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Abstract. Research on creating high-quality, realistic fake images has
engendered immense improvement in GANs. However, GAN training is
still subject to mode collapse or vanishing gradient problems. To ad-
dress these issues, we propose an adaptive distribution effective-matching
method (ADEL) that sustains the stability of training and enables high
performance by ensuring that the training abilities of the generator and
discriminator are maintained in balance without bias in either direc-
tion. ADEL can help the generator’s training by matching the difference
between the distribution of real and fake images. As training is ideal
when the discriminator and generator are in a balanced state, ADEL
works when it is out of a certain optimal range based on the loss value.
Through this, ADEL plays an important role in guiding the generator
to create images similar to real images in the early stage when training
is difficult. As training progresses, it naturally decays and gives model
more freedom to generate a variety of images. ADEL can be applied
to a variety of loss functions such as Kullback-Liebler divergence loss,
Wasserstein loss, and Least-squares loss. Through extensive experiments,
we show that ADEL improves the performance of diverse models such
as DCGAN, WGAN, WGAN-GP, LSGAN, and StyleGANv2 upon five
datasets, including low-resolution (CIFAR-10 and STL-10) as well as
high-resolution (LSUN-Bedroom, Church, and ImageNet) datasets. Our
proposed method is very simple and has a low computational burden, so
it is expandable and can be used for diverse models.
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Fig. 1: Overall framework of ADEL. G denotes a generator and D is a discrim-
inator. During training, when the discriminator loss is out of a certain optimal
range, the distribution matching loss (Ldist) is applied, which encourages gener-
ator to match the actual data distribution. The generator trains based on this
Ldist as well as LG.

1 Introduction

Generative Adversarial Network (GAN), which is composed of a generator and
discriminator, has been the focus of considerable research since it was first pro-
posed by Ian Goodfellow [1]. GANs have demonstrated remarkable achievements
in the field of computer vision [2–6] and continue to develop rapidly by being ap-
plied in the fields of natural language processing [7,8] and audio generation [9,10].
However, they still face many challenges. In particular, it is difficult to train a
GAN stably, and mode collapse or vanishing gradient can often occur. To ad-
dress these challenges, several methods have been devised to allow the model
to learn the boundaries of the entire data distribution evenly and to keep it
memorized [11–13].

Furthermore, helping the discriminator and the generator to learn evenly
when training the GAN can considerably improve its performance. Therefore,
various methods have tried to balance the training between the discriminator
and generator [14–17]. For example, Wasserstein-GAN [18] applied Earth-Mover
(EM) distance to a GAN and tried to stabilize it by clipping weights during back-
propagation. BEGAN [19] used the auto-encoder instead of the discriminator to
match the distribution of loss to allow the two networks to be in equilibrium. For
EBGAN [19] and χ2GAN [20], the distribution of data was matched to achieve
Nash equilibrium during training. However, despite these efforts, maintaining
training balance between a generator and discriminator is still challenging. In
addition, most of these studies focus on adjusting the discriminator, or control-
ling the data distribution.

We propose a new training method, adaptive distribution effective-matching
method (ADEL), to stabilize GAN training and improve its performance. Fig-
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ure 1 shows our overall framework. Through the newly introduced distribution
matching loss (Ldist), ADEL encourages the training of the generator by match-
ing the distribution between the real images and the fake images created by the
generator. By providing hints to the generator about the real image distribution
so that the performance of the two networks is not skewed to one side, ADEL
guides the GAN to create images that are more “realistic”. However, this distri-
bution matching method may interfere with the generator’s degree of freedom.
That is, the model to be trained may not cover the entire actual data distribu-
tion and may experience a loss of diversity, and vanishing gradient or a mode
collapse may occur. Therefore, in this study, the level of distribution matching
loss was adjusted as the training progressed, eventually allowing the generator
to freely train without any constraints to cover the actual data distributions.
We demonstrate through comprehensive experiments that GAN training can be
stabilized and better performance can be achieved by reducing the difference be-
tween the distribution of the fake images produced by the generator and the real
images. In the Results section, we report the Inception Score (IS) [11], Fréchet
Inception Score (FID) [21], and Kernel Inception Distance (KID) [22] scores to
show quantitative results, while generated images demonstrating qualitative re-
sults are given in Experiments section.
Our main contributions are as follows:

– We propose a novel distribution matching method to guide generator’s train-
ing of GANs. This method has a regularization effect, which helps the GAN
to be trained stably.

– ADEL is a straightforward and effective method that can be easily applied
to existing GAN models with a low computational burden.

– We show that ADEL can provide good performance in GANs with various
losses and in small- as well as large-scale datasets.

2 Related Work

Various attempts have been made in many studies to address the challenges
faced by GAN, such as that experiences mode collapse or the gradient of the
generator is not updated because the loss of the discriminator rapidly converges
to 0. Among them, some methods that change the model’s structure or modify
the loss function are stated below.

2.1 GAN architectures

DCGAN [15] dramatically improved a GAN’s image generation ability by ap-
plying the structure of convolutional neural networks (CNNs) to the GAN. Ow-
ing to the advantages of CNN, DCGAN produces images with stable yet high
resolution. Progressive GAN (PGGAN) [2] creates a high-resolution image by
starting from a low-resolution image and gradually increasing the image resolu-
tion by adding network layers. Through the method of gradually stacking layers,
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learning stabilization and time reduction were achieved. However, PGGAN has
limited ability to control specific detailed features, such as the color of the hair
or eyes of the generated image.

This limitation is overcome by StyleGAN [4]. StyleGAN adds a mapping net-
work and Adaptive Instance Normalization to the generator to create more re-
alistic fake images. After that, StyleGANv2 [23] was recently introduced, which
resolved the artifacts problem of StyleGAN, and contributed astonishing im-
provement of the generated images quality. SAGAN [24] applied a self-attention
module in a GAN, which improved its performance in natural language process-
ing considerably. This proves that it is possible to effectively model long-range
dependencies within the internal representations of images, and thus this ap-
proach can outperform existing models. Zhang et al. also showed that spectral
normalization stabilizes the training of GANs, and that the two time-scale up-
date rule improves the training speed of the discriminator. BigGAN [5] also
improved SAGAN structurally; they showed that a higher performance could be
achieved only by increasing the number of channels and batch size of SAGAN.
Furthermore, shared embedding, hierarchical latent space, and orthogonal reg-
ularization methods were added to provide even better performance. However,
there is still room for improvement in stabilizing training. In addition to these
studies, bi-directional GANs have been proposed, which introduce a bidirectional
mechanism to generate latent space z from images [25]. There have been studies
in which the number of generators or discriminators used is different [26] [27].
The adversarial auto-encoder takes GAN a step further by combining a varia-
tional auto-encoder with the GAN [28]. A recent study attempted to improve
GAN’s performance by applying a U-Net-based [29] architecture to the discrimi-
nator [30]. Another study achieved SOTA performance by applying the structure
of a transformer to a GAN [31].

2.2 GAN loss functions

In the conventional GAN, the sigmoid cross entropy loss function was used for the
discriminator. However, this loss function causes a vanishing gradient problem
when updating the generator, which cannot be resolved by a structural change
to the model. However, approaches that modified the loss function of the GAN
appeared to alleviate this problem. Least squares GAN (LSGAN) [32] allows the
generator to create images similar to real images by assigning a penalty to sam-
ples far from the decision boundary using least squares loss. By simply changing
the loss function of GAN, LSGAN not only improves the quality of the generated
image, but also enables stable training. While LSGAN uses the least squares loss,
Banach Wasserstein GAN [33] simply replaces this least square norm with a dual
norm, providing a new degree of freedom to select the appropriate Sobolev space,
allowing WGAN to be placed in the Banach space. Relativistic GAN [34] mod-
ifies the loss as a relative evaluation by applying a probability indicating how
realistic the real data is to the generated image. Another approach improves the
performance of the model by applying the Hinge loss to the GAN [4,35,36]. As
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such, various studies have investigated the loss function of the GAN as a way to
solve the vanishing gradient problem and eliminate mode collapse.

Table 1: Performance comparison of baseline models with and without ADEL
method applied. Large and small values are preferred for ↑ and ↓ respectively

Model Dataset Method IS (↑) FID (↓) KID (↓)
Memory
(MB)

Training
Time

(sec/iteration)

DCGAN
CIFAR-10

Baseline 5.47±0.09 20.91 0.0100±0.0005 1604 0.07
ADEL 5.32±0.23 20.74 0.0085±0.0005 2113 0.08

STL-10
Baseline 4.70±0.24 63.86 0.0385±0.0009 2012 0.13
ADEL 5.03±0.19 60.37 0.0361±0.0009 3945 0.16

WGAN
CIFAR-10

Baseline 5.22±0.07 20.23 0.0076±0.0005 2025 0.12
ADEL 5.23±0.17 19.26 0.0081±0.0005 2031 0.13

STL-10
Baseline 5.34±0.13 38.67 0.0194±0.0006 3795 0.23
ADEL 5.46±0.16 37.91 0.0190±0.0005 3949 0.25

WGAN-GP
CIFAR-10

Baseline 5.24±0.08 23.75 0.0129±0.0006 2333 0.13
ADEL 5.46±0.09 23.08 0.0126±0.0006 2462 0.13

STL-10
Baseline 4.97±0.11 55.36 0.0360±0.0006 3807 0.23
ADEL 4.97±0.14 54.91 0.0336±0.0006 3936 0.24

LSGAN
LSUN-B

Baseline - 63.27 0.0663±0.0007 3864 0.74
ADEL - 40.44 0.0359±0.0005 4064 0.76

ImageNet
Baseline 8.05±0.22 46.30 0.0354±0.0006 3864 1.01
ADEL 8.21±0.33 46.32 0.0343±0.0006 4054 1.06

3 Methodology

The purpose of the generator and discriminator in GAN is to generate fake
images that seem real and to distinguish between real and fake images, respec-
tively. In general, while training a GAN, the discriminator converges faster than
the generator, and this causes the vanishing gradient problem [37, 38]. Based
on this observation, we propose an adaptive distribution matching method. Our
method is not only easy to apply by adding few lines of code but also simple to
understand.

3.1 ADEL

When training a GAN, the generator creates fake images using the latent vector
as input while the discriminator D distinguishes between the real images and
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Algorithm 1: Overall ADEL algorithm

1: Input: max iteration T , batch size m, dimension of latent vector d, learning rate
η, weight of generator loss α, weight of discriminator loss β, global optimal
solution δ, optimal range ϵ

2: Initialize θG and θD, i.e., the parameters of the generator and discriminator,
respectively

3: for c = 1 · · ·T do
4: Sample random latent vector z ∼ N(0, 1), z ∈ Rd

5: Sample a batch of real images r ∼ Pr, r ∈ Rm

6: Update θD ← θD − η ∗ ∇θD (β ∗ LD)
7: γ, Ldist ← 0
8: if |LD − δ| > ϵ then
9: PG(z), Pr ← Softmax(G(z)), Softmax(r)

10: γ ← exp−(c/T )

11: Ldist ← DKL(PG(z), Pr)
12: else
13: pass
14: end if
15: Update θG ← θG − η ∗ ∇θG(α ∗ LG + γ ∗ Ldist)
16: end for

the fake images generated by the generator G, i.e., it identifies which images are
real and which are fake. The loss function of a general GAN is as Eq. 1.

LG = Ez∼Pz(z)[log(1−D(G(z)))]

LD = Er∼Pr(r)[logD(r)] + Ez∼Pz(z)[log(1−D(G(z)))]
(1)

Here, r is a real data sample, Pr is a real data distribution, z is a random latent
vector, Pz is a standard normal distribution, LG is a generator loss, and LD is
a discriminator loss.

The discriminator only needs to determine whether a given image is real or
fake (1 or 0), but the generator needs to generate entire images (e.g. 28×28×3
[H×W×C]), so there exists a difference in the relative difficulties of the two
tasks. That is, the task of the generator that needs to generate a complex image
is more laborious than that of the discriminator in deciding whether an input
image is real. Furthermore, given that the generator’s training depends only
on the decision of the discriminator, the information that the generator can
obtain is limited. In the view of the aforementioned two reasons, it becomes
difficult for the two networks to maintain a balance during training. Therefore,
we provide additional information about the distribution of real images to the
generators performing tasks that are more difficult. To this end, the proposed
method introduces a distribution matching loss (Ldist) described in Eq. 2, based
on matching the distribution between real images and fake images to balance
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the evenness of the training of the generator and discriminator.

Ldist =

{
DKL(PG(z)||Pr) = Ex∼PG(z)

[log
PG(z)(x)

Pr(x)
] , if |LD − δ| > ϵ

0 , otherwise
(2)

Ldist is computed using the Kullback-Liebler (KL) divergence (DKL) to match
between real and generated data distribution, PG(z). ϵ is a predefined constant
and δ is the global optimal solution of each GAN model, i.e. the discriminator’s
value at PG(z) = Pr. Those will be described in detail below.

In this study, we define the objective functions of the generator (J(θG)) and
the discriminator (J(θD)) as given below in Eq. 3.

J(θG) = α ∗ LG(θG) + γ ∗ Ldist(θG)

J(θD) = β ∗ LD(θD)
(3)

α, β, and γ are weights to the generator, discriminator, and distribution matching
loss. Also, θG and θD are the parameters of the generator and discriminator,
respectively. During distribution matching, the ratio of LG, LD, and Ldist and
whether to perform distribution matching is an essential issue. The value used
as standard for distribution matching is also an important concern. To address
these concerns, we propose a distribution matching method that considers not
only the generator’s information, using generated data distribution, but also
the discriminator’s information. Therefore, we introduce ϵ as the criterion for
the difference between Ldist and δ. This serves as a threshold to measure how
poorly the generator has trained. In Eq. 2, when the discriminator loss exceeds
the range of [δ−ϵ, δ+ϵ], Ldist exists. The general GAN loss consists of LG and LD,
and the training of the discriminator dominates, so that LD quickly converges
to zero. However, in ADEL, when LD is within the above-specified range, there
exists an Ldist value. Therefore, in this scenario, the generator learns based on
Ldist as well as LG.

In Eq. 3, if the value of γ is increasing, then the generator will focus more on
matching the distribution between real and fake data and interfere the degree
of freedom available to the generator. Therefore, we design γ as an adaptive
function based on the training iteration. The function γ is defined as follows.

γ := γ(c) = exp−(c/T ) (4)

where c is a current iteration and T is a max iteration. In Eq. 4, γ exponentially
decreases as training progresses. As it is a large value at the beginning of the
training, γ gives the generator a lot of information to guide it to generate sim-
ilar images. When an iteration proceeds by decreasing the ratio of distribution
matching loss, it gives the generator the degree of freedom to create various
images, which is one of the goals of GAN models. To see the effect of Ldist, we
fixed α and β as 1. In addition, the distribution of real and generated data (Pr

and PG(z) in Eq. 2) are computed using a softmax function, as per Eq. 5. We
applied the softmax function pixel by pixel to obtain the distribution of each
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image in every batch. That is, xi is an image pixel value, N is the total number
of pixels in an image and τ is set to 1.

Pd(xi) = Softmax(xi) =
exp

xi
τ∑N

i=1 exp
xi
τ

,where d ∈ {r,G(z)} (5)

Algorithm 1 is the procedure for our proposed method, ADEL.

4 Experiments

In this section, we introduce our experimental environments and evaluations
using various datasets and models. All experiments were conducted in a single
GeForce RTX 3090 GPU.

4.1 Environments

Dataset We apply DCGAN, WGAN, and WGAN-GP on small-scale images
(CIFAR-10 and STL-10) and LSGAN, and StyleGANv2 with large-scale images
(LSUN-Bedroom, Church, and ImageNet). CIFAR-10 contains 32×32 images be-
longing to 10 classes, with a total of 60k images divided into 50k training data
and 10k test data. STL-10 also has 10 classes, with 96×96 images, and consists
of 500 training images and 800 test images for each class. ImageNet is a repre-
sentative large-scale dataset. It has over 1M images belonging to 1000 classes.
LSUN-Bedroom and LSUN-Church is also a large-scale dataset of 128×128 and
256×256 resolution, respectively.
Baselines We applied our proposed method to the following GAN models:

– DCGAN: GAN architecture with CNN, which replaced the fully-connected
neural network.

– WGAN: WGAN explains the limitation of KL divergence loss and introduces
Wasserstein loss which is a new type of loss.

– WGAN-GP: WGAN does not work well with momentum-type optimizers
such as Adam. WGAN-GP address this issue by applying the gradient penalty.

– LSGAN: LSGAN proposed least square loss to solve the vanishing gradients
problem in the traditional GAN’s discriminator. This helps to generate a
higher quality of image and stability during training.

– StyleGANv2: StyleGAN is a variation of GAN model, which is possible to
being able to adjust the style when generating images. StyleGAN2 is a ver-
sion that removed unnatural parts when generating images in StyleGAN and
create higher quality images.

Training Details We trained WGAN using an RMSProp [?] and other models
with an Adam optimizer (β1 = 0.5, β2 = 0.999) [40]. DCGAN and WGAN-GP
are trained for 200k iterations. WGAN and LSGAN are trained for 1M itera-
tions. The generator of DCGAN, WGAN and WGAN-GP produces 32×32 and
48×48 images for CIFAR-10 and STL-10, respectively. Like the LSGAN study,
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we generated 112×112 resolution images for LSNU-Bedroom and ImageNet. We
set the learning rate as 0.0002 for DCGAN and LSGAN, 0.00005 for WGAN,
and 0.0001 for WGAN-GP. All models are trained with a batch size of 64 using
a single GPU. When applying our proposed method, we fixed all the hyper-
parameters the same as baseline models, and we experimented by changing ϵ.
The optimal ϵ value is obtained by grid search. For each model, the value showing
the best performance was selected. In the case of StyleGANv2, the experimental
environment is the same as all settings of StyleGANv2.
Evaluations We used three metrics, IS, FID, and KID as indicators to evaluate
the performance of the GAN at generating various images and how realistic they
were. IS is applicable only to class-conditional generation, so we do not calculate
the LSUN-Bedroom score. To compute each metric score, 10k real images and
10k fake images, produced by the generator, were used. Metrics were calculated
at a constant interval. Reported scores, when two or more metric scores were
superior, were selected and compared. Since, StyleGAN [4] reflects quantitative
as well as qualitative quality in the high-resolution dataset of the GAN model
by suggesting a new metric called Perceptual Path Length (PPL). Therefore, we
reported the PPL metric in this study.

5 Results

5.1 Base model performance

To examine the effectiveness of the ADEL method, we observed how the perfor-
mance changes by applying ADEL to each model. As presented in the results
in Table 1, the performance of each model is further improved when ADEL is
applied regardless of the dataset. Except in three cases, i.e., the IS for DC-
GAN’s CIFAR-10, the KID for WGAN’s CIFAR-10, and the FID for LSGAN’s
ImageNet, all three computational indicators consistently indicated improved
performance in all models. In addition, DCGAN (ADEL) shows a noticeable
performance improvement in the STL-10 dataset experiment. These results im-
ply that when the generator is trained, ADEL guides the generator to produce
images similar to real images by providing instructive information about the
distribution of real images. In particular, in the LSUN-Bedroom dataset exper-
iment of the LSGAN model, the FID and KID indicators showed performance
improvements of 22.84 and 0.03, respectively. We also compared the difference
between the computational costs and training time when ADEL was applied to
baseline models and when it was not. The GPU usage memory increased from
a minimum of 1.003 to a maximum of 1.961 times, and the training time took
at least 0.003 seconds and a maximum of 0.05 seconds for one iteration. Thus,
given that the additional workload or training time caused by applying ADEL
is very small, ADEL can be applied to various models without any noticeable
additional burden. Memory and training time is computed on a single RTX 3090
GPU.

In this study, only the FID metric showing the most change was presented.
Figures 2, and 3 are graphs comparing the performance of each model and the
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Fig. 2: Performance comparison between DCGAN and DCGAN (ADEL), WGAN
and WGAN (ADEL) for all iterations.
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Fig. 3: Performance comparison between WGAN-GP and WGAN-GP (ADEL),
LSGAN and LSGAN (ADEL) for all iterations.

model to which ADEL is applied at each evaluation iteration. In the graph,
the colored line indicates the performance when ADEL is applied. It can be
seen that each model has a section where FID is kept lower a specific point. It
should be noted that mode collapse occurs after 400k iterations in the LSGAN
(LSUN-Bedroom) experiment and 190k iterations in the DCGAN (CIFAR-10)
experiment. However, the training progresses stably without mode collapse, when
ADEL is applied during the same evaluation iteration. Furthermore, as can be
observed in the LSGAN ImageNet graph, training is unstable at 600k in baseline
models. By contrast, when ADEL is applied, it tends to be relatively stable.
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Fig. 4: Boxplots of FID scores of each model for five replicates. The red dotted
line represents the average scores.

To show that ADEL’s performance is consistent, we replicated experiments
five times for all models and datasets. In Figure 4, we provide boxplots to com-
pare the deviations of FID scores, which is a representative metric for GANs.
It can be seen that ADEL demonstrates less deviation than the baselines. This
was repeated for all metrics and models, but we could not include all the figures
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owing to page limitations. In the case of LSGAN ImageNet, where the difference
between baseline and ADEL was the largest in all metrics, IS, FID, and KID val-
ues are 0.38, 3.82, and 0.0032, respectively. As shown in the figure, ADEL serves
to make the model more robust because of reduced oscillation. Furthermore,
although not presented in this paper, we find that ADEL has a low incidence
of mode collapse. In particular, in the DCGAN CIFAR-10 experiment, mode
collapse occurred with a 40% probability in the baseline model. By contrast,
in ADE, training progressed stably without mode collapse. Thus, our proposed
ADEL has the advantages of performance improvement and training stabiliza-
tion. Besides these advantages, our proposed ADEL is a very simple approach
with low computational burden. Hence, it is easily extendable to various GANs

Table 2: Performance comparison of StyleGANv2 with and without ADEL.
Model Dataset Method PPL (↓) FID (↓)

StyleGANv2 LSUN-Church
256 × 256

Baseline 342 3.86
ADEL 303 3.82

5.2 Performance in the State-of-the-art model

We selected baseline models that serve as milestones with various loss functions.
As these models are the basis of the latest GAN studies, we determined that if
ADEL is applied in these models, even the latest derived studies would be cov-
ered. Additional experiments were conducted to prove that ADEL is also effec-
tiveness in the SOTA model. Specifically, ADEL is applied to StyleGANv2 [23], a
SOTA model in LSUN-Church, a single class and higher resolution dataset that
is suitable for our experimental purpose. As presented in Table 2, StyleGANv2
improved FID and PPL. However, the KID score has not been officially reported
from StyleGANv2, and it is difficult to make a fair comparison, so the score
is not presented. According to Table 2, FID had a relatively marginal perfor-
mance improvement. However, there was a very large performance improvement
in PPL, the main metric of StyleGANv2.

5.3 Analysis of adjusting functions

ADEL adjusts the γ adaptively as per the discriminator’s loss as in Eq. 4 when
matching the distribution. Thus, it plays the role of guiding the generator by
increasing the matching in the early stage of training and increasing the degree
of freedom of the generator by ensuring a lower amount of matching towards the
latter part of training to help generate various images. Before ADEL was chosen
as the final matching method, we experimented with three different methods
to compare the performance. ADEL’s performance was the best of all. Table 3
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Fig. 5: (Top) examples of StyleGANv2 without ADEL applied, and (bottom)
ADEL is applied.

compares the performance of the proposed method ADEL with three other dis-
tribution matching methods using a different adjusting function and a condition.
Detailed explanations are as follows:

– The linearly decaying distribution matching method (LDDM) for every it-
eration without considering the condition given in Eq. 2 is as follows:

γ(c) = 1− c/T (6)

– The exponentially decaying distribution matching method (EDDM) for every
iteration without considering the condition of Eq. 2 and γ is the same as Eq.
4.

– A method to adaptively adjust the degree of distribution matching in the
form of a penalty based on the discriminator loss value (DLDM) is given as
follows:

γ(LD) = exp|LD−δ| (7)

LDDM and EDDM are matching methods based on the current iteration versus
max iteration, and DLDM is a method based on the current iteration’s discrim-
inator loss.

Table 3: Performance comparison between baseline, LDDM, EDDM, DLDM,
and our proposed ADEL method.

CIFAR-10 STL-10
Method IS FID KID IS FID KID
Baseline 5.47 20.91 0.0100 4.70 63.86 0.0385
LDDM 5.20 21.19 0.0087 4.82 65.89 0.0374
EDDM 5.54 20.82 0.0097 5.02 61.73 0.0341
DLDM 5.36 23.72 0.0108 4.82 62.81 0.0368

ADEL (ours) 5.32 20.74 0.0085 5.03 60.37 0.0361

ADEL uses a function where γ decays exponentially. That is, in the early
stage of training, the large γ value makes matching large to provide additional
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information to the generator. As iteration goes, ADEL has a small γ value and
reduces the matching so that the generator can create more diverse images. In
order to check the effect of the exponential decaying function, we compared the
LDDM method, which manually changes the max iteration linearly, and the
EDDM method, which changes it exponentially without any restrictions on the
condition. As observed from the results summarized in Table 3, the result of
EDDM exceeds that of LDDM, and the result of LDDM does not even reach
the baseline. This implies that adjusting the decaying function exponentially is
more effective.

In addition, the performance of ADEL exhibits to EDDM in terms of apply-
ing conditions is compared. Applying a condition as in Eq. 2 has a more positive
effect on performance improvement than when no such condition is applied. Fi-
nally, we compared ADEL and DLDM. DLDM is based on the discriminator loss;
the discriminator loss tends to diverge toward the latter half of training, so the
γ value is applied in the direction of increasing rather than continuously atten-
uating. Based on the results, ADEL’s performance is much better than DLDM,
which indicates that adjusting the decaying function based on the iteration is
more effective than based on the loss value. These results indicates that it is
helpful to give the model a degree of freedom to generate more diverse images
at the end of training.

(a) Comparison between LSGAN
and ADEL.

300000 itrs. 400000 itrs.

LSGAN LSGAN + ADEL

500000 itrs. 600000 itrs.

(b) Left of the dashed line: LSGAN with
mode collapse. Right of the dashed line:
ADEL is applied.

Fig. 6: Result when ADEL is applied to LSGAN where mode collapse has oc-
curred.

5.4 Stabilizing and robustness effect of ADEL

In order to determine the stabilization effect of ADEL, we examined the kind of
change that appeared by applying ADEL to LSGAN (LSUN-Bedroom) where
mode collapse occurred. In Fig. 6 a), the gray dotted line represents the perfor-
mance of the existing LSGAN baseline model, while the green line represents the
changed performance after applying ADEL to the LSGAN baseline model before
mode collapse occurs. Previously, mode collapse occurs at 400k evaluation iter-
ations, but when ADEL is applied at the 350kth iteration, it can be confirmed
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that training proceeds stably without mode collapse until about 750k evaluation
iterations. Thus, ADEL has the effect of making the model more robust to mode
collapse to find the optimal performance. In Fig. 6 b), the images on the left
side of the dashed lines are example images generated by baseline LSGAN, while
those on the right are example images generated when LSGAN is continuously
trained by applying ADEL before mode collapse occurs.

Figure 7 shows the training loss graph of DCGAN and DCGAN (ADEL). In
the graph of the DCGAN baseline model, LG diverges and LD is unstable, so
that the training of the discriminator does not proceed smoothly. By contrast,
the training of the discriminator in DCGAN (ADEL) dominates, resulting in
LD almost converging to 0. This can make it difficult to train the generator.
However, when LD converges to 0, |LD − δ| > ϵ is satisfied, because we set ϵ to
a very small value. Therefore, Ldist still exists. We demonstrate this experimen-
tally in Fig. 7. According to Algorithm 1, the generator is trained based on LG

and Ldist so that the gradient is continuously updated. Therefore, when ADEL
is applied, it is robust to the vanishing gradient problem.

185K 190K 195K 200K

10

20

30

DCGAN (STL-10)
Baseline
ADEL

185K 190K 195K 200K
0.0

0.1

0.2

0.3

0.4

0.5
DCGAN (STL-10)

185K 190K 195K 200K
0.04

0.06

0.08

0.10

DCGAN (STL-10)

Fig. 7: Training loss graphs of LG, LD, and Ldist in order from left. The pink
line is DCGAN (ADEL) and the gray line is DCGAN.

6 Conclusion

The proposed method ADEL is inspired by the fact that GAN’s discriminator
and generator demonstrate improved performance when they are trained in a
balanced manner. ADEL works when the discriminator’s loss exceeds a certain
optimal range. At this time, the γ value, which controls the degree of ADEL,
decreases exponentially. Therefore, it is applied strongly at the beginning of
training to provide more guidance for the actual images to the generator, and
it is applied weakly at the end of training to give the generator a degree of
freedom to create more diverse images. To examine the effect of ADEL, five GAN
models using different objective functions were selected as baselines, and the
performances with and without ADEL applied to these models were compared.
It was observed that the overall model performance improved when ADEL was
applied. Furthermore, ADEL has the advantage that training is stable and robust
to vanishing gradient problems. ADEL is not very burdensome because of its low
computational cost and short training time.
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