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Abstract. Human pose estimation methods have recently shown re-
markable results with supervised learning that requires large amounts of
labeled training data. However, such training data for various human ac-
tivities does not exist since 3D annotations are acquired with traditional
motion capture systems that usually require a controlled indoor environ-
ment. To address this issue, we propose a self-supervised approach that
learns a monocular 3D human pose estimator from unlabeled multi-view
images by using multi-view consistency constraints. Furthermore, we re-
fine inaccurate 2D poses, which adversely affect 3D pose predictions,
using the property of canonical space without relying on camera calibra-
tion. Since we do not require camera calibrations to leverage the multi-
view information, we can train a network from in-the-wild environments.
The key idea is to fuse the 2D observations across views and combine pre-
dictions from the observations to satisfy the multi-view consistency dur-
ing training. We outperform state-of-the-art methods in self-supervised
learning on the two benchmark datasets Human3.6M and MPI-INF-
3DHP as well as on the in-the-wild dataset SkiPose. Code and models
are available at https://github.com/anonyAcc/CVSF_for_3DHPE

1 Introduction

Human Pose Estimation (HPE) is widely used in various AI applications such as
video analysis, AR/VR, human action recognition, and 3D human reconstruction
[1–8]. Owing to the variety of applicability, HPE has received considerable atten-
tion in computer vision. Recent methods for 3D HPE have achieved remarkable
results in a supervised setting, but they require large amounts of labeled training
data. Collecting such datasets is expensive, time-consuming, and mostly limited
to fully controlled indoor settings that require a multi-camera motion capture
system. Therefore, self-supervised 3D HPE, which does not require 3D annota-
tion, has become an emerging trend in this field.

In this study, we propose a novel self-supervised training procedure that
does not require camera calibrations (including camera intrinsic and extrinsic
parameters) and any annotations in the multi-view training dataset. Specifically,
our model requires at least two temporally synchronized cameras to observe a
person of interest from different orientations, but no further knowledge regarding
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Fig. 1. (a) Examples of results predicted from general and canonical camera. Depth-
scale ambiguity in general camera results with numerous 3D candidates of varying
scales. In canonical camera, 2D pose is lifted to 3D poses of the same scale irrespective of
depth. Red and blue skeletons represent estimated 3D skeletons at varying scales. Scale
of green skeletons is the same as that of canonical cameras. (b) Visual understanding
of a canonical space. In the space, the scales of all observed human poses are equal,
and the relationship between cameras is relative.

the scene and camera parameters is required. Note that multi-view images are
used to train a network, but only a single image is used at inference time.

There are only a few comparable methods [9–12] that apply to our self-
supervised setting. They require additional knowledge about the observed person
such as bone length constraints [11] and 3D human structures [10], or traditional
computer vision algorithms to obtain a pseudo ground truth pose [9]. On the
other hand, CanonPose [12] learns a monocular 3D human pose estimator using
the multi-view images without any prior information. However, the research does
not address the 2D pose errors caused by a pretrained 2D pose estimator, which
remains fixed during the training. The 2D pose errors not only propagate to
the 3D prediction, but also may affect the multi-view consistency requirement
during training, which can yield an inaccurate camera rotation estimation.

To address this issue, we refine the 2D pose errors influencing the 3D pre-
diction and then lift the refined 2D pose to a 3D pose. In principle, we train a
neural network by satisfying the multi-view consistency between the 2D poses
through refining the incorrect 2D pose, as well as the multi-view consistency
between the 3D outputs and 2D inputs. However, it is necessary to know the
multi-view relationship to refine an incorrect 2D pose in a multi-view setting.
The multi-view relationship can be represented using the parameters of each
camera. We assume a training setting in which the camera parameters are not
given. Also, estimating the camera parameters of each camera is complex and
computationally intensive. Therefore, we deploy a canonical form [13] that fixes
one camera and represents the remainder with the relative camera parameters
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based on the fixed camera. According to this form, the relationship between the
cameras can be represented as a relative rotation and translation.

On the other hand, every camera position is different for a particular 3D
target, so all the scales of the observed 2D poses are different in each view due
to perspective. Therefore, there exists an infinite number of 3D poses with mul-
tiple scales corresponding to a given 2D pose due to the depth-scale ambiguity,
which is illustrated in Fig. 1 (a). To address the ambiguity, we transform the
2D poses into a canonical space by normalizing the position and scale of the
2D poses observed with different scales in all views. The transformation allows
the distances between the 3D target and each camera to be the same, so we
don’t need to consider the relative translation. In other words, the relationship
between the cameras can be represented only by relative rotation, and all lifted
3D poses bear the same scale. Fig. 1 (b) illustrates the canonical space in which
it has the same scale for all transformed 2D poses and a lifted 3D pose satisfies
the multi-view consistency.

The flow of our approach is as follows: First, we transform the estimated
2D pose in an image plane coordinate system into a canonical plane coordinate
system. Second, we input the transformed 2D pose into a lifting network. Then,
the network predicts a 3D pose in the canonical coordinate system and a camera
rotation to rotate the pose to the canonical camera coordinate system. Third,
the proposed cross-view self-fusion module takes the 2D poses along with the
camera rotations predicted by the lifting network as input. Subsequently, it re-
fines incorrect 2D poses by fusing all the 2D poses with the predicted rotations.
Lastly, the refined 2D poses are lifted to 3D poses by the lifting network.

We evaluate our approach on two multi-view 3D human pose estimation
datasets, namely Human3.6M [14] and MPI-INF-3DHP [15], and achieve the
new state-of-the-art in several metrics for self-supervised manner. Additionally,
we present the results for the SkiPose dataset that represents all the challenges
arising from outdoor human activities, which can be hard to perform in the
limited setting of traditional motion capture systems.

The contributions of our research can be summarized as follows:

– We propose a Cross-view Self-fusion module that refines an incorrect 2D pose
using multi-view data without camera calibration. This can be performed in
any in-the-wild setting as it does not require camera calibration.

– We improve a self-supervised algorithm to lift a 2D pose to a 3D pose by
refining poses across views. Refinement enhances multi-view consistency, and
the enhanced consistency enables more accurate refinement.

– We achieve state-of-the-art performance on 3D human pose estimation bench-
marks in a self-supervised setting.

2 Related Work

Full Supervision. Recent supervised approaches depend primarily on large
datasets with 3D annotations. These approaches can be classified into two cat-
egories: image-based and lifting-based 3D human pose estimations. The image-
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based approaches [16–25] directly estimate the 3D joint locations from images
or video frames. Although these approaches generally deliver exceptional perfor-
mance on similar images, their ability to generalize to other scenes is restricted.
In this regard, certain studies [30–33] have attempted to resolve this problem us-
ing data augmentation. The lifting-based approaches [34–43] leverage 2D poses
from input images or video frames to lift them to the corresponding 3D poses,
which is more popular among the state-of-the-art methods in this domain. Mar-
tinez et al. [34] showed the prospect of using only 2D joint information for 3D
human pose estimation by proposing “a simple and effective baseline for 3D
human pose estimation", which uses only 2D information but achieves highly
accurate results. Owing to its simplicity, it serves as a baseline for several future
studies. However, the main disadvantage of all full-supervised approaches is that
they are not appropriately generalized for the unseen poses. Therefore, their ap-
plication is substantially limited to new environments or in-the-wild scenes.
Self-Supervision with Multi-view. Recently, the research interest in self-
supervised 3D pose estimation using unlabeled multi-view images has increased,
and our research pertains to this category as well. The self-supervised approaches
use 2D poses estimated from unlabeled multi-view images. These approaches usu-
ally follow a lifting-based pipeline and therefore, they extract the 2D poses from
the images using 2D pose estimators [44–47]. In our case, to get 2D joints from the
images, we exploit AlphaPose [46] that is pretrained on a MPII dataset [48]. In
constraints to the calibrated multi-view supervised approaches [49–52], the self-
supervised approaches do not require the camera parameters to use multi-view
data and thus, do not use traditional computer algorithms such as triangulation
to recover the 3D poses. Kocabas et al. [9] leveraged epipolar geometry to acquire
a 3D pseudo ground-truth from multi-view 2D predictions and then used them
to train the 3D CNN network. Although this effective and intuitive approach
shows promising results, the errors caused by incorrectly estimated joints in 2D
estimation lead to an incorrect pseudo ground-truth. Iqbal et al. [11] trained a
weakly-supervised network that refines the pretrained 2D pose estimator which
predict pixel coordinates of joints and their depth in each view during training.
Unfavorably, this method is not robust in environments other than the datasets
employed for training, which is a limitation of the method of estimating the 3D
pose from the image unit. More recently, Wandt et al. [12] reconstructed the 3D
poses in a canonical pose space that was consistent across all views. We take ad-
vantage of the canonical space to fuse poses between the multiple views without
using any camera parameters to refine the 2D pose incorrectly estimated by the
2D pose estimator.

3 Methods

Our goal is to train a neural network to accurately predict a 3D pose from an
estimated 2D pose. At training time, we use 2D poses observed in multi-view
images to train the network. At inference time, the network estimates a 3D pose
from a 2D pose observed in a single image. The overall process of our framework
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Fig. 2. A framework for learning a single 3D pose estimation from multi-view self-
supervision while refining a 2D pose that adversely affects 3D pose estimation. At
inference time, only a single view (blue box) is used for estimating a 3D human pose.

is as follows. For each view, a neural network takes a 2D pose as an input, and
subsequently predict a camera rotation R1 ∈ R3×3 and 3D pose X1 ∈ R3×J

with J joint positions in the first lifting step. Then, the proposed Cross-view
Self-fusion module fuses the input 2D poses with the predicted rotations from
all views to refine the 2D poses as outputs. In the second lifting step, the refined
2D pose of each view is input into the lifting network to output a second 3D
pose X2 and camera rotation R2 for each view. We define losses to each step
and a total loss using the outputs of multiple weight-sharing neural networks
and describe them in Section 3.4. The proposed framework with two cameras is
illustrated in Fig. 2, which can be conveniently expanded with the availability
of more cameras.

3.1 Lifting Network

Before inputting a 2D pose for each view to a lifting network, we normalize
the 2D pose by centering it on the root joint and dividing it with its Euclidean
norm. As we do not have any 3D annotations, we can train the lifting network by
satisfying the multi-view consistency. Although the 3D poses lifted in each view
must be identical to satisfy the multi-view consistency, the scales of the lifted
3D poses are different since the scales of the 2D poses are different in each view.
Therefore, we transform the estimated 2D pose in each view into a canonical
space, where the distances between the 3D target and each camera are the same,
by normalizing it. P inp ∈ R2×J is a transformed 2D pose that is input to the
lifting network. We concatenate the confidences C ∈ R1×J , provided by the 2D
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pose estimator [46] for each predicted 2D joint, to the 2D input vector P inp for
input in the lifting network. The lifting network predicts a 3D pose X ∈ R3×J

and rotation R ∈ R3×3 to rotate the pose to the canonical camera coordinate
system. This division of the output into a 3D pose and camera rotation enables
cross-view self-fusion and self-supervised learning to be possible.

3.2 Reprojection

As the canonical camera neglects the perspective in the canonical space, pro-
jecting the 3D prediction into the camera plane is accomplished by discarding
the three dimensions, which is expressed as:

P rep = I[0:1] ·R ·X, (1)

where P rep ∈ R2×J is the reprojected 2D pose and I[0:1] is a truncated iden-
tity matrix that projects the 3D pose to 2D. The 3D pose X in the canonical
space is rotated by the predicted rotation R to a canonical camera coordinate
system. We rotate the m canonical 3D poses into the camera coordinate system
of each camera through m rotations, in which the combining provides m2 combi-
nations. For instance, there are four possible combinations of rotations and poses
for two cameras. During training, all possible combinations are reprojected onto
the respective cameras. For example, P rep

(2,1) can be obtained by reprojecting a 3D
pose X1 predicted in view-1 to view-2 using the camera rotation R2 predicted
in view-2 as visualized in Fig. 2.

3.3 Cross-view Self-fusion

An inaccurate 2D pose results in incorrect 3D pose estimation. Typically, existing
cross-view fusion methods utilize camera parameters to fuse cross-view data for
accurate 2D poses. In the case of the canonical space, the relationship between
multi-views can be represented only by relative rotation. Therefore, we propose
a Cross-view Self-fusion Module (CSM) that refines an incorrect 2D pose using
the predicted rotations and other input 2D poses. Fig. 3 illustrates our proposed
module and a refinement process for a wrist joint that is incorrectly estimated
by occlusion. The module takes a set of 2D poses, corresponding confidences and
predicted rotations of all views as inputs, and outputs a set of the refined 2D
poses: Pref = CSM(Pinp,C,R).
Formally, our proposed module is defined as:

CSM
(
Pinp,C,R

)
=⋃

m∈V

{{
argmax

(
H

(
pim, cim

)
+

∑
n∈V,
n ̸=m

H
(
E
(
pin, R(n,m)

)
, cin

) ) ∣∣∣∀ i ∈ J

}}
, (2)
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(a) Cross-view self-fusion module

(b) Process of cross-view self-fusion
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Fig. 3. Cross-view Self-fusion module. (a) shows our cross-view self-fusion module
and (b) provides a process of fusing multi-view information about the wrist joint to
refine the joint incorrectly estimated by occlusion.

where V = {1, 2, . . . , v} is a set of views and J = {1, 2, . . . , j} is a set of
joints. pim is the i-th joint of 2D pose P inp

m from view-m. It has canonical plane
coordinates

{
xi
m, yim

}
. A set of confidences corresponding to the 2D pose is

Cm =
{
c1m, . . . , cjm

}
. R(n,m) is the relative rotation between view-n and view-m.

The relative rotation R(n,m) by rotating from view-n to view-m using rotation
matrices Rn and Rm is defined as R(n,m) = RnR

T
m.

First, a heatmap generator H(·) takes a joint pim of 2D pose P inp
m from view-m

and a confidence cim of the joint as inputs and generates a gaussian heatmap for
the joint, in which the maximum value of the heatmap is its confidence. Second,
an epipolar line generator E(·) takes a joint pin of 2D pose P inp

n from view-n and
a relative rotation R(n,m) as input and outputs an epipolar line for the joint on
the view-m, as illustrated in Fig. 3 (b). The input joint is lifted to a 3D ray by
simply adding the third dimension since the input is on canonical space where
perspective is neglected. It is rotated to view-m by a relative rotation R(n,m)

and projected to view-m similar to Sec. 3.2. A rotated and projected 3D ray
is represented as a line on a view, which is called an epipolar line. Next, an
epipolar line heatmap is generated with the maximum value of the heatmap as
the confidence value of the joint. Finally, the position with the maximum value of
a heatmap fused with a joint heatmap from view-m and epipolar line heatmaps
from the other views becomes the coordinate value of the newly refined 2D joint
position. It is repeated for all views.
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3.4 Self-supervised Training

Due to the absence of supervision, we train the lifting network using the observed
2D information as well as the properties of multi-view consistency constraints.
Our training procedures can be distinguished in two stages. In the first stage,
we train the lifting network so that predictions satisfy the multi-view consis-
tency for the input 2D poses. We proceed to the second stage when the total
loss converges in the first stage because we determine that the lifting network
sufficiently satisfies the consistency for the input 2D poses. In the second stage,
we train the lifting network so that predictions satisfy the multi-view consistency
for the refined 2D poses until the total loss second converges. This enables more
accurate camera rotation estimation and enhances multi-view consistency. The
prediction of accurate camera rotation results in a more precise refined 2D pose,
which in turn leads to a more accurate camera rotation prediction. The key idea
is to enhance the multi-view consistency through various losses defined by com-
bining the rotations and 3D poses predicted from different views and fusing the
2D poses observed from different views with the rotations.
Reprojection Loss. Upon comparing the input 2D poses and the 2D reprojec-
tions of the combined 3D poses, the loss can be defined as:

Lrep =

∥∥∥∥(P inp
m − P rep

n

∥P rep
n ∥E

)
⊙ C

∥∥∥∥
1

, (3)

where ∥ · ∥1 denote the L1 norm and ⊙ indicates the Hadamard product. In
particular, each deviation between the input and reprojected 2D pose is linearly
weighted along with its confidence in order to a strong weight to the predicted
joint in certainty and less weight to the predicted joints in uncertainty. Since the
global scale of the 3D human pose is not given, the reprojection P rep is scaled
by the Euclidean norm. m and n indicate the camera indices.
Refinement Loss. Upon comparing the refined 2D poses and input 2D poses,
the loss can be defined as:

Lref =
∥∥(P inp

m − P ref
n

)
⊙ C

∥∥
1
. (4)

According to multi-view geometric consistency, if the 2D joints of all views are ac-
curate and the camera relationship is known correctly, the intersection of epipolar
lines on one view from the other views should be on a joint observed in one view.
In our initial training, the predicted rotation is not accurate, so the 2D pose is
refined to the wrong position. Therefore, we learn the initial refined 2D pose to
be equal to the input 2D pose. This loss makes the camera rotation estimation
more accurate and ensures that the refined 2D poses are plausible.
Refinement-Reprojection Loss. The loss between the refined 2D poses and
2D reprojections is defined as:

Lref-rep =

∥∥∥∥(P ref
m − P rep

n

∥P rep
n ∥E

)
⊙ C

∥∥∥∥
1

. (5)

We learn that the 2D reprojection of the lifted 3D pose is the same as the refined
2D pose, which is the result of the cross-view self-fusion module. This enables
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the lifting network to learn a 3D pose similar to the 3D poses estimated by
other views so that it does not violate multi-view consistency even if it takes an
incorrectly estimated 2D pose as an input.
Multi-view 3D consistency Loss. To ensure multi-view consistency, previous
work [12] has attempted to introduce a loss between the 3D poses predicted by
multi-view to train a lifting network. As reported, the lifting network learned
the 3D poses that were invariant toward the view but were no longer in close
correspondence to the input 2D pose, thereby preventing the convergence of the
network to plausible solutions. For each view, we lift a refined 2D pose to a
3D pose, as depicted in Fig. 2. More specifically, we enhance the consistency
by adding a loss in 3D units using the 3D pose predicted from the refined 2D
pose for each view. This loss is defined as the deviation between the 3D poses
generated by lifting the refined 2D pose for each view.

L3D =
∥∥X2

m −X2
n

∥∥
1
, (6)

where X2
m is a second 3D pose lifted from a refined 2D pose of view-m and X2

n

is a second 3D pose lifted from a refined 2D pose of view-n.
Total Loss. We sum up the losses described above for all views. To this end,
we can define total loss as follows.

L =

V∑
m=1

V∑
n=1

(
w1Lm,n

ref + w1Lm,n
rep + w2Lm,n

ref-rep + w2Lm,n
3D

)
. (7)

Until total loss L first converges, the weight w1 is set to 1, and the weight w2

is set to 0.01 in the first stage. Then, until the end of the training, we set the
weight w1 to 0.01, and the weight w2 to 1 in the second stage.

4 Experiments

4.1 Datasets and Metrics

Dataset. We perform experiments on two standard benchmark datasets: Hu-
man3.6M [14] (H36M) and MPI-INF-3DHP [15] (3DHP). We also evaluate our
method on the SkiPose dataset [53, 54] with six moving cameras to demonstrate
the generality of our method to various in-the-wild scenarios. To conform with a
setting of self-supervised training for a particular set of activities, we train one
network for each dataset without using additional datasets. For each dataset, we
follow the self-supervision protocols for training and evaluation [12, 9].
Metrics. For quantitative evaluation, we adopt the common protocol, Normal-
ized Mean Per Joint Position Error (NMPJPE) and Procrustes aligned Mean
Per Joint Position Error (PMPJPE) that measure the mean euclidean distance
between the ground-truth and the predicted 3D joint positions after applying
the optimal rigid alignment and scale (for NMPJPE), or optimal shift and scale
(for PMPJPE) to poses. For 3DHP and SkiPose, we report the N-PCK, which
is Percentage of Correct Keypoints (PCK) normalized by scale. The N-PCK in-
dicates the percentage of joints whose estimated position is within 150mm of
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Table 1. Per-action PMPJPE of different variants on the Human3.6M dataset.

MethodAct Direct Discuss Eating Greet Phone Photo Pose Purch

Baseline 50.5 49.0 46.1 54.0 51.2 53.2 59.5 49.1
Ours (S1) 41.9 42.3 41.1 45.3 45.3 45.0 48.8 43.4
Ours (S1+S2) 40.1 40.4 39.9 44.1 44.5 44.2 48.0 42.3

MethodAct Sitting SittingD Smoke Wait Walk WalkD WalkT Avg

Baseline 65.7 83.7 53.7 57.7 48.9 60.1 50.7 55.5
Ours (S1) 59.7 73.0 46.2 46.2 40.6 47.9 40.7 47.1
Ours (S1+S2) 59.0 72.1 45.3 44.3 39.4 46.1 39.9 45.9

Table 2. Evaluation of 2D pose refinement accuracy for each dataset. We show JDR
(%) for six important joints about each dataset.

Method Dataset Hip Knee Ankle Shoulder Elbow Wrist

Single H36M 97.1 97.5 97.5 98.5 96.7 98.2
Ours H36M 98.2 98.5 97.8 98.9 98.5 99.6
Single 3DHP 97.4 97.8 99.8 96.9 97.0 96.9
Ours 3DHP 98.8 97.8 99.9 98.4 98.4 98.3
Single Ski 97.0 73.7 81.2 90.0 70.0 60.9
Ours Ski 98.7 77.0 75.1 91.9 71.7 56.4

the ground-truth. Lastly, for evaluating our proposed CSM, we measure the re-
fined 2D pose accuracy by Joint Detection Rate (JDR), which is the percentage
of the successfully detected joints. If the distance between the estimated and
ground-truth locations is smaller than a threshold, this joint can be deemed to
be successfully detected. The threshold is set to half of the head size.

4.2 Ablation Studies

We analyze the effectiveness of the proposed losses. Specifically, we design several
variants of our method, and the details of these variants are shown as follows.
Baseline: The baseline does not consider the Cross-view Self-fusion module.
The baseline is trained simply using the reprojection loss.
Step1 (S1): This variant adopts the refinement loss and refinement-reprojection
loss by the CSM. It does not consider the lifting of Step 2.
Step2 (S2): It lifts a refined 2D pose to a 3D pose. This variant considers a
multi-view 3D consistency loss between second 3D poses of all views.
We train all variants (Baseline, S1, S1+S2) on the H36M, and Table 1 demon-
strates the per-action PMPJPE of all variants on the H36M.
Compared with the baseline, our CSM is helpful to obtain better results. We
experiment with whether the CSM has the effect of intuitively refining incorrectly
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Fig. 4. (a) “Detected heatmap” indicated that it is extracted from a image of the
target view. “Fused heatmap” is obtained by summing the “Detected heatmap” and the
“Epipolar heatmaps" fused from the three remaining views. (b) Qualitative results of
2D refined pose for the challenging SkiPose dataset. We compare the visual results of
ground-truth, ours and baseline.

estimated 2D poses due to occlusion. Table 2 shows the 2D pose estimation
accuracy with JDR (%) for six important joints on the H36M, 3DHP and Skipose
datasets. It compares our approach with the 2D pose estimator [46], termed
Single, which estimates a 2D pose from a single image without performing cross
view self-fusion. It can be seen that using CSM improves overall accuracy except
for some joints. Fig. 4 (a) shows examples of the fused heatmap during the cross-
view self-fusion process for the H36M. It shows examples of incorrectly estimated
wrist joints by occlusions. It can be seen that the 2D pose is correctly refined
by fusing the estimated epipolar line heatmaps. If the correct 2D pose is lifted
to 3D, a more accurate 3D pose will be estimated. Fig. 4 (b) shows examples of
the refined 2D poses for the SkiPose.

4.3 Comparison with State-of-the-Art Methods

We compare the results of the proposed method with other state-of-the-art ap-
proaches. For a fair comparison with [12], we follow the implementation and
evaluation performed on [12]. We employ an off-the-shelf detector [46] to extract
a 2D human pose required as an input to the proposed method.

Most methods using a lifting network without knowledge of scenes show the
large gap between the NMPJPE and PMPJPE as a small error of the 2D pose
incorrectly estimated in a particular view among all views leads to a large 3D
NMPJPE error. They train their network without addressing the incorrectly
estimated 2D pose, which further impacts to estimate the camera rotation be-
cause the network is trained with the violation of the multi-view consistency
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Table 3. Evaluation results on the Human3.6M and comparison of the 3D pose esti-
mation errors NMPJPE and PMPJPE (mm) of previous approaches. The best results
are marked in bold. Our model outperforms all self-supervised methods.

Supervision Method NMPJPE ↓ PMPJPE ↓

Full Martinez [34] 67.5 52.5

Weak Rhodin [55] 122.6 98.2
Rhodin [53] 80.1 65.1
Wandt [56] 89.9 65.1
Kolotouros [57] - 62.0
Kundu [58] 85.8 -

Self Kocabas [9] 76.6 67.5
Jenni [10] 89.6 76.9
Iqbal [11] 69.1 55.9
Wandt [12] 74.3 53.0

Ours (S1) 63.6 46.1
Ours (S1+S2) 61.4 45.9

Table 4. Evaluation results on the MPI-INF-3DHP. NMPJPE and PMPJPE are re-
ported in millimeters, and N-PCK is in %. The best results are marked in bold.

Supervision Method NMPJPE ↓ PMPJPE ↓ N-PCK ↑

Weak Rhodin [53] 121.8 - 72.7
Kolotouros [57] 124.8 - 66.8
Li [59] - - 74.1
Kundu [58] 103.8 - 82.1

Self Kocabas [9] 125.7 - 64.7
Iqbal [11] 110.1 68.7 76.5
Wandt [12] 104.0 70.3 77.0

Ours (S1) 95.2 57.3 79.3
Ours (S1+S2) 94.6 56.5 81.9

Table 5. Evaluation results on the SkiPose. NMPJPE and PMPJPE are given in mm,
N-PCK is in %. The best results are marked in bold.

Supervision Method NMPJPE ↓ PMPJPE ↓ N-PCK ↑

Weak Rhodin [53] 85.0 - 72.7

Self Wandt [12] 128.1 89.6 67.1

Ours (S1) 118.2 79.3 70.1
Ours (S1+S2) 115.2 78.8 72.4
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Ground Truth (2D)Ours (2D)Baseline (2D) Ground Truth (3D)Ours (3D)Baseline (3D)

Fig. 5. Qualitative results of our approach on Human3.6M. We present both skeletons
of 2D pose on the image and 3D pose in the space by comparing the visual results of
baseline, ours, and ground-truth.

constraints. This results in the incorrect 3D pose and rotation estimation. The
MPJPE can be considerably enhanced by refining the incorrect 2D pose of any
multi-views in training to meet the multi-view consistency constraints.
Results on Human3.6M. A 2D skeleton morphing network introduced by
Wandt et al. [12] is used to circumvent the offset between the 2D pose from [46]
and the ground-truth 2D pose in the H36M dataset. As illustrated in Table 3, we
report the self-supervised pose estimation results in terms of the NMPJPE and
PMPJPE. As can be seen, the proposed model outperforms every other com-
parable approach in terms of the aforementioned metrics. Notably, the achieved
performance surpassed our baseline, CanonPose [12], that outperforms the fully
supervised method of Martinez et al. [34], which has a lifting network. In Fig. 5,
we present some challenging examples on the H36M dataset and qualitatively
compare the visualization results. These pictures include some occlusions and
show the results of our baseline, ours, and ground-truth.
Our baseline model is already able to output plausible results. However, it does
not solve occlusion, so we can visually confirm that an incorrect 2D pose is lifted
to an incorrect 3D pose. We demonstrate that our approach solves the problem
of occlusion that was not solved in the baseline approach.
Results on MPI-INF-3DHP. We evaluate the proposed approach on the
3DHP dataset [15] following the self-supervised protocols and metrics. The re-
sults are presented in Table 4. For a more comprehensive comparison, we report
the performance of several recently fully and weakly-supervised methods. The
proposed model outperforms all other self-supervised methods. In addition, the
visualization results for the test dataset are presented in Fig. 6. Our model yields
satisfactory results even for some dynamic action and unseen outdoor scenes.
Results on SkiPose. Our primary motivation is to train 3D human pose es-
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A. Results on 3DHP dataset B. Results on SkiPose dataset

Fig. 6. Qualitative results on the MPI-INF-3DHP dataset and the SkiPose dataset.

timation in-the-wild with multiple uncalibrated cameras. Moreover, we intend
to experiment on in-the-wild human activity data that cannot measure 3D an-
notation with traditional motion capture systems. The dataset, which is best
suited to these conditions, is the SkiPose [53, 54]. Our approach can handle all
these challenges since it operates without relying on static or calibrated cameras.
Table 5 shows our results in comparison to Rhodin et al. [53] and Wandt et al.
[12]. Rhodin et al. [53] considers a weakly supervised setting and known cam-
era locations, so direct comparison with ours is impossible. We outperform the
baseline approach [12] on the SkiPose and the qualitative results for the dataset
are presented in Fig. 6.

5 Conclusion

In this paper, we introduced a novel self-supervised learning method for monocu-
lar 3D human pose estimation from unlabeled multi-view images without camera
calibration. We exploited multi-view consistency to disentangle 2D estimations
into canonical predictions (a 3D pose and camera rotation) that were used to
refine the errors of the 2D estimations and reproject the 3D pose on the 2D
for self-supervised learning. We conducted quantitative and qualitative experi-
ments on three 3D benchmark datasets and achieve state-of-the-art results. The
results demonstrated that our method could be applied to real-world scenarios,
including dynamic outdoor human activities like sports.
Acknowledgements. This work was partially supported by the Institute of In-
formation & communications Technology Planning Evaluation (IITP) funded by
the Korea government(MSIT) (No. 2019-0-00079, Artificial Intelligence Gradu-
ate School Program(Korea University)) and the Technology Innovation Program
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