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Abstract. Diffusion probabilistic model has been proven effective in
generative tasks. However, its variants have not yet delivered on its ef-
fectiveness in practice of cross-dimensional multimodal generation task.
Generating 3D models from single free-hand sketches is a typically tricky
cross-domain problem that grows even more important and urgent due to
the widespread emergence of VR/AR technologies and usage of portable
touch screens. In this paper, we introduce a novel Sketch-to-Point Diffusion-
ReFinement model to tackle this problem. By injecting a new conditional
reconstruction network and a refinement network, we overcome the bar-
rier of multimodal generation between the two dimensions. By explic-
itly conditioning the generation process on a given sketch image, our
method can generate plausible point clouds restoring the sharp details
and topology of 3D shapes, also matching the input sketches. Extensive
experiments on various datasets show that our model achieves highly
competitive performance in sketch-to-point generation task. The code is
available at https://github.com/Walterkd/diffusion-refine-sketch2point.

1 Introduction

The challenge of being able to obtain a 3D model from a single sketch has been
studied for decades. Our goal is to provide precise and intuitive 3D modeling for
users with limited drawing experience. And we try to propose a method that is
tailored for point cloud reconstruction from a single free-hand sketch, comple-
menting to existing single-view reconstruction methods. Taking into account the
abstraction and distortion common in sketches by novice users, a sketch con-
tains far less information than an image due to its simplicity and imprecision.
This leads to a lack of important information such as color, shading and texture.
To tackle this cross-domain problem, a number of learning-based methods [49,
27] have been proposed that are trained by comparing rendered silhouettes or
depth maps with ground truth ones, with no involvement of the ground truth
in 3D shape. After obtaining depth and normal maps from the sketches, they
use the maps to reconstruct the 3D shapes. The absence of the ground truth 3D
shapes highly limits the capabilities of many sketch based 3D model generation
networks to restore the topology and fine details in 3D shapes.

We find that denoising diffusion probabilistic models (DDPM) [16] and their
variants [23, 28, 45] have achieved great success in the generation tasks. Espe-
cially in the 3D point cloud completion and generation task [29, 28]. Combined
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Fig. 1. The directed graphical model of the reconstruction process for point clouds.

with non-equilibrium thermodynamics, the reverse diffusion process can well
simulate the generation process of 3D point cloud from disorder to order. While
remarkable progress has been made in the point cloud generation tasks via GANs
[1, 41, 37], the GANs based methods have some inherent limitations for modeling
point clouds. Compared with GANs based generative work, the training proce-
dure of diffusion probabilistic model is more stable and probabilistic generative
model can achieve a better generation quality. However, the DDPM has rarely
been studied in multimodal generation tasks. The conditional DDPM [4, 23] is
also only applied in the homo-dimensional multimodal generation task and does
not demonstrate its effectiveness in cross-dimensional problem. Sketch to 3D
point cloud generation task can be treated as a conditional generation problem
in the framework of DDPM [50, 28]. Indeed, we find the point clouds generated by
a conditional DDPM often have a good overall distribution that uniformly covers
the shape of the object. Nonetheless, due to the probabilistic nature of DDPM
and the lack of a suitable network architecture to train the conditional DDPM
for sketch to 3D point cloud generation in the previous works, we find DDPM
reconstructed point clouds often lack flat surfaces and sharp details, which is
also reflected by their high evaluation metric loss compared with state-of-the-art
sketch to point cloud reconstruction methods in our experiments.

In this paper, we extend conditional DDPM to generate point cloud from
a single free-hand sketch, adapting the score function in the reverse diffusion
process to obtain the desired point distributions. Analogous to particles ther-
mally diffusing in the 3D space, we use the diffusion process to simulate the
transformation from the clean point distribution to a noise distribution. Like-
wise, we consider the reverse diffusion process to model the variation of point
distribution in point cloud reconstruction, through which we recover the target
point cloud from the noise. Our diffusion and sampling paradigm is shown in
Fig. 2. Firstly, we use the Conditional Sketch-to-Point Reconstruction Network
(CS2PRNet) to generate a point cloud by the DDPM conditioned on the input
sketch image. It can iteratively move a set of Gaussian noise towards a desired
and clean point cloud, corresponding to the input sketch. Following, the ReFine-
ment Network (RFNet), a shape discriminator, further refines the desired point
cloud generated from the CS2PRNet with the help of its capability to distinguish
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the ground truth ones and the reconstructed ones. In addition, RFNet can be
used to refine the relatively low quality point clouds generated by an accelerated
DDPM [22], so that we could enjoy an acceleration up to 20 times, while mini-
mizing the performance drop. In this way, the reconstruction results generated
by our model demonstrate good overall density distribution, sharp local details
and good match to input sketches.

To summarize, our contributions are as follows:

• For the first time, we extend conditional DDPM to be a good model with
an effective and efficient loss function to generate point cloud from a single
free-hand sketch, which provides a high-quality and easy-to-use 3D content
creation solution.

• We address the importance of sketch latent representation in the sketch-
based reconstruction task, and design a CS2PRNet to condition the genera-
tion process explicitly on sketch shape latent. And by using RFNet to refine
the reconstructed point clouds, we can generate point clouds with both sharp
3D characteristic details and good matching to input sketches.

• Extensive experiments on various datasets demonstrate that our model achieves
competitive performance in sketch based 3D modeling task.

2 Related Work

2.1 Single-View 3D Reconstruction

Restoration of 3D geometry from a single image is an ill-posed problem. Early ap-
proaches utilize shadings [17] and textures [46] to obtain clues about surface ori-
entations. With the emergence of large-scale 3D model datasets [2], data-driven
approaches are developed to infer category-specific shapes directly from image
features [3, 5, 9, 10, 19, 30, 33, 44], in the formats of voxels [5, 10], point clouds [9],
mesh patches [19, 33, 44, 8], and implicit representation [3, 30]. Recently, neural
rendering techniques [21, 24, 31, 40, 48] are proposed to alleviate the necessity for
ground truth 3D models in training, which is achieved by comparing the esti-
mated shape silhouette with an input image, thus enabling supervision with 2D
images only. Our method is based on the conditional generative encoder-decoder
network architecture of [9]. We extend the original approach by disentangling
image features into a latent shape space and utilizing the diffusion probabilistic
model [38, 16] for reconstruction process.

2.2 Sketch-Based Modeling

Modeling based on sketches is a long established problem that has been investi-
gated before deep learning methods become widespread. The earlier method [7],
inspired by lofting technique, modeled shapes from a single image and user input
strokes. Recent works [6, 13, 14, 18, 27, 36, 39, 42, 43, 49] utilizing deep learning
methods to guide the 3D modeling from user inputs. Only a handful of them,
however, focused on reconstructions from free-hand sketches [42, 43, 49]. Wang
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et al. [43] presented a retrieval-based method to reconstruct 3D shapes. Wang
et al. [42] adopted [9] for sketch-based 3D reconstruction by proposing an ad-
ditional image translation network that aims at sketching style standardization
to account for the variability of sketching styles. Sketch2model [49] solved the
sketch ambiguities by introducing a view code. Different from their work, we
regard the sketch latent representation, extracted from free-hand sketches, as a
condition, and rely on it to guide the reverse diffusion process.

2.3 Diffusion Models

The diffusion models considered in our work can be interpreted as diffusion-
based generative models, consisting of diffusion probabilistic models [38] and
denoising diffusion probabilistic models [16]. Diffusion models are learned with
two fixed Markov chains, controlling diffusion and reverse diffusion process. They
can produce better samples than those of GANs. To tackle the generative learn-
ing trilemma, some denoising diffusion GANs have been proposed [47, 25], which
reduce the sampling cost in diffusion models and perform better mode coverage
and sample diversity compared to traditional GANs. In these works, a diffusion
model whose reverse process is parameterized by condition GANs. Specifically
to reduce the generation cost of diffusion-based generative models, Wang et al.
[45] presented their latest Diffusion-GAN. The main distinction from denoising
diffusion GANs is that Diffusion-GAN does not require a reverse diffusion chain
during training and generation. Unlike their work, we introduced a shape dis-
criminator in the final step of reverse diffusion process, which we used to help us
better control the final 3D shape quality. Additionally, to address the slow sam-
pling rate of the diffusion model, we apply [22], a more faster sampling strategy,
through a defined bijection to construct the approximate diffusion process with
less steps S. The length of the approximate reverse process S is relatively small.

Besides solving the problem of high sampling costs, denoising diffusion GANs
can also be used in the study of multimodal generation task, such as text-to-
speech (TTS) synthesis [25], multi-domain image translation [47]. They are ca-
pable to be applied in cross-domain tasks is because they model each denoising
step using a multimodal conditional GAN. In parallel to the above GAN involved
approaches, conditional DDPM [4, 23] has also been demonstrated to work for
cross-modal generation tasks. However, they can currently only perform gen-
erative tasks in the same dimension, while our method can perform 2D-to-3D
generation process by matching each shape latent variable with give 2D reference
sketch image.

3 Methods

Given a single hand-drawn sketch in the form of line drawings, our method aims
to reconstruct a 3D point cloud. We utilize the diffusion probabilistic model
for the generation of 3D point cloud from a single free-hand sketch. Then we
extend the diffusion model architecture by decomposing sketch image features
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Fig. 2. The overview of our proposed model’ s framework. It illustrates the training
process and the reconstruction process. Our method utilizes the encoder-decoder ar-
chitecture. The output of the decoder is refined by a shape discriminator Ds, obtaining
a high quality point cloud by one step from a coarse point cloud.

into a latent shape space, and condition the generation process on the sketch
shape latent. To better accommodate the cross-modal generation task, a new
conditional reconstruction network is also provided. And a refinement network
is applied to preserve the reconstructed shape quality.

3.1 Background on Diffusion Probabilistic Models

We assume qdata ∼ q(x0
i ) to be the distribution of the groundtruth point cloud

xi in the dataset. And qultimate = N (03N , I3N×3N ) to be the ultimate latent
distribution, where N is the standard Gaussian normal distribution and N is the
amount of points per point cloud. Then, the conditional diffusion probabilistic
model of T steps consists of a diffusion process and a reverse sampling process.

The Diffusion Process The diffusion process is implemented by a forward
Markov chain. We use the superscript to denote the diffusion step t. For concise-
ness, we omit the subscription i in the following discussion. From clean data x0,
the diffusion process is to add Gaussian noise to get x1:T:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), where q(xt|xt−1) = N (xt;
√
1− βtx

t−1, βtI) . (1)
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We define the Markov diffusion kernel as q(xt|xt−1). The role of the kernel is to
add small Gaussian noise to disrupt the distribution of xt−1. The whole process
slowly injects Gaussian noise into the clean data distribution qdata until the
output distribution is deformed to qultimate according to a predefined variance
schedule hyper-parameters βt, t = 1, ..., T , which control the step sizes of the
diffusion process.

The Reverse Sampling Process The points are sampled out of a noise dis-
tribution p(xT ) which is an approximation to q(xT ). Let p(xT ) ∼ pstart be the
input noise variable. The reverse process, conditioned on sketch shape latent zs,
converts xT to x0

r through a backward Markov chain:

pθ(x
0:T−1
r |xT , zs) =

T∏
t=1

pθ(x
t−1|xt, zs) . (2)

pθ(x
t−1|xt, zs) = N (xt−1;µθ(x

t, zs, t), σ
2
t I) . (3)

The mean µθ(x
t, zs, t) is a neural network parameterized by θ and the vari-

ance σ2
t is a time-step dependent constant closely connected to βt. To gener-

ate a sample conditioned on zs, we first sample from the starting distribution
p(xT ) ∼ N (03N , I3N×3N ), then draw xt−1 via pθ(x

t−1|xt, zs), where t decreases
from T to 1. And x0

r is the sampled target shape.

Training To make likelihood pθ(x
0) tractable to calculate, we use the variational

inference to optimize the negative log-likelihood −logpθ(x
0). [16] introduced a

certain parameterization for µθ that can largely simplify the training objective,
known as variational lower bound (ELBO). We use the notation αt = 1 − βt,

and αt =
∏t

i=1 αi. The parameterization is σ2
t = 1−αt−1

1−αt
βt, and µθ(x

t, zs, t) =
1√
αt
(xt − βt√

1−αt
ϵθ(x

t, zs, t)), where ϵθ is a neural network taking noisy point

cloud xt ∼ q(xt|x0) = N (xt;
√
αtx

0, (1− αt)I), diffusion step t, and conditioner
zs as inputs. The neural network ϵθ learns to predict the noise ϵ added to the
clean point cloud x0, which can be used to denoise the noisy point cloud xt =√
αtx

0 +
√
1− αtϵ. Then we minimizing the training objective L by adopting

the variational bound:

L(θ) = Eq[

T∑
t=2

N∑
i=1

DKL(q(x
t−1
i |xt

i, x
0
i )||pθ(xt−1

i |xt
i, zs))−

N∑
i=1

logpθ(x
0
i |x1

i , zs)] .

(4)
To be computable, we expand the ELBO into a sum of KL divergences, each of
which compares two Gaussian distributions and therefore they can be computed
in closed form. The detailed derivations, including the definition of q(xt−1

i |xt
i, x

0
i ),

are provided in the supplementary material.
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Fig. 3. The illustration of the Conditional Sketch-to-Point Reconstruction Network.
Our reconstruction network uses long range convolution skip connections. We use two
main types of blocks, convolutional block and attentional block.

3.2 Conditional Sketch-to-Point Reconstruction Network

In this section, we present the architecture of Conditional Sketch-to-Point Re-
construction Network ϵθ (see Fig. 3 for an illustration). With inputting the noisy
point cloud xt, the sketch shape latent zs, the diffusion step t and the variance
schedule βt, the output of network ϵθ is per-point difference between xt and xt−1.
In addition, ϵθ should also effectively incorporate information from zs. The goal
is to infer not only the overall shape but also the fine-grained details based on
zs. We design a neural network that achieves these features.

Before the introduction of the network, we need to resolve the role of the
condition. Since the work in [28] has been shown to model the complex condi-
tional distribution in 3D shape domain, we adopt them to approximate the true
reverse sampling distribution pθ(x

t−1|xt, zs), formulated similar to [16]. Unlike
the [28], to achieve the goal of multimodal reconstruction, we use the latent
shape representation extracted from sketch image. The main difference is that,
in [28], x0 is predicted as a deterministic mapping of xt conditioned on a 3D
object shape latent encoded in x0 itself, while in our case x0 is produced by
the generator with latent variable zs extracted from a sketch image correspond-
ing to its 3D object. This is the key difference that allows our reverse sampling
distribution pθ(x

t−1|xt, zs) to become multimodal and complex in contrast to
unimodal denoising diffusion probabilistic model in [28].

In [28], its MLP based generative network predicts the mean value of the
next coordinate distribution of a point based on the latent shape representa-
tion z, with input of the coordinate xt+1

i from the previous step. However, since
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the information extracted from a sketch image is not as much as that encoded
in a 3D object, we think that the MLP is not suitable in our task, because
it may lose some information about the accurate positions of the points. Thus
we need a generative network that can better effectively form an associative
mapping between the information extracted from the 2D sketch image and the
coordinates of the 3D object. We designed a conditional generative network to
accomplish our goal satisfactorily. The overall architecture is shown in Fig. 3.
The reverse diffusion kernel is parameterized by ϵθ(x

t
i, t, zs). We put the detail of

reverse diffusion kernel to the supplementary material. We use a fixed linear vari-
ance schedule β1, ..., βT to represent the timetable of the reconstruction process.
Time embedding vector is comprised of [βt, sin(βt), cos(βt)] and is used to ensure
conditioning on t. We implement the reconstruction network using a variant of
PVCNN [26], which consists of a series of ConcatSquashConv1d layers [12]. The
dimension of the ConcatSquash-CNN used in our model is 3-128-256-512-1024-
512-256-128-3, and we use the LeakyReLU nonlinearity between the layers. The
input to the first layer is the 3D position of points xt

i. And we use the quaternion
c = [βt, sin(βt), cos(βt), zs] as the context embedding vector. Then the quater-
nion c is inserted to every level of the reconstruction network. The features from
zs are transformed and then aggregated to the point xt

i through attention mech-
anism. The attentional block are applied four times and features are eventually
propagated to the original input point cloud. More details about convolutional
block and attentional block are provided in supplementary material.

3.3 ReFinement Network: A Shape Discriminator

After training the diffusion process, the model is able to reconstruct the point
cloud from a single free-hand sketch. However, due to the limited information
extracted from sketch images, point clouds reconstructed from our model trained
only by the diffusion process will show local distortions and deformations. There-
fore, we introduce a shape discriminator Ds to alleviate such distortions. By
introducing an adversarial loss, the shape discriminator is trained in an adver-
sarial manner together with the encoder and decoder. It functions as a trade-off
between denoising and shape quality. Under the influence of the discriminator,
our generative network may not produce a shape in an exact match to the input
sketch at a certain angle, but is more capable of taking into account some of
the characteristics that a 3D object has, such as topological structure, to the
generation results.

Given xT , our conditional reconstruction network first generates x0
r. The

discriminator is trained to distinguish between the real x0 and fake x0
r. Then we

train the conditional 3D point cloud generator pθ(x
t−1|xt, zs) to approximate

the true reverse sampling distribution q(xt−1|xt) with an adversarial loss that
minimizes a divergence Dadv in the last reverse sampling step:

min
θ

Eq[

N∑
i=1

Dadv(q(x
0
i |x1

i )||pθ(x0
i |x1

i , zs))] , (5)

1529



A Diffusion-ReFinement Model for Sketch-to-Point Modeling 9

where fake samples from pθ(x
0
r|x1, zs) are contrasted against real samples from

q(x0|x1). We denote the discriminator as Dϕ(x
0
r, x

1), with parameters ϕ. It takes
the 3-dimensional x0

r and x1 as inputs, and decides whether x0
r is a plausible

reverse sampled version of x1. Given the discriminator, we train the genera-
tor by maxθEqEpθ

[log(Dϕ(x
0
r, x

1))], which updates the generator with the non-
saturating GAN objective [11]. To summarize, the discriminator is designed to be
diffusion-step-dependent and 3D topology-aware to aid the generator to achieve
high-quality sketch-to-point reconstruction.

Fig. 4. Some representative examples of point clouds reconstructed by our model.

4 Experiments

In this section, we evaluate our proposed model’s performance on sketch-to-point
generation problem. We first perform case studies to show the effectiveness of
our multimodal Diffusion-ReFinement model. Quantitative and qualitative eval-
uations on both synthetic and free hand-drawn sketches are presented in Sec-
tion 4.3. We also provide some additional insight into our model by conducting an
ablation study in Section 4.4 and proposing Feature Map module in Section 4.5.

4.1 Experimental Setup

Datasets For sketch to 3D point cloud generation experiments, we employ
the 3D shapes from ShapeNetCorev2 [2] to match our corresponding sketch
datasets. Every point cloud has 642 points. And every category in the dataset is
randomly split into training, testing and validation sets by the ratio 80%, 15%,
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5% respectively. For the corresponding sketch datasets, at the pretrain stage,
we use ShapeNet-Synthetic sketches to train our model. We use the same ap-
proach as [49] to create the ShapeNet-Synthetic dataset using rendered images
provided by [20]. We use this dataset to pretrain the model, under the same
train/test/validation split as said before. At the fine-tuning stage, to quantita-
tively evaluate our method on free-hand sketches and benefit further research, we
use ShapeNet-Amateur sketches [34] to fine-tune our pretrained model. It con-
tains a chair dataset with 902 sketch-3D shape quadruplets and a lamp dataset
with 496 sketch-3D shape quadruplets.

Evaluation Metrics Following prior works [1], we use two evaluation metrics to
compare the quality of the reconstructed 3D point clouds to reference shapes: the
Chamfer Distance (CD) and the Earth Mover’s Distance (EMD) [35]. Chamfer
distance measures the squared distance between each point in one point set
to its nearest neighbor in the other set, while the EMD is the solution of the
optimization problem that aims at transforming one set to the other.

4.2 Implementation Details

As the general training objective and algorithms in the previous section lay the
foundation, we implement a model to reconstruct a point cloud from a single free-
hand sketch based on the probabilistic model. We use a pretrained ResNet-18 [15]
as our sketch image feature extractor, also can be called the sketch shape latent
encoder and leverage the reverse sampling process presented in Section 3.1 for
decoding. Expanding on Equation (4) and (5), we train the model by minimizing
the following adapted objective:

L(θ) = Eq[

T∑
t=2

N∑
i=1

DKL(q(x
t−1
i |xt

i, x
0
i )||pθ(xt−1

i |xt
i, zs))−

N∑
i=1

logpθ(x
0
i |x1

i , zs)

+

N∑
i=1

Dadv(q(x
0
i |x1

i )||pθ(x0
i |x1

i , zs))] .

(6)
To decode a point cloud conditioned on the latent code zs, we sample some points
xT
i from the noise distribution p(xT

i ) and pass the points through the reverse
Markov chain pθ(x

0:T
i |zs) defined in Equation (2) to acquire the reconstructed

point cloud X0 = {x0
i }Ni=1. For diffusion model, we set the variance schedules to

be β1 = 0.0001 and βT = 0.05, and βt’ s (1 < t < T) are linearly interpolated.
For diffusion optimization, we use Adam optimizer with learning rate starting
from e−3 and ended at e−4. For discriminator, we also use Adam optimizer with
learning rate e−4. And we train a separate model for each category respectively.

4.3 Comparisons and Evaluations

We quantitatively and qualitatively compare our method with the following
state-of-the-art single sketch image reconstruction models: TMNet [32], Pixel2Mesh
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Table 1. Comparison of single sketch image to point cloud reconstruction performance.
CD is multiplied by 103 and EMD is multiplied by 102.

Category
CD EMD

TMNet Pixel2Mesh PSGN 3D-R2D2 OccNet Ours TMNet Pixel2Mesh PSGN 3D-R2D2 OccNet Ours

AmaChair 3.716 5.084 2.977 4.145 3.450 3.250 12.59 14.34 10.23 13.69 10.08 10.19
AmaLamp 6.856 9.339 6.453 7.947 6.293 6.152 17.75 18.81 17.38 17.60 16.73 16.33

AmaMean 5.286 7.212 4.715 6.046 4.872 4.701 15.17 16.58 13.81 15.65 13.41 13.26

SynAirplane 1.788 2.656 1.577 2.147 1.834 1.448 7.03 8.25 7.55 6.74 6.61 6.39
SynBench 2.871 3.477 2.755 3.153 2.425 2.623 9.27 14.01 10.22 9.81 8.97 8.84
SynCabinet 5.106 5.859 4.936 5.533 4.824 4.760 11.03 12.50 12.09 11.95 11.19 10.64
SynCar 2.840 3.312 2.116 3.129 2.417 2.291 7.31 8.29 7.76 7.66 7.08 7.26
SynChair 3.190 4.340 2.692 3.079 2.913 2.865 9.92 12.57 10.15 9.75 9.87 9.67

SynMonitor 3.957 4.481 3.833 4.059 3.974 3.713 9.84 11.96 10.48 10.03 9.84 9.77
SynLamp 6.023 7.706 5.865 6.975 5.778 5.564 16.88 17.63 16.14 17.04 16.25 15.92
SynSpeaker 5.725 6.479 5.654 5.942 5.514 5.323 12.71 13.87 13.12 12.82 12.35 12.29
SynRifle 1.425 1.874 1.392 1.454 1.238 1.374 6.99 7.58 7.12 7.07 6.81 6.90
SynSofa 4.357 4.865 4.229 4.257 4.231 4.152 11.91 13.57 12.42 12.19 12.05 11.62
SynTable 4.581 5.827 4.428 5.077 4.024 4.164 11.43 12.90 12.54 12.05 11.89 11.70

SynTelephone 2.589 3.183 2.241 2.745 2.451 2.172 7.66 8.96 8.35 7.73 7.62 7.51
SynVessel 2.259 3.258 2.041 2.423 2.174 2.146 7.62 9.21 8.90 8.17 7.61 7.23

SynMean 3.593 4.409 3.366 3.844 3.369 3.304 9.97 11.64 10.53 10.23 9.86 9.67

Table 2. Model’s performance on ShapeNet-Synthetic dataset and ablation study for
Discriminator’s effectiveness.

Training Strategy III
Airplane Bench Cabinet Car Chair Monitor Lamp
CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

Trained on Synthetic sketches 1.889 6.78 2.955 9.27 4.936 11.50 2.851 8.16 3.121 9.91 4.112 10.96 6.019 16.18
After Discriminator 1.448 6.39 2.623 8.84 4.760 10.64 2.291 7.26 2.865 9.67 3.713 9.77 5.564 15.92

Training Strategy III
Speaker Rifle Sofa Table Telephone Vessel Mean

CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

Trained on Synthetic sketches 5.542 12.78 1.893 7.38 4.722 12.07 4.477 11.90 2.524 7.86 2.532 8.03 3.659 10.21
After Discriminator 5.323 12.29 1.374 6.90 4.152 11.62 4.164 11.70 2.172 7.51 2.146 7.23 3.304 9.67

[44], PSGN [9], 3D-R2N2 [5], OccNet [30], using point clouds from thirteen cat-
egories in ShapeNet. The comparison is performed on ShapeNet-Synthetic and
ShapeNet-Amateur datasets. For volume-based methods TMNet and Pixel2Mesh,
both metrics are computed between the ground truth point cloud and 642 points
uniformly sampled from the generated mesh. Since the outputs of Pixel2Mesh
are non-canonical, we align their predictions to the canonical ground truth by
using the pose metadata available in the dataset. Results are shown in Table 1.
On chair of both datasets, our method outperforms other methods except PSGN
when measured by CD. The EMD score of our method pushes closer towards
the OccNet performance when tested on Amateur dataset and reaches the best
performance when tested on Synthetic dataset. While on category of lamp, our
approach outperforms other methods in both evaluation metrics for two datasets.
Including these two categories, our approach outperforms other five baselines on
most of the categories. Notably, from Tables 1 and 2, when both training and
testing are conducted on the ShapeNet-Synthetic dataset, our model can have
a better performance in both CD and EMD. Also, the visualization of recon-
structed point clouds in Fig. 5 validates the effectiveness of our model compared
with other baselines. While OccNet can reconstruct the rough shapes, it fails to
capture the fine details of the geometry and is not able to model the topology of
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Table 3. Comparison of 2D silhouette IoU score on ShapeNet-Synthetic and ShapeNet-
Amateur datasets. Generated shapes are projected to the ground truth view and we
calculate the IoU score between the projected silhouettes and the ground truth ones.

Category Airplane Bench Cabinet Car Chair Monitor Lamp Speaker Rifle Sofa Table Telephone Vessel Mean

TMNet 0.593 0.625 0.810 0.821 0.709(0.683) 0.784 0.606(0.585) 0.790 0.672 0.796 0.703 0.813 0.706 0.713
Pixel2Mesh 0.532 0.564 0.734 0.772 0.675(0.652) 0.729 0.548(0.530) 0.713 0.596 0.738 0.625 0.750 0.635 0.653

PSGN 0.652 0.633 0.832 0.866 0.744(0.710) 0.803 0.619(0.599) 0.808 0.633 0.813 0.712 0.848 0.724 0.733
3D-R2D2 0.565 0.573 0.786 0.796 0.718(0.707) 0.765 0.579(0.554) 0.766 0.618 0.805 0.678 0.797 0.688 0.693
OccNet 0.641 0.684 0.873 0.839 0.736(0.712) 0.788 0.643(0.622) 0.812 0.655 0.802 0.745 0.823 0.739 0.741

Ours 0.679 0.667 0.858 0.868 0.732(0.715) 0.812 0.662(0.627) 0.827 0.647 0.820 0.731 0.854 0.756 0.750

surface. PSGN performs generally better than OccNet in terms of the capability
of modeling the fine structures. However, due to the limitations of the vanilla
architecture, it struggles to reconstruct shapes with complex topology. In com-
parison, we believe that in the vast majority of cases, our approach has surpassed
other approaches in terms of visual quality and is better at restoring detailed
information of the corresponding sketches. We are able to generate point clouds
with complex topology while maintaining high reconstruction accuracy.

We also compare projected silhouettes of generated 3D models with ground
truth silhouettes, and show the results in Table 3. It shows our model is more
powerful at matching input sketches.

Fig. 5. Qualitative comparisons with other five baseline methods on free-hand sketches
from the ShapeNet-Amateur Sketch dataset.

4.4 Ablation Study

In this section, we conduct controlled experiments to validate the importance of
different components. Table 4 presents the comparison of the generator network
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Fig. 6. Ablation study for shape discriminator. Without shape discriminator, the out-
put shape may not resemble real objects(middle row).

using CNN and MLP respectively. Our approach has significantly outperformed
the MLP based method across all datasets. In Table 5 and Table 2, we investigate
the impact of the discriminator and validate the effectiveness of discriminator
design. As is illustrated in Section 3.2 and Section 3.3, our generation result relies
on both input sketch image and a discriminator refinement. With the adjustment
of the discriminator, the network is expected to generate finer details to match
the input sketch. Tables 5 and 2 show that with the discriminator being put into
use, both metrics improved in all categories. Fig. 6 shows the importance of the
proposed shape discriminator to the generation results. Without shape discrim-
inator, the output point cloud may get distorted and not resemble a real object.
While with the inclusion of a discriminator, we can get the desired point cloud
with promising shape quality and better restore the topology of a 3D object. In
Table 5, we also demonstrate the effectiveness of our Fine-Tune training strategy.
Since the size of ShapeNet-Amateur dataset is relatively small and the diffusion
model normally requires a large dataset, our model cannot perform promisingly
if trained directly and only on the ShapeNet-Amateur dataset, so we decided to
train on the ShapeNet-Synthetic dataset with a larger amount of data, and then
fine-tune the model using the ShapeNet-Amateur dataset after it has basically
converged. From the final results, subsequent to such a training strategy, apply-
ing the discriminator last when the fine-tuning has almost converged, our model
is able to have a high performance on the ShapeNet-Amateur dataset.

Table 4. Comparison of the Con-
ditional Reconstruction Network
using CNN and MLP respectively.
Tested Dataset Metric MLP Based CNN Based

AmaChair CD 4.739 3.25
EMD 10.84 10.19

SynChair CD 3.983 2.865
EMD 10.55 9.67

AmaLamp CD 7.467 6.152
EMD 17.42 16.33

SynLamp CD 6.571 5.564
EMD 16.75 15.92

Table 5. Model’s performance on dif-
ferent training stages and ablation
studies for effectiveness of Discrimina-
tor and Fine-Tune training strategy.

Training Strategy I
AmaChair AmaLamp
CD EMD CD EMD

Trained on Synthetic sketches 9.620 18.33 18.790 30.83
Fine tune on Amateur sketches 3.766 10.35 6.473 17.18

After Discriminator 3.250 10.19 6.152 16.33

Training Strategy II
AmaChair AmaLamp
CD EMD CD EMD

Trained on Amateur sketches 6.376 12.78 8.078 19.45
After Discriminator 5.575 12.08 7.867 16.65

1534



14 D. Kong et al.

Fig. 7. The Feature Map module maps features from the sketch image to the noisy
point cloud and demonstrates how features guide the movement of points from the
noisy point cloud to the desired point cloud.

4.5 Sketch-Point Feature Map (FM)

Further, to study how the sketch image influence the point cloud reconstruction
process, we implement a Feature Map (FM) module. The FM module transmits
information from the sketch image to the denoising process. The FM module
maps the features from sketch image to noisy points in the reconstruction net-
work, which are {xi|1 ≤ i ≤ N}. Fig. 7 illustrates this process. In this way, the
reconstruction network can utilize local features of the sketch image to manip-
ulate the input noisy point cloud to form a clean and desired point cloud. The
key step in this process is to map features from sketch image to {xi|1 ≤ i ≤ N}.
We adopt a similar strategy from [29], except that we replace incomplete point
clouds with sketches. Features of sketch image are transformed through a shared
MLP, and then aggregated to the points xi through the attention mechanism,
which is a weighted sum of the features from part of the sketch. We set a large
distance to define sketch parts in FM module. This makes FM module have
large receptive fields, so that we can query a large part of the sketch image. And
we leverage the spatial correspondence between the different parts of the sketch
image and the point cloud through the proposed Feature Map module to infer
high level 2D-to-3D structural relations.

5 Conclusions

In this paper, we propose the Sketch-to-Point Diffusion-ReFinement model for
cross-domain point cloud reconstruction. A novel conditional reconstruction net-
work is presented, to condition the generation process explicitly on sketch shape
latent, which emphasizing the importance of sketch latent and brings controlla-
bility to the output point cloud. From observation and evaluation, a refinement
network provides users to restore the point clouds with sharp 3D characteris-
tic details and topology. Experimental results demonstrate that the proposed
model achieves the state-of-the-art performance in sketch to point cloud gener-
ation task. We hope our method can inspire further researches in cross-domain
3D reconstruction and sketch-related areas.
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