Bounds on the sample complexity
where the data distribution is a mixture of Gaussians were first provided by
Schmidt et al. [24] who showed that the increased sample complexity of adver-
sarial training holds regardless of the training algorithm and the model family.
Later, Bhagoji et al. [46] studied sample complexity with an approach from opti-
mal transport. Dobriban et al. [47] extended prior analyses to mixtures of three
Gaussians in 2- and ∞-norm and Dan et al. [48] derived general results for the
case of two-mixture Gaussians for all norms. More recently, Bhattacharjee et al.
[49] studied the sample complexity of robust classification for linearly separable
datasets. They showed that in contrast to accurate classification, the sample
complexity of robust classification has a linear dependence on the dimension d.
Yin et al. [25] further showed a dependence of the sample complexity on d for
neural networks. Distribution-agnostic bounds for robust classification have been
provided by several authors [50–53]. As the sample complexity is also influenced
by the geometric complexity of the decision boundary [4–6], we provide another
reason for its increase for robust training by showing that robust models learn
more complex decision boundaries compared to non-robust ones.
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(a) f(x′
j) = f(x̄′

j). (b) f(x′
j) ̸= f(x̄′

j).

Fig. 2: Illustration of an Sj in d = 2 dimensions. (a) If classifier f does not assign
a class change between x′

j and x̄′
j , the decision boundary’s (d.b.) complexity

increases. (b) If f assigns a class change to x̄′
j , Sj is still linearly separable,

however, if r′j < 0.5rj , robust training for δ = r′j introduces label noise.

Robust training Recently, several methods have been proposed to mitigate the
reliance on superficial regularities by removing texture clues [54, 40], improved
data augmentation [55, 56], pre-training [57] and utilization of unlabelled data
in the training process [58, 59, 56]. Further, several robust training methods like
adversarial training [13, 17], regularization [60, 61] and saliency methods [62–
64] have been proposed. Nevertheless, all previously mentioned methods found
reduced generalization performance with increasing robustness. In this work we
hypothesize and empirically confirm that robust training for large magnitudes
reduces generalization performance because it introduces label noise which biases
the model towards learning non-generalizing textural features. We provide a
lower bound R∗ over which this provably occurs for common image benchmarks.

3 Derivation of R∗

In this section we describe how R∗ is derived for an arbitrary distribution
X ∈ Rl×d, where l is the number of samples and d is the ambient dimension1.
Each sample x′

j ∈ X is associated with a unique label y′j ∈ Y , where c is the
number of distinct classes in Y .

3.1 Nearest Neighbour Sets

Since determining the geometric complexity of a distribution’s decision boundary
is still an open problem, we study under which perturbation magnitudes sets
of linearly separable nearest neighbours S become non-linearly separable. This
approach allows us to treat the geometric complexity of the decision boundary
for X as the unknown base case and only investigate the increase in complexity
under the worst-case perturbation. Without loss of generality we describe the
method for binary classification, so c = 2 classes. Later we describe how it can
be extended to the multi-class case where c > 2.

1 We assume that samples do not lie on a flat manifold, so are not perfectly collinear.
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Comparing Complexities of Decision Boundaries for Robust Training 5

For every sample x′
j ∈ X, j = 1, ..., l, we consider its d nearest neighbours

(according to l2-norm) with a different class label. This results in a separation of
the input distribution X ∈ Rl×d into l subsets Sj = {x1, ..., xd, x

′
j}. The samples

x1, ..., xd are the ordered d-nearest neighbours with the other class label where
x1 is the closest and xd the farthest. Since the cardinality of each Sj is equal
to the VC-dimension of a linear classifier, so |Sj | = d + 1, a single hyperplane
is sufficient to separate x′

j from {xi}di=1 with perfect accuracy. With this ap-
proach we can investigate what perturbation magnitude is required so that the
set Sj = {x1, ..., xd, x

′
j} is not linearly separable any more. The linear separabil-

ity property of Sj is violated if x′
j is projected onto the convex hull C({xi}di=1)

of its d nearest neighbours. We define the projection of x′
j onto C({xi}di=1) as

x̄′
j := argminx̂∈C({xi}d

i=1)
||x′

j − x̂||2 s.t.

x̂ =

d∑
i=1

wixi, 0 ≤ wi ≤ 1,

d∑
i=1

wi = 1
(1)

Thus, replacing x′
j with x̄′

j in Sj removes the linear separability property be-
cause all samples are collinear. In Appendix A we describe how the optimization
problem in Equation 1 can be solved exactly and deterministically and show
that choosing |Sj | ≠ d+ 1 leads to a vacuous bound.

3.2 Properties of Nearest Neighbour Sets

We define the distance between a sample x′
j and its projection onto the convex

hull of its nearest neighbours x̄′
j of another class as

r′j := ||x′
j − x̄′

j ||2 (2)

Further,
rj := ||x′

j − x1||2 (3)

defines the distance between a sample x′
j and its nearest neighbour x1 of a

different class. The value 0.5rj defines the same quantity as the robust radius
defined by Yang et al. [29]. We illustrate these quantities in d = 2 dimensions in
Figure 2.

3.3 Decision Boundary of Nearest Neighbour Sets

In Figure 3 we illustrate the main intuition behind our approach. Figuratively
speaking, we require a more complex decision boundary for Sj , so two connected
hyperplanes instead of one2, if the (0.5rj)-ball B0.5rj (x

′
j) = {x : ||x′

j − x||2 ≤
0.5rj} of sample x′

j intersects with C({xi}di=1). This is the case if r
′
j < 0.5rj . We

define the threshold

rcritj :=
r′j

0.5rj
(4)

2 Note that enclosing just the point x̄′
j requires d hyperplanes arranged as a simplex.
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(a) rcritj =
r′j

0.5rj
= 2 (b) rcritj =

r′j
0.5rj

> 1 (c) rcritj =
r′j

0.5rj
< 1

Fig. 3: Illustration of nearest neighbour sets Sj for d = 2 dimensions. (a) A more
complex decision boundary is not required as ||x′

j− x̄′
j ||2 = ||x′

j−x1||2 = r′j = rj .
(b) A more complex decision boundary is not required as ||x′

j−x̄′
j ||2 = r′j > 0.5rj .

(c) A more complex decision boundary is required as ||x′
j − x̄′

j ||2 = r′j < 0.5rj .

for a single sample x′
j and its associated Sj . If r

′
j < 0.5rj then rcritj < 1 and

robust accuracy with perturbation magnitudes of δ ≥ r′j provably requires a
geometrically more complex decision boundary for Sj . Conversely, Sj is still
linearly separable for rcritj > 1 for any perturbation magnitude δ < 0.5r′j .

It is important to note that while the introduction of a perturbation δ < 0.5r′j
does not result in a locally more complex decision boundary for Sj , it might
result in a globally more complex decision boundary for the entire distribution
X. Therefore, r′j is the largest lower bound. Finding the smallest lower bound
that holds globally requires knowing the optimal decision boundary which is
generally unknown. As illustrated in Figure 1b, we assume that a locally more
complex decision boundary for Sj results in a globally more complex decision
boundary for X, so x̄′

j are not merely memorized. This assumption is reasonable
as there is strong evidence that deep networks build connected decision regions
encompassing all samples of a single class [65, 3].

Extension to multiple classes The method described above for the binary sce-
nario can easily be extended to multi-class classification. Instead of determining
the set of nearest neighbours Sj once for the single other class, the computation
is repeated (c − 1)-times for all other classes. The rationale from above holds,
as we simply restrict the B0.5rj (x

′
j)-ball to not intersect with any convex hull of

nearest neighbours of any other class. So, the method scales linearly with the
number of classes c in X. Then,

r′j := mini∈Y \y′
j
({r′j(yi)}) (5)

and
rj := mini∈Y \y′

j
({rj(yi)}) (6)

where Y \y′j denotes the set of unique class labels without label y′j of x′
j and

r′j(yi) and rj(yi) denote the equivalents of r′j and rj defined in Equations 2 and
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3, respectively, computed for class yi. We always report the results for all classes
in a particular dataset, unless stated otherwise.

Extension to the entire dataset The quantities in Equations 2, 3, and 4 are
defined for a single Sj . We define the robust radius of the entire distribution as

R := minj∈1,...,l({rj}) (7)

which is equivalent to the definition of R by Yang et al. [29] and describes
the minimum nearest neighbours distance between any two samples of different
classes. Intuitively, 0.5R describes the maximum perturbation magnitude such
that the B0.5R(·)-balls of any two samples do not intersect. We define

Rcrit
j :=

r′j
0.5 ·mini∈1,..,l({ri})

=
r′j

0.5R
(8)

The interpretation of Rcrit
j is equivalent to the one of rcritj in Equation 4 with the

exception that we consider the global robust radius R instead of the local robust
radius rj . For Rcrit

j < 1, the distance to the convex hull of a sample is smaller
than the robust radius and therefore increases the complexity of the decision
boundary. We further define

R∗ := minj∈1,...,l({r′j}) (9)

which describes the perturbation magnitude over which we provably require a
geometrically more complex decision boundary for the given distribution. Finally,

Rcrit :=
minj∈1,...,l({r′j})

0.5 ·minj∈1,...,l({rj})
=

R∗

0.5R
(10)

describes whether R is an over-approximation of a distribution’s robust radius.

Definition of critical points We refer to those points x̄′
j for which locally r′j <

0.5rj , so rcritj < 1, as critical as they require a locally more complex decision
boundary under norm-bounded robustness scenarios and cause rj to be an over-
estimation of the actual robust radius,

{x̄}critlocal := {x̄′
j : r

crit
j < 1, j = 1, ..., l} (11)

Conversely, we define those points for which Rcrit
j < 1 as

{x̄}critglobal := {x̄′
j : R

crit
j < 1, j = 1, ..., l} (12)

It follows that |{x̄}critglobal| ≤ |{x̄}critlocal|. Note that in the multi-class case, c > 2, a

single x′
j can have multiple associated x̄′

j that are elements of {x̄}critlocal or {x̄}critglobal,

possibly one for every other class in the dataset. Thus, 0 ≤ |{x̄}critglobal| ≤ l(c− 1)

and 0 ≤ |{x̄}critlocal| ≤ l(c− 1), where l is the number of samples in X and c is the
number of unique class labels.
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3.4 Class Membership of x̄′

Throughout this section we assumed that there is no change of the ground truth
class between x′

j and its associated x̄′
j . If Euclidean distance is a valid proxy for

semantic similarity, then this assumption is valid. Furthermore, as only those
x̄′
j for which its corresponding r′j < 0.5rj (or r′j < 0.5R) are of interest, the

assumption of no class change is valid for such distributions. However, since it
is well known that lp-norms are not a suitable proxy for semantic similarity for
real-world datasets, the class membership of x̄′

j cannot be inferred from a simple
distance metric in input space. Thus, distinguishing between the three following
possible scenarios is necessary.

No class change (NCC) If no change of the ground truth class label between x′
j

and its corresponding x̄′
j occurs, then robust training for δ ≥ r′j requires a more

complex decision boundary for Sj (see Figure 2a).

Class change (CC) If the ground truth class changes between x′
j and x̄′

j , the
decision boundary for Sj does not increase in complexity (see Figure 2b). How-
ever, this implies that R is not the actual robust radius of that distribution as
there is at least one rj for which r′j < 0.5rj . In this case, the robust radius
is over-approximated by R and R∗ is the actual robust radius. Crucially, this
implies that robust training for magnitudes δ ≥ R∗ introduces label noise.

Ambiguous class If x̄′
j cannot be assigned a ground truth class membership, it

lies within the low-density region between classes. In this case rj is again an
over-approximation of the actual robust radius and robust training for δ ≥ R∗

introduces label noise as well.

In summary, the interpretation of R∗ depends on the class membership of x̄j .
In all cases it is a model-agnostic lower-bound on the perturbation magnitude for
which a geometrically more complex decision boundary is required. Therefore, it
can guide the choice of hypothesis classes required for robust training. Further,
it can also upper-bound the maximum feasible perturbation magnitude for a
given dataset over which label noise is introduced. As label noise is known to
hurt robustness [27], R∗ can guide the usage of norm-bounded robust training
and data augmentation for neural networks.

4 Computation of R∗ for Image Benchmarks

In this section we compute R∗ for real-world image benchmarks. We show that
for those datasets it indeed upper-bounds the maximum feasible perturbation
magnitude and that state-of-the-art robust models exhibit geometrically more
complex decision boundaries. Finally, we also show that R∗ < 0.5R, so it im-
proves prior work on bounding the robust radius of a distribution [29].

As norm-bounded perturbations are usually given either in the l2-norm or
the l∞-norm, we extend R∗ to the l∞-norm as well. Finally, we also show that
R∗ is independent of the ambient dimension d.
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Table 1: Results in l2-norm for real image benchmarks.

R 0.5R R∗ Rcrit |{x̄}critlocal|
|{x̄}critlocal|
l(c−1)

|{x̄}critglobal|
|{x̄}critglobal|

l(c−1)

SVHN 1.577 0.788 0.255 0.323 132061 0.200 2501 0.004
CIFAR-10 2.751 1.375 0.578 0.421 26608 0.059 132 0.000
FASHION 1.599 0.799 0.906 1.133 811 0.002 0 0.000
MNIST 2.398 1.199 1.654 1.379 0 0.000 0 0.000

Fig. 4: Example image-pairs of {x̄}critglobal (right) their associated x′
j (left) for

CIFAR-10. A single x′
j can be associated with multiple x̄′

j ∈ {x̄}critglobal, possibly
one for all other classes. Additional example images can be found in Appendix I.

4.1 R Overestimates the Robust Radius for Real Image Benchmarks

We compute the introduced quantities for the MNIST [68], FASHION [69],
SVHN [70] and CIFAR-10 [71] datasets. For all datasets we use exact nearest
neighbour search over the entire original train set. SVHN contains two misla-
belled samples which we remove from the dataset (see Appendix E).

In Table 1, we display all the derived quantities from Section 3 for all
aforementioned datasets. They display intuitive results. They confirm, for in-
stance, the common knowledge that MNIST and FASHION are well-separated.
As R∗ > 0.5R, the robust radius is accurately described by 0.5R. However, as
R∗ defines a lower bound, no definitive statement can be made about increases
in the geometric complexity of the decision boundaries for robust training.

For the more sophisticated benchmarks SVHN and CIFAR-10 we observe
that the nearest neighbour distance R is an overestimation of the actual robust
radius, as R∗ < 0.5R and thus Rcrit < 1. As a result, for both datasets {x̄}critglobal

are non-empty and it follows that they require a locally more complex decision
boundary for perturbation magnitudes δ with 0.5R ≥ δ ≥ R∗.

x̄′
j are low-density samples In Section 3 we showed that the exact interpretation

of R∗ relies on the ground truth class label of the projections x̄′
j . The question

of class membership cannot be answered by lp-norm distance metrics as for real-
world datasets they are usually a bad proxy for semantic similarity. Thus, in
Figure 4 we display several images from {x̄}critglobal with their associated x′

j from
the CIFAR-10 dataset. We find that the majority of x̄′

j are strongly blurred ver-
sions of their corresponding x′

j and do not contain a clearly recognizable object.
Therefore, those samples are part of the low-density region between classes.
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10 D. Kienitz et al.

Table 2: Predictions and confidences of model f for {x̄}critglobal for CIFAR-10.
Confidence values are reported as: mean± standard deviation. NCC denotes no
predicted class change by f and CC denotes a predicted class change between
x′
j and x̄′

j ∈ {x̄}critglobal. The complete table can be found in Appendix I.

Model f
f(x′

j) = f(x̄′
j) (NCC) f(x′

j) ̸= f(x̄′
j) (CC)

Fraction Confidence Fraction Confidence

Andriushchenko et al. [66]
Non-robust 0.62 0.887 ± 0.154 0.38 0.708 ± 0.192
Robust 0.79 0.535 ± 0.164 0.21 0.373 ± 0.098

Ding et al. [7]
Non-robust 0.52 0.913 ± 0.171 0.48 0.826 ± 0.174
Robust 0.93 0.979 ± 0.057 0.07 0.791 ± 0.113

Rebuffi et al. [56]
Non-robust 0.50 0.844 ± 0.177 0.50 0.650 ± 0.171
Robust 0.94 0.643 ± 0.202 0.06 0.389 ± 0.083

Rice et al. [67]
Non-robust 0.54 0.863 ± 0.168 0.46 0.677 ± 0.204
Robust 0.92 0.635 ± 0.200 0.08 0.401 ± 0.072

4.2 Robust Models Learn more Complex Decision Boundaries

In addition to the visual investigation of (x′
j , x̄

′
j), we gather the predictions and

confidences of thirteen state-of-the-art robust models on {x̄}critglobal from CIFAR-
10. These models are obtained from Croce et al. [72] and referred to as robust
models. In addition, we re-initialize these architectures and re-train only with
the Adam optimizer [73] on the original train set to remove their robust represen-
tation. Thus, the re-trained models are their non-robust counterparts. In Table
2 we display, due to space constraints, four models. For all thirteen models we
observe two major differences between the robust and non-robust ones. Firstly,
the non-robust models assign high confidences to {x̄}critglobal. As the visual in-

spection shows that {x̄}critglobal are part of the low-density region between classes,
high confidence scores indicate a poorly calibrated classifier. In contrast, the
robust models usually assign significantly lower confidences to these low-density
samples, a result that would be expected from a well-performing classifier. Sec-
ondly, we find that robust and non-robust models differ in their predictions
of whether a class change has occurred between x′

j and its corresponding x̄′
j .

Whereas the robust models predict in most of the cases that no class change
occurs, the non-robust models predict class changes in half of the cases. As
the addition of {x̄}critglobal to the train set increases the geometric complexity of
the decision boundary, robust models learn more complex decision boundaries.
Thus, we experimentally confirm the previously made hypothesis [24–26, 17, 1].
These results also partially explain why robust training has a greater sample
complexity than standard training, since the geometric complexity of decision
boundaries is known to increase the sample complexity [4–6].

4.3 From l2- to l∞-norm

Perturbation magnitudes for robust training and data augmentation are usually
given in l2- or l∞-norm. In the previous section we computed R∗ in l2-norm so
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Comparing Complexities of Decision Boundaries for Robust Training 11

Table 3: Number of pixels ⌈(p− p̃)⌉ (see Equation 13) that need to be perturbed
by ϵ in l∞-norm to introduce perturbations δ > R∗ in l2-norm.

0.5R R∗ p
⌈(p− p̃)⌉

ϵ = 2
255

ϵ = 4
255

ϵ = 8
255

ϵ = 16
255

ϵ = 32
255

SVHN 1.003 0.525 1024 4478 1120 280 70 18
CIFAR-10 1.375 0.578 1024 5439 1360 340 85 22
FASHION 0.799 0.906 784 13340 3335 834 209 53
MNIST 1.199 1.654 784 44461 11116 2779 695 174

here we expand the analysis to the l∞-norm. Since the l∞-norm is the maximum
absolute change ϵ between any two vector dimensions, we compute how many
dimensions in common image benchmarks need to be changed to surpass the
specific R∗-value in l2-norm. It is common practice in the robustness literature
to apply the l∞-norm on the pixel level, so to ignore the colour channel. Denoting
the number of pixels in a dataset as p, with 0 ≤ p̃ ≤ p, it is easy to see that

||x− x̃||2 =

√√√√ p∑
i=1

(xi − x̃i)2 =

√√√√p̃−1∑
i=1

(xi − x̃i)2 +

p∑
j=p̃

(xj − x̃j)2 > R∗

=

√√√√ p∑
j=p̃

ϵ2 > R∗ ⇔ (p− p̃) >
(R∗

ϵ

)2 (13)

where the first sum is equal to zero because those pixels are not altered and
the pixels in the second sum are all changed by ϵ due to the l∞-norm. Thus,
(p − p̃) is the number of pixels that need to be changed by ϵ such that the
resulting perturbation magnitude in l2-norm surpasses R∗. We round (p − p̃)
to the nearest integer. In Table 3 we display the minimum number of pixels
⌈(p− p̃)⌉ that need to be changed to surpass R∗ in l2-norm when perturbations
ϵ are applied in l∞-norm. For CIFAR-10, for example, we observe that a l∞
perturbation magnitude of ϵ = 4/255 requires 1, 360 pixels to be altered. As this
is more than the original number of 1, 024 pixels, R∗ is not surpassed in l2-norm.
In general, we observe that for the common perturbation magnitude ϵ = 8/255
only a small fraction of pixels need to be altered in both SVHN and CIFAR-10
to surpass the threshold R∗ in l2-norm. In Section 5 we show that including
samples with perturbation magnitude δ ≥ R∗ leads to reduced generalization
performance.

4.4 Results are Independent of the Ambient Dimension d

The point x̄′
j minimizes the Euclidean distance between x′

j and the convex hull

C({xi}di=1). Since the convex hull is defined by the d nearest neighbours with
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Table 4: Influence of the ambient dimension d for CIFAR-10.

d R 0.5R R∗ Rcrit |{x̄}critlocal|
|{x̄}critlocal|
l(c−1)

|{x̄}critglobal|
|{x̄}critglobal|

l(c−1)

34x34 3468 2.843 1.422 0.497 0.350 38827 0.086 283 0.001
32x32 3072 2.751 1.375 0.578 0.421 26608 0.059 132 0.000
30x30 2700 2.514 1.257 0.486 0.386 36167 0.080 236 0.001
28x28 2352 2.324 1.162 0.467 0.402 34784 0.077 214 0.000
26x26 2028 2.157 1.079 0.444 0.412 33066 0.073 200 0.000

(a) (b) (c)

Fig. 5: Results for CIFAR-10. Error-bars denote minimum and maximum over
five runs. (a) Mean accuracy on the train and test set and against FGSM-i/255,
i ∈ {2, 5, 8} attacks for different levels of label noise introduced by {x̄}critglobal. (b)

Mean accuracy on Xorg
train during training with {x̄}critlocal. (c) Mean accuracy on

Xorg
test during training with {x̄}critlocal.

another class label of x′
j , all quantities that are deducted from x̄′

j are functions
of the ambient dimension d. Therefore, we investigate whether changes of the
ambient dimension change the previously computed quantities.

We report the results for CIFAR-10 in Table 4. For image distributions an
increase in their ambient dimension d, so their resolution, results in higher cor-
relations between pixels and larger Euclidean distances between images. So, si-
multaneously higher values of R and R∗ are expected. Further, there is no clear
relationship between |{x̄}critlocal| and |{x̄}critglobal| with respect to d. Thus, the de-
rived quantities are not artefacts of high dimensional spaces but dataset specific
properties.

5 Training with δ ≥ R∗ Deteriorates Performance

In Section 3 we derived R∗ theoretically for arbitrary datasets. We discussed that
the implications of robust training for perturbation magnitudes δ ≥ R∗ depend
on the class membership of those samples for which r′j < 0.5rj . In Section 4

we showed that for sophisticated real-world benchmarks {x̄}critglobal lie within the
low-density region between classes. Including these samples that do not display
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Table 5: Accuracy against noise- (top) and blur-perturbations (bottom) [14] for
CIFAR-10 and {x̄}critlocal. Networks trained on X+CC and X+NCC exhibit better
robustness against small-norm noise-perturbations but worse robustness against
large-norm blur perturbations. Example images can be found in Appendix H.

Gaussian Shot Impulse Speckle

X 0.521 0.501 0.537 0.557
X+CC 0.526 0.504 0.546 0.562
X+NCC 0.600 0.581 0.584 0.621

Zoom Defocus Gaussian Glass Fog Brightness Contrast

X 0.638 0.691 0.324 0.703 0.352 0.694 0.328
X+CC 0.625 0.689 0.273 0.704 0.292 0.709 0.246
X+NCC 0.607 0.647 0.423 0.656 0.342 0.648 0.343

a clearly distinguishable object is equivalent to the addition of label noise which
is known to hurt robustness [27]. In this section we show that the addition of
samples with perturbations δ ≥ r′j for r′j < 0.5rj indeed hurts the performance
of classifiers according to several metrics on CIFAR-10. Due to space constraints
we present further affirmative results for SVHN in Appendix F.

Extension by the globally critical points As |{x̄}critglobal| = 132 for CIFAR-10 (see
Table 1), their addition is not measurably impacting generalization performance
(see Appendix H). Thus, to simulate different levels of label noise we add random
samples from the original train set Xorg

train to {x̄}critglobal to obtain train sets with
different relative amounts of original and critical samples and therefore different
amounts of label noise. This experimental setup roughly follows Sanyal et al. [27].
We train a neural network on these datasets and measure its accuracy on the
original train and test set and against FGSM attacks [13] of different strengths.

In Figure 5a we observe that with increasing label noise test accuracy dete-
riorates while adversarial accuracy against FGSM attacks increases. Although,
due to the small train set, test accuracy is already low, adding samples with
no visible class object further deteriorates test accuracy as the model is likely
biased towards learning superficial textural clues. Train accuracy on the other
hand is not hurt, as those samples can simply be memorized. As {x̄}critglobal are
defined by having r′j ≤ 0.5R, the distance between x̄′

j and x′
j is small and thus

small-norm perturbations as those introduced by FGSM do not result in wrong
predictions as the network interpolates between x̄′

j and x′
j .

Extension by the locally critical points It is common practice in adversarial train-
ing to pick a single perturbation magnitude δ for all samples under the assump-
tion that no class change is induced by its application. However, this procedure is
suboptimal and error-prone as upper-bounds on δ can be influenced by labelling
errors in the original train set. Thus, more recent robust training methods work
with instance-specific perturbation magnitudes [7].
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To further show that the addition of samples for which δ ≥ R∗ leads to re-
duced generalization performance, we create two new train sets by appending
either {x̄}critlocal with the label of its corresponding x′

j (no class change, NCC),

denoted X+NCC, or the label of its corresponding nearest neighbours {xi}di=1

(class change, CC), denoted X+CC, to the original train set Xorg
train. We train

a network on each of these three datasets and report accuracies on the original
train and original test set in Figures 5b and 5c. We observe that while train
accuracy is not hurt, test accuracy deteriorates when trained on X+NCC. This
is likely due to {x̄}critlocal biasing the model towards learning superficial textural
clues which does not deteriorate train but does reduce generalization perfor-
mance. The addition of {x̄}critlocal when assigned a different class label than x′

j

improves generalization performance. This is likely due to the network inter-
polating between {xi}di=1 which appears to help for CIFAR-10. Contrary, in
Appendix F we show for SVHN that both train sets X+NCC and X+CC reduce
generalization performance.

Finally, we also test these models against a benchmark of common pertur-
bations [14]. We obtain similar results to the label noise experiments above.
In Table 5 we observe that accuracy against small-norm noise perturbations
is increased whereas accuracy against large-norm blur perturbations is mostly
decreased. Intuitively, a flat loss surface around training points or obfuscated
gradients [74] help to protect against small-norm changes, whereas large-norm
changes need to be defend against by learning semantic concepts.

These results show that the maximum perturbation magnitudes for robust
training need to be chosen carefully as they can deteriorate the generalisation
to accuracy and robustness benchmarks while train accuracy is unharmed.

6 Conclusions

Robustness and generalization behaviour of neural networks have traditionally
been studied by investigating properties of their learned representation or their
training methods. More recently, properties of datasets came into focus as po-
tential causes for their generalization and robustness deficits (see Section 2).
This work contributes to this line of work. We study the complexity of decision
boundaries for robust training in a model-agnostic way and derive a lower bound
on the perturbation magnitude that increase their complexity. For common im-
age benchmarks it also bounds the introduction of label noise which we show to
hurt generalization and robustness. Thus, our work shows that studying geomet-
ric properties of data distributions can yield practical insights into modern deep
classifiers and can provide guidelines for the choice of architectures and training
parameters.
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