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Abstract. Explaining a classification result produced by an image- and
video-classification model is one of the important but challenging issues
in computer vision. Many methods have been proposed for producing
heat-map–based explanations for this purpose, including ones based on
the white-box approach that uses the internal information of a model
(e.g., LRP, Grad-CAM, and Grad-CAM++) and ones based on the
black-box approach that does not use any internal information (e.g.,
LIME, SHAP, and RISE).
We propose a new black-box method BOREx (BayesianOptimization for
Refinement of visual model Explanation) to refine a heat map produced
by any method. Our observation is that a heat-map–based explanation
can be seen as a prior for an explanation method based on Bayesian opti-
mization. Based on this observation, BOREx conducts Gaussian process
regression (GPR) to estimate the saliency of each pixel in a given im-
age starting from the one produced by another explanation method. Our
experiments statistically demonstrate that the refinement by BOREx im-
proves low-quality heat maps for image- and video-classification results.

1 Introduction

Many image- and video-classification methods based on machine learning have
been developed and are widely used. However, many of these methods (e.g.,
DNN-based ones) are not interpretable to humans. The lack of interpretability
is sometimes problematic in using an ML-based classifier under a safety-critical
system such as autonomous driving.

To address this problem, various methods to explain the result of im-
age and video classification in the form of a heatmap called saliency
map [28,17,21,5,22,10,16] have been studied. Fig. 1 shows examples of saliency
maps synthesized by several methods, including ours. A saliency map for an
image-classification result is an image of the same size as the input image. Each
pixel in the saliency map shows the contribution of the corresponding pixel in
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(a) Input (b) BOREx (Our
method)

(c) RISE (d) BO

Fig. 1: Example of the saliency maps generated by our method BOREx (in
column (b)), RISE [17] (in column (c)), and the Bayesian-optimization-based
method [16] (in column (d)); the input images to each method are presented
in column (a). The classification label used in the saliency maps in each row is
“dining table”, “Labrador retriever”, and “folding chair” from the first row.

the input image to the classification result. In each saliency map, the part that
positively contributes to the classification result is shown in red, whereas the
negatively-contributing parts are shown in blue. The notion of saliency maps is
extended to explain the results produced by a video-classification model, e.g.,
in [5] and [23].

These saliency-map generation techniques can be classified into two groups:
the white-box approach and the black-box approach. A technique in the former
group uses internal information (e.g., gradient computed inside DNN) to gen-
erate a saliency map; Grad-CAM [21] and Grad-CAM++ [5] are representative
examples of this group. A technique in the latter group does not use internal
information. Instead, it repeatedly perturbs the input image by occluding sev-
eral parts randomly and synthesizes a saliency map based on the change in the
outputs of the model to the masked images from that of the original one. The
representative examples of this group are LIME [20], SHAP [15], and RISE [17].

Although these methods provide valuable information to interpret many clas-
sification results, the generated saliency maps sometimes do not correctly localize
the regions that contribute to a classification result [3,25,9]. Such a low-quality
saliency map cannot be used to interpret a classification result correctly.

Mokuwe et al. [16] recently proposed another black-box saliency map gener-
ation method using Bayesian optimization based on the theory of Gaussian pro-
cesses regression (GPR) [19]. Their method maintains (1) the estimated saliency
value of each pixel and (2) the estimated variance of the saliency values during
an execution of their procedure, assuming that a Gaussian process can approx-
imate the saliency map; this assumption is indeed reasonable in many cases
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Refinement of the
current saliency map ij
by Bayesian optimization
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generation method

(e.g., RISE)
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potentially
low-quality
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Refined
saliency map ij+1

Refined
saliency map iN

Fig. 2: Our saliency map generation scheme via refinement. Starting from a po-
tentially low-quality saliency map i0 generated by an existing method, we re-
fine the saliency map using Bayesian optimization and obtain a better-quality
saliency map iN .

because a neighbor of an important pixel is often also important. Using this
information, their method iteratively generates the most effective mask to re-
fine the estimations and observes the saliency value using the generated mask
instead of randomly generating masks. Then, the estimations are updated with
the observation using the theory of Gaussian processes.

Inspired by the method by Mokuwe et al., we propose a method to refine the
quality of a (potentially low-quality) saliency map. Our idea is that the GPR-
based optimization using a low-quality saliency map i0 as prior can be seen
as a procedure to iteratively refine i0. Furthermore, even if a saliency map i0
generated by certain method is of low quality, it often captures the characteristic
of the real saliency of the input image; therefore, using i0 as prior is helpful to
guide the optimization.

Based on this idea, we extend their approach so that it uses i0 as prior
information for their Bayesian optimization; see Fig. 2 for an overview of our
saliency map generation scheme via refinement. Our method can be applied to a
saliency map i0 generated by any method; by the iterative refinement conducted
by GPR, i0 is refined to a better-quality saliency map as Fig. 1 presents. Each
saliency map in Fig. 1b is generated by refining the one generated by RISE [17]
presented in Fig. 1c; each saliency map in Fig. 1 generated by our method
localizes important parts better than that by RISE.

In addition to this extension, we improve their method to generate better
saliency maps in a nontrivial way; these improvements include the way a saliency
value is observed using a mask and the way a saliency map is generated from the
final estimation of GPR. With these extensions, our method BOREx (Bayesian
Optimization for Refinement of visual model Explanation) can generate better-
quality saliency maps as presented in Fig. 1.

We also present an extension of BOREx to video-classification models. Given
a video-classification result, the resulting extension produces a video that indi-
cates the saliency of each pixel in each frame using colors. Combined with a
naively extended RISE for video-classification models, BOREx can generate a
saliency map for a video-classification result without using any internal informa-
tion of the classification model.

We implemented BOREx and experimentally evaluated the effectiveness of
BOREx. The result confirms that BOREx effectively improves the quality of
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low-quality saliency maps, both for images and for videos, in terms of sev-
eral standard metrics for evaluating saliency maps with statistical significance
(p < 0.001). We also conducted an ablation study, which demonstrates that the
additional improvements to the method by Mokuwe et al. [16] mentioned above
are paramount for this effectiveness.

Our contribution can be summarized as follows.

– We propose a new black-box method to refine a saliency map generated by
any method. BOREx is an extension of the method by Mokuwe et al. [16] so
that it uses a saliency map to be refined as prior in its Bayesian-optimization
phase. Besides the extension to take a saliency map as a prior, BOREx also
enhances Mokuwe et al. [16] in several features, including how saliency values
are evaluated using masks and how a saliency map is calculated from the
final estimation obtained by the Bayesian optimization.

– We present an extension of BOREx to explain video-classification results.
The resulting extended BOREx produces a saliency map in the form of a
video in a black-box manner.

– We implemented BOREx and empirically evaluated its effectiveness. The
experimental results statistically confirm the effectiveness of BOREx as a
method for refining saliency-map–based explanation for image and video
classifiers. We also conducted an ablation study, which demonstrates that
the enhancement added to the method by Mokuwe et al. [16] is essential for
the effectiveness.

Related Work. For both white-box and black-box approaches, various techniques
have been proposed to explain a classification result of an image classifier by
generating a saliency map. The white-box approach exploits the internal infor-
mation of the classifier, e.g., the network architecture and the parameters, and
generates a saliency map, typically without using the inference result. Zhou et
al. [28] introduce class activation maps (CAM) that generate a saliency map
exploiting the global average pooling layer in the classification model. Grad-
CAM [21] and Grad-CAM++ [5] generalize CAM by focusing on the gradient
during back propagation to relax the requirements on the architecture of the
classification model. Zoom-CAM [22] is a variant of Grad-CAM that utilizes the
feature map of the intermediate convolutional layers as well as the last convo-
lutional layer. Although these techniques are efficient since an inference is not
necessary, gradient-based methods do not always generate a faithful explanation
because the inference result is ignored in a saliency-map generation [1,12,7,24].

In contrast, the black-box approach treats a classifier as a black-box function
without using its internal information. These techniques typically perturb the
given image and explain the classifier utilizing the difference in inference results
between the original and the perturbed images. For example, RISE [17] and PN-
RISE [10] randomly generate a mask by the Monte-Carlo method and perturb
the image by occluding the pixels using the mask. Although these techniques
can be applied to a model whose internal information is not available, it requires
many inferences to obtain a high-quality saliency map.
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As shown in Fig. 2, our technique, saliency map refinement by Bayesian op-
timization, requires an initial saliency map i0 generated by an explanation tech-
nique mentioned above and refines it to improve its quality. Thus, our technique
allows combining one of the techniques above and the Bayesian optimization to
balance various tradeoffs. Typically, one can balance the tradeoff between the
number of inferences and quality by feeding a saliency map that is not necessarily
of high quality but requires less number of inferences.

Saliency-based explanation methods have also been investigated for video
classifiers. Stergiou et al. [23] propose an explanation of a 3D CNN model for
video classification by generating a saliency tube that is a 3D generalization of a
saliency map. They use the white-box approach based on the idea of CAM [28].
Chattopadhyay et al. [5] show that Grad-CAM++ outperforms in the explana-
tion of a 3D CNN model for action recognition compared to Grad-CAM. Bargal
et al. [2] propose an explanation technique for recurrent neural networks (RNNs)
with convolutional layers utilizing excitation backpropagation [27]. Perturbation-
based black-box approaches have also been investigated to explain a video classi-
fier by presenting salient frames [18] or a 3D generalization of a saliency map [14].
Same as the explanation of image classifiers, our technique allows combining the
techniques above and the Bayesian optimization to balance various tradeoffs.

The rest of the paper is organized as follows. Section 2 defines saliency maps
and reviews the saliency-map generation method by Mokuwe et al. [16]; Section 3
introduces BOREx and an extension for video classifiers; Section 4 explains the
experiments; Section 5 concludes.

We write Λ for a set of pixels; we write λ for an element of Λ. An image is
a map from Λ to N3; we write i for an image and I for the set of images. The
value i(λ) represents the RGB value of pixel λ in image i. We write L for the
finite set of labels. A classification model is a function from I to a probability
distribution over L; we write M for a model. For a model M and an image i, the
distribution M(i) represents the confidence of M in classifying i to each label.
We write M(i, l) for the confidence of M classifying i to l.

2 Background

2.1 Saliency

Petsiuk et al. [17] define the saliency of each part in an image i based on the
following idea: A part in i is important for a model M classifying i as l if the
confidence remains high even the other part in i is masked. This intuition is
formulated as follows by using the notion of masks. A mask m is a function
m : Λ → {0, 1} that expresses how the value of each pixel of an image i is
diminished; the value of pixel λ in the masked image—written i⊙m—is obtained
by occluding the pixel λ if m(λ) = 0. Then, given a model M , an image i, and a
label l, the saliency Si,l(λ) of pixel λ in image i in M classifying i to l is defined
as follows:

Si,l(λ) := E[M(i⊙m, l) | m(λ) = 1]. (1)
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In the above definition and in the following, the expectation E[M(i ⊙ m, l) |
m(λ) = 1] is taken over a given distribution M of masks. Notice that the above
formula defines saliency only by the input-output relation of M . We call Si,l a
saliency map.

In (1), m is randomly taken from a distribution M over masks that models
the assumption on how a salient part tends to distribute in an image. M is
typically designed so that it gives higher probabilities to a mask in which masked
regions form lumps, rather than the one in which masked pixels are scattered
around the image; this design reflects that if a pixel is salient in an image, then
the neighborhoods of the pixel are often also salient.

The definition of saliency we use in this paper is the refinement of Si,l by
Hatakeyama et al. [10] so that it takes negative saliency into account. Concretely,
their definition of saliency SPN

i,l is as follows.

SP
i,l(λ) := Si,l(λ). (2)

SN
i,l(λ) := E[M(i⊙m, l) | m(λ) = 0]. (3)

SPN
i,l (λ) := SP

i,l(λ)− SN
i,l(λ). (4)

Their saliency SPN
i,l (λ) is defined as the difference between the positive saliency

SP
i,l(λ) and the negative saliency SN

i,l(λ). The latter is the expected confidence
M(i⊙m, l) conditioned by m(λ) = 0; therefore, a pixel λ is negatively salient if
masking out λ contributes to increasing confidence in classifying the image as l.
Hatakeyama et al. [10] show that the saliency of an irreverent pixel calculated
by SPN

i,l (λ) is close to 0, making the generated saliency map easier to interpret.

Evaluating Si,l and SPN
i,l requires exhausting all masks, which is prohibitively

expensive. Petsuik et al. [17] and Hatakeyama et al. [10] propose a method to
approximate these saliency values using the Monte-Carlo method. Their imple-
mentations draw masks {m1, . . . ,mN} from M and approximate Si,l and SPN

i,l

using the following formulas, which are derived from the definitions of Si,l and
SPN
i,l [10,17] where p = P [m(λ) = 1]:

Si,l(λ) ≈
1

N

∑
n

mn(λ)

p
M(i⊙mn, l) (5)

SPN
i,l (λ) ≈ 1

N

∑
n

mn(λ)− p

p(1− p)
M(i⊙mn, l). (6)

2.2 Saliency Map Generation using Gaussian Process Regression

Mokuwe et al. [16] propose another approach to generate saliency maps for black-
box classification models. Their approach uses Bayesian optimization, in partic-
ular Gaussian process regression (GPR) [19] for this purpose. We summarize the
theory of GPR and how it serves for saliency-map generation in this section; for
a detailed exposition, see [19].

In general, a Gaussian process is a set of random variables, any finite num-
ber of which constitute a joint Gaussian distribution. In our context, Gaussian
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Algorithm 1 GPR-based saliency-map generation [16]. The function k is used
in Line 9, which is kept implicit there.

Input: Model M ; Image i; Label l; Function k; Upperbound of iterations N ; Set of mask size
L := {r1, . . . , rq}.

Output: Saliency map that explains the classification of i to l by M .
1: D ← []
2: Set µ(λ, r)← 0 for every pixel λ and r ∈ L
3: j ← 0
4: while j < N do
5: (λ, r)← argmaxuµ,D

6: Set m to a square mask whose center is λ, whose side length is r, and m(λ′) = 0 if λ′ is in
the square

7: s←M(i, l)−M(i⊙m, l)
8: Add (λ, s) at the end of D
9: Update µ using Bayes’ law
10: j ← j + 1
11: end while
12: isal (λ)← 1

q

∑
i µ(λ, ri) for every λ.

13: return isal

process is a distribution over functions; each f drawn from a Gaussian pro-
cess maps (λ, r) to a saliency value f(λ, r) ∈ R, where r ∈ Rp is a vector
of auxiliary parameters for determining a mask. The r expresses, for exam-
ple, the position and the size of a generated mask. A Gaussian process is com-
pletely determined by specifying (1) a mean function µ(λ, r) that maps a pixel
λ and mask parameters r to their expected value E[f(λ, r)] and (2) a covari-
ance function k((λ, r), (λ′, r′)) that maps (λ, r) and (λ′, r′) to their covariance
E[(f(λ, r) − µ(λ, r))(f(λ′, r′) − µ(λ′, r′))]. We write GP(µ, k) for the Gaussian
process with µ and k.

GPR is a method to use Gaussian processes for regression. Sup-
pose we observe the saliency at several points in an image as D :=
{((λ1, r1), s1), . . . , ((λn, rn), sn)}. For an unseen (λ, r), its saliency conditioned
by D is obtained as a Gaussian distribution whose mean and variance can be
computed by D, µ, and k. Furthermore, once a new observation is obtained,
the optimization procedure can update µ using the Bayes’ law. These properties
allow Gaussian processes to explore new observations and predict the saliency
at unseen points.

Using these properties of GPs, Mokuwe et al. [16] propose Algorithm 1 for
saliency-map generation. Their method models a saliency map as a Gaussian
process with mean function µ and covariance function k. Under this model,
Algorithm 1 iteratively chooses (λ, r) (Line 5), observe the saliency evaluated
with (λ, r) by using a mask whose center is at λ and with side length r (Lines 6
and 7), and update µ using Bayes’ law (Line 9). To detect the most positively
salient part with a small number of inferences, Algorithm 1 uses an acquisition
function uµ,D(λ, r). This function is designed to evaluate to a larger value if (1)
|µ(λ, r)| or (2) the expected variance of the saliency at λ estimated from D is
high; therefore, choosing λ and r such that uµ,D(λ, r) is large balances exploiting
the current estimation of the saliency value µ(λ, r) and exploring pixels whose
saliency values are uncertain. To keep the search space reasonably small, we keep
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8 A. Kikuchi et al.

Algorithm 2 GPR-based refinement of a saliency map.

Input: Model M ; Image i; Initial saliency map i0; Label l; Function k((λ, r), (λ′, r′); Upperbound
of iterations N ; List of the side length of a mask L := {r1, . . . , rp}.

Output: Refined saliency map obtained with GP.
1: D ← []
2: Set µ(λ, r)← i0(λ) for every pixel λ and side size r ∈ L.
3: j ← 0
4: while j < N do
5: (λ, r)← argmaxuµ,D

6: Set m to a square mask with side length r, whose center is λ, and m(λ′) = 0 if λ′ is inside
the rectangle

7: s←M(i⊙m, l)−M(i⊙m, l)
8: Add ((λ, r), s) at the end of D
9: Update µ using Bayes’ law
10: j ← j + 1
11: end while
12: isal (λ)← 1

p

∑
i

1

r2
i

µ(λ, ri) for every λ.

13: return isal

the shape of the generated masks simple; in Algorithm 1, to a finite set of square
masks.

Various functions that can be used as a covariance function k have been
proposed; see [19] for detail. Mokuwe et al. [16] use Matérn kernel [19].

Algorithm 1 returns the saliency map isal by isal(λ) := 1
q

∑
i µ(λ, ri). The

value of isal at λ is the average of µ(λ, r) over r ∈ L.

3 BOREx

3.1 GPR-based Refinement of Saliency Map

Algorithm 2 is the definition of BOREx. The overall structure of the procedure
is the same as that of Algorithm 1. The major differences are the following: (1)
the input given to the procedures; (2) how the saliency is evaluated; and (3) how
a saliency map is produced from the resulting µ. We explain each difference in
the following.
Input to the algorithm. Algorithm 2 takes the initial saliency map i0, which is
used as prior information for GPR. Concretely, this i0 is used to initialize µ(λ, r)
in Line 2. To generate i0, one can use any saliency-map generation methods,
including ones based on black-box approach [10,17,20,15] and ones based on
white-box approach [21,5].
Saliency evaluation. Algorithm 1 evaluates the saliency by calculating
M(i, l) −M(i ⊙m, l). This value corresponds to the value of −SN

i,l around the
pixel λ defined in Section 2.1 since it computes how much the confidence drops
if a neighborhood of λ is masked out.

To estimate SPN
i,l instead of −SN

i,l, Algorithm 2 calculates M(i⊙m, l)−M(i⊙
m, l) in Line 7, where m is the flipped mask obtained by inverting the value at
each pixel (i.e., m(λ′) = 1 − m(λ′) for any λ′). Since m(λ) = 1 if and only if
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(a) Image of goldfish. (b) Saliency map generated
by Algorithm 1.

(c) Saliency map generated
by Algorithm 2.

Fig. 3: Example of an image with multiple salient regions.

m(λ) = 0, the value of M(i ⊙ m, l) − M(i ⊙ m, l) is expected to be close to
SPN
i,l (λ′) if λ′ is near λ.
Another reason of using a flipped mask in the saliency observations of Al-

gorithm 2 is to handle images in which there are multiple salient parts. For
example, the image of goldfish in Fig. 3a has multiple salient regions, namely,
multiple goldfish. If we apply Algorithm 1, which does not use flipped masks, to
this image, we obtain the saliency map in Fig. 3b; obviously, the saliency map
does not capture the salient parts in the image. This is because the value of
M(i, l) −M(i ⊙m, l) in Line 7 of Algorithm 1 is almost same everywhere; this
value becomes high for this image only if m hides every goldfish in the image,
which is difficult using only a single mask. Our method generates the saliency
map in Fig. 3c; an observed saliency value M(i ⊙ m, l) − M(i ⊙ m, l) in Algo-
rithm 2 is higher if m hides at least one goldfish than if m does not hide any
goldfish.
Generating saliency map from resulting µ. Algorithm 2 returns the saliency
map isal defined by isal(λ) =

1
p

∑
i

1
r2i
µ(λ, ri). Instead of the saliency map com-

puted by taking the simple average over every mask in Algorithm 1, the saliency
map map returned by Algorithm 2 is the average weighted by the inverse of the
area 1

r2i
of each mask with the side size r. This weighted average gives more

weight to the saliency values obtained by smaller masks. Using the weighted
average helps a saliency map produced by Algorithm 2 localizes salient parts
better than Algorithm 1.

3.2 Extension for Video-Classification Models

Algorithm 2 can be naturally extended for a video classifier with the following
changes.

– The set of masks is extended, from 2D squares specified by their side length,
to 3D rectangles specified by the side length of the square in a frame, and
the number of frames that they hide. Suppose a mask m with side length r
and the number of frames t is applied to the pixel λ at coordinate (x, y) and
at n-th frame of a video i. Then, i ⊙ m is obtained by hiding the pixel at
(x, y) in each of the n-th to (n + t − 1)-th frame with the 2D square mask
specified by r.
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10 A. Kikuchi et al.

– The type of functions drawn from the Gaussian process is changed to
f(λ, r, t) from f(λ, r) in Algorithm 2 reflecting the change of the definition
of masks.

– The algorithm takes T := {t1, . . . , tk} in addition to L; the set T expresses
the allowed variation of parameter t of a mask.

– The expression to update isal in Line 12 of Algorithm 2 is changed to
1
pk

∑
i

∑
s

1
r2i ts

µ(λ, ri, ts); the weight is changed to the reciprocal of the vol-

ume of each mask.

4 Experiments

We implemented Algorithm 2 and conducted experiments to evaluate the effec-
tiveness of BOREx.Due to the limited space, we report a part of the experimental
results. See the supplementary material for the experimental environment and
more results and discussions, particularly on video classification.

The research questions that we are addressing are the following.

RQ1: Does BOREx improve the quality of an input saliency map?
This is to evaluate that BOREx is useful to refine a potentially low-quality
saliency map, which is the main claim of this paper.

RQ2: Does Algorithm 2 produce a better saliency map than one pro-
duced by Algorithm 1 by Mokuwe et al. [16]? This is to demonstrate
the merit of BOREx over the algorithm by Mokuwe et al.

RQ3: Does the extension in Section 3.2 useful as a saliency-map gener-
ation for video classifiers? This is to evaluate the competency of BOREx
to explain a video-classification result.

Evaluation metrics. To quantitatively evaluate the quality of a saliency map, we
used the following three measures.

Insertion: For a saliency map isal explaining a classification of an image i
to label l, the insertion metric is defined as

∑
k M(i(k), l), where i(k) is the

image obtained by masking all the pixels other than those with top-k saliency
values in isal to black.

Deletion: The deletion metric is defined as
∑

k M(i(−k), l), where i(−k) is the
image obtained by masking all the pixels with top-k saliency values in isal
to black.

F-measure: The F-measure in our experiments is defined as
∑

k F (i(k), l, Bi,l),
where F (i(k), l, Bi,l) is the F-measure calculated from the recall and the
precision of the pixels in i(k) against the human-annotated bounded region
Bi,l in i that indicates an object of label l.

The insertion and the deletion metrics are introduced by [17] to quantita-
tively evaluate how well a saliency map localizes a region that is important for
a decision by a model. The higher value of the insertion metric is better; the
lower value of the deletion metric is better. The higher insertion implies that
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isal localizes regions in i that are enough for classifying i to l. The lower deletion
implies that isal localizes regions that are indispensable for classifying i to l. The
F-measure is an extension of their pointing-game metric also to consider recall,
not only the precision. The higher value of F-measure is better, implying isal
points out more of an important region correctly.

In what follows, we use a statistical hypothesis test called the one-sided
Wilcoxon signed-rank test [26] (or, simply Wilcoxon test). This test is applied
to matched pairs of values {(a1, b1), . . . , (an, bn)} sampled from a distribution
and can be used to check whether the median of {a1, . . . , an} can be said to be
larger or smaller than that of {b1, . . . , bn} with significance. To compare saliency
generation methods X and Y , we calculate the pairs of the values of metrics
evaluated with a certain dataset, the first of each are of the method X and the
second are of Y ; then, we apply the Wilcoxon test to check the difference in the
metrics. For further details, see [26].

To address these RQs, we conducted the following experiments:

RQ1: We used RISE [17] andGrad-CAM++ [5] to generate saliency maps for
the images in PascalVOC dataset [8]; we write DRISE and DGradCAM++ for
the set of saliency maps generated by RISE and Grad-CAM++, respec-
tively. Then, we applied BOREx with these saliency maps as input; we write
DBOREx

RISE (resp., DBOREx
GradCAM++) for the saliency maps generated using DRISE

(resp., DGradCAM++) as input. We check whether the quality of the saliency
maps in DBOREx

− is better than D− by the one-sided Wilcoxon signed-rank
test. If so, we can conclude that BOREx indeed improves the saliency map
generated by other methods.

RQ2: We generated saliency maps for the PascalVOC dataset using Mokuwe et
al. [16] presented in Algorithm 1; we write DBO for the generated saliency
maps. We check if the quality of the saliency maps in DBOREx

RISE is better
than DBO by one-sided Wilcoxon signed-rank test. If so, we can conclude
the merit of BOREx over the method by Mokuwe et al.

RQ3: We generated saliency maps for the dataset in Kinetics-400 using an
extension of GradCAM++ and RISE for video classification implemented
by us; let the set of saliency maps DM,GradCAM++ and DM,RISE, respec-
tively. Then, we applied BOREx with these saliency maps as input; we
write DBOREx

M,RISE (resp., DBOREx
M,GradCAM++) for the saliency maps generated using

DM,RISE (resp., DM,GradCAM++) as input. We check whether the quality of
the saliency maps in DBOREx

M,− is better than DM,− by one-sided Wilcoxon
signed-rank test. If so, we can conclude the merit of BOREx as an explana-
tion method for a video-classification result.

As the model whose classification behavior to be explained, we used ResNet-
152 [11] obtained from torchvision.models1, which is pre-trained with Ima-
geNet [6], for RQ1 and RQ2; and i3D [4] obtained from TensorFlow Hub2, which
is pre-trained with Kinetics-400 [13]. Notice that the datasets PascalVOC and

1 https://pytorch.org/vision/stable/models.html
2 https://tfhub.dev/deepmind/i3d-kinetics-400/1
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(a) Input (b) BOREx (c) RISE

Fig. 4: Image of chairs and saliency maps to explain it.

Kinetics-400 provide human-annotated bounding regions for each label and each
image, enabling computation of the F-measure.

4.1 Results and Discussion

RQ1. Table 1 shows that BOREx improved the quality of the saliency maps
generated by RISE and Grad-CAM++ in several metrics with statistical signif-
icance (p < 0.001). Therefore, we conclude that BOREx successfully refines
an input saliency map. This improvement is thanks to the Gaussian process
regression that successfully captured the locality of the salient pixels. For exam-
ple, the saliency maps in Fig. 1 suggest that BOREx is better at generalizing
the salient pixels to the surrounding areas than RISE.

The time spent for GPR-based optimization was 9.26±0.26 seconds in average
for each image. We believe this computation time pays off if we selectively apply
BOREx to saliency maps whose quality needs to be improved.

To investigate the effect of the features of BOREx presented in Section 3.1
(i.e., flipped masks and the saliency-map computation from the result of GPR
by weighted average in its performance), we conducted an ablation study; the
result is shown in Table 2. We compared BOREx with (1) a variant that does
not use flipped masks (no-flip), (2) a variant that uses simple average instead of
the average weighted by the inverse of the area of masks (simple-avg), and (3) a
variant that does not use prior (no-prior). The statistical test demonstrates that
flipped masks and weighted averages are effective in the performance of BOREx.
However, the effectiveness over the no-prior variant is not confirmed. This is
mainly because, if the quality of a given prior is already high, the effectiveness of
BOREx is limited. Indeed, BOREx is confirmed to be effective over the no-prior
case if the insertion metric of the priors is less than 0.6; see the row “no-prior
(base insertion < 0.6)” in Table 2.

The statistical test did not demonstrate the improvement in the deletion met-
ric for a saliency map generated by RISE and the F-measure for a saliency map
generated by Grad-CAM++. Investigation of several images for which BOREx
degrades the metrics reveals that this is partly because the current BOREx al-
lows only square-shaped masks; this limitation degrades the deletion metric for
an image with multiple objects with the target label l. For example, a single
square-shaped mask cannot focus on both chairs simultaneously in the image in
Fig. 4a. For such an image, BOREx often focuses on only one of the objects,
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Table 1: Result of the experiments. “Image/Video”: The kind of the classifier;
“Compared with”: the baseline method; “Metric”: evaluation metric; “p-value”:
the p-value. The null hypothesis of each test expresses that the average of the
metric of BOREx is not better than that of baseline. One asterisk indicates
p < 0.05; two asterisks indicates p < 0.001.

Image/Video Compared with Metric p-value

Image RISE F-measure 8.307e-21∗∗

insertion 1.016e-23∗∗

deletion 8.874e-01
Grad-CAM++ F-measure 1.000

insertion 5.090e-08∗∗

deletion 6.790e-04∗∗

BO F-measure 1.800e-05∗∗

insertion 6.630e-11∗∗

deletion 3.111e-01

Video RISE F-measure 4.988e-07∗∗

insertion 8.974e-01
deletion 8.161e-18∗∗

Grad-CAM++ F-measure 9.9980e-01
insertion 3.636e-01
deletion 2.983e-07∗∗

generating the saliency map in Fig. 4b. Even if we mask the right chair in Fig. 4a,
we still have the left chair, and the confidence of the label “chair” does not sig-
nificantly decrease, which degrades the deletion metric of the BOREx-generated
saliency map.

RQ2. The last three rows of Table 1 show that the use of an initial saliency map
improved the quality of the saliency maps generated by Bayesian optimization in
terms of several metrics with statistical significance compared to the case where
the initial saliency map is not given (p < 0.001). Therefore, we conclude that
BOREx produces a better saliency map than the one produced by
Mokuwe et al. in terms of the insertion metric and F-measure.

The improvement was not concluded in terms of the deletion metrics. Investi-
gation of the generated saliency maps suggests that such degradation is observed
when the quality of a given initial saliency map is too low; if such a saliency map
is given, it misleads an execution of BOREx, which returns a premature saliency
map at the end of the prespecified number of iterations.

RQ3. Table 1 shows the result of the experiment for RQ3. It shows that the
saliency maps generated by the extensions of RISE and Grad-CAM++ for video
classifiers are successfully refined by BOREx in terms of at least one metric
with statistical significance (p < 0.001). Therefore, we conclude that a saliency
map produced by BOREx points out regions in a video that are in-
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Table 2: The result of ablation study.

Compared with Metric p-value

no-flip F-measure 2.987e-29∗∗

insertion 1.416e-04∗∗

deletion 2.024e-03∗

simple-avg F-measure 2.026e-03∗

insertion 1.184e-46∗∗

deletion 4.871e-03∗

no-prior F-measure 4.514e-02∗

insertion 3.84624e-01
deletion 2.2194e-01

no-prior (base insertion < 0.6) F-measure 2.4825e-02∗

insertion 3.219e-03∗

deletion 6.47929e-01

dispensable to explain the classification result better than the other
methods.

The improvement in the insertion metric over RISE and Grad-CAM++,
and in F-measure over Grad-CAM++ were not concluded. The investigation
of saliency maps whose quality is degraded by BOREx reveals that the issue
is essentially the same as that of the images with multiple objects discussed
above. A mask used by BOREx occludes the same position across several frames;
therefore, for a video in which an object with the target label moves around,
it is difficult to occlude all occurrences of the object in different frames. This
limitation leads to a saliency map generated by BOREx that tends to point out
salient regions only in a part of the frames, which causes the degradation in
the insertion metric. The improvement in deletion metric seems to be due to
the mask shape of BOREx. To improve the deletion metric for a video-classifier
explanation, a saliency map must point out a salient region across several frames.
The current mask shape of BOREx is advantageous, at least for a video in which
there is a single salient object that does not move around, to cover the salient
object over several frames.

5 Conclusion

This paper has presented BOREx, a method to refine a potentially low-quality
saliency map that explains a classification result of image and video classifiers.
Our refinement of a saliency map with Bayesian optimization applies to any
existing saliency-map generation method. The experiment results demonstrate
that BOREx improves the quality of the saliency maps, especially when the
quality of the given saliency map is neither too high nor too low.

We are currently looking at enhancing BOREx by investigating the optimal
shape of masks to improve performance. Another important research task is
making BOREx more robust to an input saliency map with very low quality.
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