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Abstract. RGB-D Salient Object Detection (SOD) is a fundamental
problem in the field of computer vision and relies heavily on multi-modal
interaction between the RGB and depth information. However, most ex-
isting approaches adopt the same fusion module to integrate RGB and
depth features in multiple scales of the networks, without distinguishing
the unique attributes of different layers, e.g., the geometric informa-
tion in the shallower scales, the structural features in the middle scales,
and the semantic cues in the deeper scales. In this work, we propose a
Scale Adaptive Fusion Network (SAFNet) for RGB-D SOD which em-
ploys scale adaptive modules to fuse the RGB-D features. Specifically,
for the shallow scale, we conduct the early fusion strategy by mapping
the 2D RGB-D images to a 3D point cloud and learning a unified repre-
sentation of the geometric information in the 3D space. For the middle
scale, we model the structural features from multi-modalities by explor-
ing spatial contrast information from the depth space. For the deep scale,
we design a depth-aware channel-wise attention module to enhance the
semantic representation of the two modalities. Extensive experiments
demonstrate the superiority of the scale adaptive fusion strategy adopted
by our method. The proposed SAFNet achieves favourable performance
against state-of-the-art algorithms on six large-scale benchmarks.

Keywords: RGB-D salient object detection · Multi-modal analysis and
understanding · Multi-modal fusion strategy

1 Introduction

Salient object detection, aiming to locate and recognize the most attractive re-
gions in the scene, has received wide research interest in recent years. As an
effective pre-processing method, it has been applied to various computer vision
tasks, such as scene classification [33], visual tracking [25], image editing [48], etc.
Although RGB SOD methods [37,38,39] achieve satisfactory results in natural
scenes, their performances are limited when the scenes are complicated or the
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Fig. 1. Saliency prediction results from different fusion methods. From left to right:
the input RGB and depth images, the ground truth images, saliency maps of the state-
of-the-art detectors, DANet [45], DCF [14], CMWNet [20], and our proposed SAFNet.
DANet and DCF employ the same fusion methods in multiple scales. CMWNet and
SAFNet design adaptive fusion modules for different scales. Compared with them, the
SAFNet can generate more accurate predictions by exploring complementary informa-
tion from cross-modalities with effective fusion strategies.

appearance of targets is not dominant in the RGB space. With the development
of depth cameras, researchers can learn geometric and location information from
the depth image which is complementary to the RGB image. It helps identify
salient objects from distractors and leads to discriminative SOD models even in
very cluttered environments (see Fig. 1).

Considering that there is a large gap between the distributions of RGB and
depth data, existing RGB-D SOD algorithms usually focus on exploring effec-
tive fusion strategies to model the complementary information between the two
modalities. These fusion strategies can be classified into early fusion [12,45],
mid-level fusion [43,3,20,41,14,19,15], and late fusion [10,5]. Although these fu-
sion strategies have improved the performance of saliency models, some issues
still exist to be considered. First, the early fusion strategy assembles the RGB-D
images (e.g., concatenation) and then feeds them into feature extractors. How-
ever, the RGB and depth images incorporate asynchronous information. The
simple concatenation operation will eliminate distinctive features provided by
the two modalities. In addition, feature extractors (e.g., VGG [34], ResNet [11])
are usually pre-trained on the RGB-based benchmarks, they are insufficient to
learn both appearance and geometric features from the combined RGB-D data.
Second, mid-level fusion strategies are the most important operations to inte-
grate the cross-modal features from the RGB and depth images. However, most
existing algorithms design and employ the same fusion operation in different
scales of the network, e.g., the DANet [45] and DCF [14] in Fig. 1. They ignore
unique attributes of features in multiple scales, such as the appearance and geo-
metric information in the shallower scales, the structure cues in the middle scales,
and the high-level semantic feature in the deeper scales. Despite CMWNet [20]
considering the diversity of multi-scale features, it suffers from the inferior rep-
resentation ability of fusion modules. Therefore, these methods demonstrate a
limited capacity to explore discriminative cross-modal features from different
levels of the network and lead to sub-optimal performance of the final predic-
tion. Such as the visual examples in Fig. 1, DANet, DCF, and CMWNet fail to
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capture the true targets (the 1st row) and wrongly respond to the distractive
regions in the image background (the 2nd row).

To address the above issues, a Scale Adaptive Fusion Network (SAFNet)
is proposed for RGB-D SOD. We conduct in-depth studies of both early and
mid-level fusion strategies and encourage the multi-scale interactions of cross-
modalities. The SAFNet is a two-stream network and adaptively integrates RGB-
D features in shallow, middle, and deep scales by a cross-modal fusion encoder.
For the first issue, instead of early fusing the RGB-D images in the 2D space, we
project them into the 3D space and represent them as the point cloud data. By
learning the point cloud representation in the 3D space, we can explicitly model
the pixel-wise affinity and explore the appearance and geometric information.
For the second issue, we elaborate on the fusion module for each scale according
to its characteristic to fully exploit the complementary information from the two
modalities. Specifically, to combine cross-modal features from the shallower scale
without eliminating the geometric information, we propose a Point Cloud based
Fusion (PCF) method. It employs the PointNet++ [31] to learn point-wise repre-
sentation in the 3D point cloud space, so that the network can explore detailed
cues around the neighbourhood. For the middle scale features which abstract
structure information from the shallower scale, we propose a Spatial Contrast
Refinement (SCR) module to refine the integrated RGB-D features. By exploit-
ing spatial contrastive information from the depth data, the network can learn
more discriminative representations from the RGB-D features to better distin-
guish the targets from the background. To enhance the representation ability
of the semantic feature on the deep scale, we design a Depth-aware Channel-
wise Attention (DCA) module to associate the synchronous feature from the
cross-modalities.

The main contributions of our work are three folds: (1) (1) We propose a
SAFNet for the RGB-D SOD. Effective early fusion and mid-level fusion strate-
gies are studied in this work. We focus on designing scale adaptive fusion modules
to sufficiently explore the complementary information from the cross-modalities.
(2) To fuse the multi-modal features, in the shallow scale, a PCF module is pro-
posed to integrate the appearance and geometric information in the 3D point
cloud space; in the middle scale, an SCR module is designed to model the struc-
tural information in the scene; in the deep scale, a DCA module is adopted to
enhance the representation ability of semantic cues. (3) Quantitative and qual-
itative on six large-scale datasets demonstrate the effectiveness of the proposed
fusion strategies, and our method achieves favourable performance compared
with the state-of-the-art algorithms.

2 Related Work

2.1 RGB-D SOD Methods

With the development of convolutional neural networks, the performances of
RGB-D SOD methods have gained significant improvement compared to tradi-
tional hand-crafted based methods [18,4,32]. The recent RGB-D SOD models
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can be roughly categorized into single-stream methods [47,45] and two-stream
methods [30,43,35,46]. The work [47] uses a small encoder to extract prior in-
formation from the depth image to enhance the robustness of the main RGB
stream. Zhao et al. [45] design a lightweight single stream network that employs
the depth map to guide the early and mid-level fusion between the RGB-D im-
ages. Although single stream networks can save computation costs and lead to
real-time models, they are limited in representing geometric features of the depth
image and integrating the multi-modal information. In contrast, two-stream net-
works separately extract features of RGB-D images and fuse them in different
scales. For example, Zhang et al. [43] propose an asymmetric two-stream net-
work, in which a flow ladder module is designed to explore the global and lo-
cal cues of RGB image, and a depth attention module is designed to improve
the discriminative ability of the fused RGB-D feature. The work [46] trains a
specificity-preserving network to explore modality-specific attributes and shared
information of RGB-D images. In addition, various learning strategies are ex-
ploited to enhance the interaction between the multi-modalities. In work [42], the
mutual learning strategy is applied on each scale of the two-stream network to
minimize the distance of the representations of RGB-D modalities. Ji et al. [14]
first calibrate the depth data using a learning strategy and then fuse the RGB-D
features with a cross reference module. The work [44] employs the self-supervised
representation learning method to pre-train the network using only a few unla-
belled RGB-D datasets, thereby learning good initialization parameters for the
downstream saliency prediction task.

2.2 Cross-Modality Fusion Models for RGB-D SOD

The main concerns of RGB-D SOD methods are how to 1) integrate comple-
mentary information between the RGB-D modalities and 2) enhance the com-
bination of the consistent semantic features from RGB-D images. To this end,
recent RGB-D SOD methods design early fusion and mid-level fusion strate-
gies to achieve the in-depth fusion between the two modalities. The early fusion
based methods [24,45] usually concatenate the RGB-D images on the channel
dimension. However, they ignore the distribution difference between the multi-
modalities. Therefore, researchers make efforts to design effective mid-level fusion
methods. In [43,45], attention based modules are proposed to select informative
depth cues and provide guidance for the interaction of the two modalities. A
cross reference module is proposed in [14] to fuse complementary features from
RGB-D images. Zhou et al. [46] employ a cross-enhanced integration module to
fuse RGB-D features in different scales of the encoder, and design a multi-modal
feature aggregation module to gather modality-specific features in the decoder.
Sun et al. [35] utilize a depth-sensitive attention module to achieve automatic
multi-modal multi-scale integration for RGB-D SOD.

Although the above methods design effective modules or training strategies
for the cross-modal fusion of two modalities, they usually apply the same fusion
modules on different scales and thus ignore the distribution difference of features
in multiple scales. In this work, we study the unique attribute of each scale and
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Fig. 2. Architecture of the proposed SAFNet.

design adaptive feature fusion methods for them, which leads to more satisfactory
saliency detection results.

3 Algorithm

In this section, we first overview the architecture of the proposed SAFNet and
then elaborate on each component of the network. The structure of the SAFNet
is shown in Fig. 2.

3.1 Overview

Most existing methods for RGB-D SOD employ the same cross-modal fusion
operation in different scales of the network, thus inevitably ignoring the distinc-
tive attributes of multi-scale features. In this work, we propose a two-stream
network, SAFNet, to adaptively integrate multi-modality features in different
scales with customized fusion modules.

Given the paired RGB image Ic and depth image Id, we adopt a two-stream
network to extract the multi-scale features of the two modalities separately. Fol-
lowing the work [14], for each stream, we employ the architecture of work [37]
as the backbone to generate hierarchical features. Its detailed structure is shown
in Fig. 3. The three-level features before the second partial decoder are used as
the shallow, middle, and deep scale features, respectively, which are denoted as
{f i

c}3i=1 for the RGB image, and {f i
d}3i=1 for the depth image. It is followed by

a scale adaptive fusion encoder which integrates the hierarchical features from
cross-modalities according to their scale attributes. Specifically, for the shal-
low scale, we propose a Point Cloud Fusion (PCF) module which utilizes the
PointNet++ method as the feature extractor Fshallow(·, ·) to learn the feature
representation in the 3D point cloud space, fshallow = Fshallow(f

1
c , f

1
d ). For the

middle scale, we design a Spatial Contrast Refinement (SCR) module to refine
the integrated multi-modal feature by exploring the spatial contrastive informa-
tion. By this means, we can model the structural features in the scene. This pro-
cess is denoted as fmiddle = Fmiddle(f

2
c , f

2
d ). For the deep scale, a Depth-aware
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Fig. 3. Architecture of the RGB stream and depth stream. The implementations of
the convolutional block, the holistic attention module, and the partial decoder follow
the work [37].

Channel-wise Attention (DCA) module is adopted to enhance the representa-
tion ability of semantic cues from the RGB-D modalities, fdeep = Fdeep(f

3
c , f

3
d ).

The hierarchical integrated features, fshallow, fmiddle, and fdeep are then fed into
the Gated Fusion Module (GFM) to generate a saliency map Sfusion. The final
saliency map can be obtained by averaging Sfusion and the saliency predictions
of the RGB and depth streams, SRGB and SD. The architecture of the fusion
stream is illustrated in Fig. 4. Note that each partial decoder in the network
generates a saliency map, which is supervised by the ground truth image.

3.2 Scale Adaptive Fusion Encoder

In this section, we present the architecture of the scale adaptive fusion encoder
and elaborate on fusion modules at shallow, middle, and deep scales.

Point Cloud Fusion Module for Shallow Scale. Since features from RGB
and depth modalities in the shallow scales, f1

c and f1
d ∈ RH1×W1×C1 , incorporate

valuable cues of appearance and geometric information, it is more suitable to
integrate them in the 3D space. We first project the input RGB-D images into
the point cloud representation by transforming the 2D image coordinate (x, y)
to the world coordinate system (x

′
, y

′
, z

′
),x

′

y
′

z
′

 =
Id(x, y)

s

 1
fx

0 0

0 1
fy

0

0 0 1

x
y
1

 , (1)

where Id(x, y) is the depth value in position (x, y), fx and fy are the focal
length parameters, and s is the scaling factor of the camera. The point-wise
feature in the point cloud space can be initially represented by concatenating
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the shallow scale features of RGB and depth images along the channel dimension,
fpcd = [f1

c , f
1
d ].

To learn the point-wise representation, we employ PointNet++ [31] to cap-
ture fine-grained details around the neighbourhood at multiple levels. The Point-
Net++ is an encoder-decoder architecture. Fed with the initial point cloud fea-
ture matrix fpcd with the size N × (d + C), where N(= H1 × W1), d, and C
are the number of points, the dimension of coordinates, and the dimension of
point-wise feature respectively, the encoder learn the representation hierarchi-
cally by a set of set abstraction levels (3 in our work), consisting of a sampling
layer, a grouping layer, and a PointNet [9] layer. In each set abstraction level,
the sampling layer chooses N

′
(N

′
< N) points as centroids that best cover

the entire point cloud with appropriate receptive fields. Then the grouping layer
gathers the neighbour points of each centroid into a group with a ball query
strategy. The output is a group of points with the size N

′ ×K × (d+C), where
K is the upper limit number of points in the neighbourhood of the centroids.
Finally, the PointNet layer encodes the feature of each group to learn the local
pattern. The output feature matrix is of size N

′ × (d + C
′
), where C

′
is the

dimension of the feature. By sub-sampling the point cloud with the hierarchical
set abstraction levels, the local context of the point cloud is captured at multiple
scales. To learn the feature of each original point in the point cloud, the decoder
adopts a set of feature propagation levels, skip links, and Multilayer Perceptrons
(MLP) to propagate point features output by the encoder to all original points
in a hierarchical manner. The output feature f̂shallow has the size of N ×C and
then is reshaped to the size of H1 ×W1 × C.

3D-2D Normalization. Since the fused feature in the shallow scale is in
the 3D space, to seamlessly integrate it with subsequent features, we employ a
normalization operation to project it to the 2D space to alleviate the difference
in distributions.

fshallow = InstanceNorm(RFB(f̂shallow)), (2)

where InstanceNorm(·) is the instance normalization layer [36], and RFB(·)
is the Receptive Field Block (RFB) in work [37]. Note that if we replace the
instance normalization layer with the batch normalization layer [13], the oper-
ation in Eq. 2 will degrade to a flat operation in the network. In Sec. 4.4, we
experimentally verify the effectiveness of the instance normalization operation.

Spatial Contrast Refinement Module for Middle Scale. Mid-level layers
of the RGB and depth streams encode the features of shallower scales and learn
the structure information of the scene. To integrate middle-scale features of mul-
tiple modalities and explore the mild-level structure cues, we introduce a Graph
Neural Network (GNN) that refines the fused multi-modal features according to
the spatial contrastive relationship with other regions. We first wrap the middle-
scale features of RGB-D images, f2

c and f2
d , with a convolutional layer and then

concatenate them in the channel dimension,

fmid = Concat(Convθc(f
2
c ), Convθd)(f

2
d ), (3)
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Fig. 4. Architecture of the fusion stream, which takes the multi-scale integrated fea-
tures (fshallow, fmiddle, and fdeep) as input, and outputs a saliency map Sfusion.

where Concat(·, ·) is the concatenation operation, Convθc(f) and Convθd(f) are
the convolution operations with parameters θc and θd, respectively. Then a fully-
connected graph G = (V,E) is constructed over the feature fmid, where V is the
node set and E is the edge set. Specifically, each pixel in fmid is regarded as a
node ni ∈ V (i = 1, 2, · · ·K), and K is the number of pixels in fmid. The edge
between node ni and nj is denoted as eij , and is weighted by the distance in the
3D space between the nodes,

wij = exp(−|(xi, yi, di)− (xj , yj , dj)|), (4)

where (x, y) is the spatial coordinate of the node, d is the depth value. In addi-
tion, we depict the semantic affinity feature aij between each pair of nodes,

aij = MLP (Concat(fmid,i, fmid,j , fg)), (5)

where fmid,i, fmid,j are feature vectors of nodes ni and nj , MLP is the multilayer
perceptron, and fg is the global semantic feature by applying the Global Average
Pooling (GAP) on fmid. Based on graph G, we can update the feature of each
node by a graph convolutional layer,

f̂mid,i = MLP (Concat(
∑

j∈N (ni)

wijaij , fmid,i, fmid,j), (6)

where the set N (ni) contains neighbours of the node ni. We denote the output
feature map of the GNN as f̂mid by spatially arranging the feature {f̂mid,i}Ki=i.
The weight wij and the semantic feature aij indicate the spatial affinity and
semantic correlation between the nodes ni and nj , respectively. Therefore, the
GNN based refinement operation encourages closer regions, in both Euclidean
and appearance space, to contribute more to the refined features. By this means,
relevant pixels with the same saliency labels tend to be gathered together, leading
to more accurate prediction results.

Depth-Aware Channel-Wise Attention Module for Deep Scale. We
adopt a DCA module to make an effective alignment between the deep-scale
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features of multi-modalities. Compared to the deep-scale feature of the depth
image, the high-level semantic information in the RGB feature is more crucial
for saliency detection. The spatial-level integration (e.g., spatial-wise attention)
may introduce a negative effect on the final prediction. Therefore, we learn the
channel-wise attention vector from the deep-scale depth feature and use it to
highlight the significant dimensions of the deep-scale RGB feature.

First, the deep-scale depth feature map f3
d ∈ RH3×W3×C3 is encoded by a

convolutional layer and is transformed into a 1-channel feature map. Then the
feature map is reshaped into the size of N3 × 1, where N3 = H3 × W3, and a
softmax layer is applied to it to generate a pixel-wise attention vector fd_att

which indicates the spatial significance of the depth feature. Second, the deep-
scale RGB feature map f3

c is reshaped to the size of N3 × C3, and is multiplied
with the attention vector,

ac = [R(f3
c )]

T × fd_att, (7)

where R(·) is the reshape operation, and ac is of the size C3 × 1. The above
implementation learns the correlation between the depth and RGB modalities
and adaptively integrates the appearance feature according to the spatial signif-
icance. We then utilize the channel-wise attention ac ∈ RC3×1 to highlight the
important dimension of the RGB feature map f3

d ,

fdeep = tile(ac)⊙ f3
d , (8)

in which the function tile(·) tiles the channel-wise attention vector to the size of
f3
d , and ⊙ is the element-wise multiplication. As a result, the output feature map
fdeep is equipped with a powerful representation ability of high-level semantic
information.

3.3 Saliency Decoder

The decoders of the RGB and depth streams are based on the structure of the
work [37], and output saliency maps SRGB and SD, respectively. In this section,
we mainly elaborate on the saliency decoder of the fusion stream, which takes
advantage of the multi-modal fusion features in different scales and generates a
saliency map Sfusion.

First, the fusion features fshallow, fmid, and fdeep are wrapped by a Receptive
Field Block (RFB) [23] to explore global context information, respectively. The
output features are decoded as f̂shallow, f̂mid, and f̂deep. Then a Gated Fusion
Module (GFM) is designed to integrate the multi-scale features successively,fsm = Gate(Concat(f̂shallow, f̂mid))⊙ f̂shallow + f̂mid,

fmd = Gate(Concat(f̂mid, f̂deep))⊙ f̂mid + f̂deep,
fsmd = Gate(Concat(fsm, fmd))⊙ fsm + fmd,

(9)

where Gate(·) is the gated function and formulated as a sequence of a 3 × 3
convolutional layer, a batch normalization layer, and a sigmoid layer. The gated
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function learns spatial-wise attention from features of multiple scales, which are
then adaptively integrated by the guidance of attention. The output feature map
fsmd incorporates effective information from different levels, and based on this,
a prediction result Sfusion is generated using a 3× 3 convolutional layer.

The final saliency map is obtained by averaging the saliency maps output by
the three decoders, namely Sfinal = (SRGB + SD + Sfusion)/3.

3.4 Loss Function

The proposed SAFNet is trained in an end-to-end manner. The total loss function
Ltotal is a summation of the losses from the RGB stream, the depth stream, and
the fusion stream, denoted as LRGB ,LD, and Lfusion, respectively,

Ltotal = LRGB + LD + Lfusion. (10)

Each loss is defined as the binary cross-entropy loss between the predicted
saliency map and the ground truth image,

Lk(Sk, G) = G logSk + (1−G) log(1− Sk), k ∈ {RGB,D, fusion} (11)

where Sk is the saliency map and G is the ground truth image.

4 Experiments

4.1 Implementation Details

All experiments are implemented on the PyTorch platform with a single 2080Ti
GPU. The backbone of each stream in the encoder is based on the ResNet-
50 [11] and is initialized by the pre-trained parameters in ImageNet [17]. All
input RGB and depth images are resized to 352× 352. We employ the common-
used data augmentation methods incorporating randomly horizontal flipping,
cropping, and rotating. In the process of point cloud representation learning ,
both the focal lengths fx and fy are set as 44 (the same as the spatial size of
the shallow-scale feature maps), and the scaling factor s is 255.0. The number of
centroids in the 3 set abstraction levels is set as 2048, 1024, and 512, respectively.
The number of channels of feature maps (C,C ′, C1, C2, and C3) is 32. In the
training stage, the batch size is set as 8. We employ the Stochastic Gradient
Descent (SGD) algorithm with momentum 0.9 to optimize the objective function.
The learning rate is 0.0005. The network converges within 200 epochs.

4.2 Datasets and Metrics

Datasets. We evaluate the performance of the proposed SAFNet and the com-
pared methods on six public RGB-D SOD benchmarks, including DUT-D [29]
(1200 image pairs), NLPR [28] (1000 image pairs), NJUD [16] (1985 stereo image
pairs), STERE [26] (1000 image pairs), SIP [8] (929 image pairs), and LFSD [21]
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Table 1. The maximum F-measure, S-measure, E-measure, and MAE of the evaluated
saliency models on six data sets. The top three scores of each method are marked as
red, green, and blue, respectively.

Metric
S2MA UCNet HDFNet DANet PGAR CMWNet ATSA SPNet D3Net DSA2F DCF HAINet CDNet CDINet SSP SAFNet

CVPR20 CVPR20 ECCV20 ECCV20 ECCV20 ECCV20 ECCV20 ICCV21 TNNLS21 CVPR21 CVPR21 TIP21 TIP21 ACMM21 AAAI22 Ours

D
U

T
-D

Fmax 0.909 - 0.926 0.911 0.938 0.905 0.936 - - 0.938 0.941 0.932 0.944 0.934 0.947 0.950

Sm 0.903 - 0.905 0.889 0.920 0.887 0.916 - - 0.921 0.924 0.909 0.927 0.927 0.929 0.931

Em 0.921 - 0.938 0.929 0.950 0.922 0.954 - - 0.956 0.957 0.939 0.957 0.956 0.958 0.962

MAE 0.044 - 0.040 0.047 0.035 0.056 0.033 - - 0.031 0.030 0.038 0.031 0.029 0.029 0.026

N
L
P
R

Fmax 0.910 0.916 0.917 0.908 0.925 0.913 0.905 0.925 0.907 0.916 0.917 0.917 0.928 0.916 0.923 0.934

Sm 0.915 0.920 0.916 0.908 0.930 0.917 0.911 0.927 0.912 0.918 0.921 0.921 0.927 0.927 0.922 0.93

em 0.942 0.955 0.948 0.945 0.954 0.941 0.947 0.959 0.945 0.952 0.956 0.952 0.955 0.960 0.960 0.965

MAE 0.030 0.025 0.027 0.031 0.025 0.029 0.028 0.021 0.030 0.024 0.023 0.025 0.025 0.024 0.025 0.02

N
J
U

D

Fmax 0.899 0.908 0.924 0.905 0.918 0.913 0.904 0.935 0.910 0.917 0.917 0.920 0.919 0.921 0.923 0.929

Sm 0.894 0.897 0.911 0.897 0.909 0.903 0.887 0.924 0.900 0.904 0.903 0.909 0.913 0.918 0.909 0.915

Em 0.917 0.934 0.934 0.926 0.935 0.923 0.926 0.953 0.916 0.937 0.941 0.931 0.940 0.951 0.939 0.947

MAE 0.053 0.043 0.037 0.046 0.042 0.046 0.047 0.029 0.046 0.039 0.038 0.038 0.038 0.036 0.038 0.033

S
T

E
R

E

Fmax 0.895 0.908 0.918 0.897 0.911 0.911 0.911 0.915 0.904 0.910 0.915 0.919 0.908 - 0.914 0.920

Sm 0.890 0.903 0.906 0.892 0.907 0.905 0.896 0.907 0.899 0.897 0.905 0.909 0.903 - 0.885 0.907

Em 0.926 0.942 0.937 0.927 0.937 0.930 0.942 0.942 0.924 0.942 0.943 0.938 0.938 - 0.929 0.944

MAE 0.051 0.039 0.039 0.048 0.041 0.043 0.038 0.037 0.046 0.039 0.037 0.038 0.041 - 0.047 0.036

S
IP

Fmax 0.891 0.896 0.904 0.901 0.893 0.890 0.885 0.916 0.881 0.891 0.900 0.916 0.888 0.884 0.895 0.914

Sm 0.872 0.875 0.878 0.878 0.876 0.867 0.852 0.894 0.860 0.862 0.873 0.886 0.862 0.875 0.868 0.886

Em 0.913 0.918 0.921 0.917 0.912 0.909 0.899 0.930 0.902 0.911 0.921 0.925 0.905 0.915 0.910 0.927

MAE 0.057 0.051 0.050 0.054 0.055 0.062 0.064 0.043 0.063 0.057 0.052 0.048 0.060 0.055 0.058 0.047

L
F
S
D

Fmax 0.862 0.878 0.882 0.871 0.834 0.900 0.883 0.881 0.840 0.903 0.867 0.880 0.898 0.890 0.870 0.901

Sm 0.837 0.865 0.855 0.849 0.816 0.876 0.855 0.854 0.825 0.883 0.841 0.859 0.878 0.870 0.853 0.872

Em 0.863 0.906 0.879 0.881 0.870 0.908 0.897 0.897 0.863 0.923 0.883 0.895 0.912 0.914 0.891 0.914

MAE 0.095 0.067 0.078 0.079 0.091 0.066 0.071 0.071 0.095 0.055 0.075 0.072 0.061 0.063 0.075 0.061

(100 image pairs). As the training settings of most methods, we select 800 sam-
ples from the DUT-D, 1485 samples from the NJUD, and 700 samples from the
NLPR as the training set. The rest samples are treated as test sets.

Metrics. Four metrics are employed to evaluate the performance of saliency
models, including the maximum F-measure [1] (Fmax), S-measure [6] (Sm), E-
measure [7] (Em), and Mean Absolute Error (MAE) [2]. F-measure values com-
prehensively consider the precision and recall of saliency models. S-measure val-
ues measure the structural similarity between saliency maps and ground truth
images. E-measure values capture pixel-level matching and image-level statistics
information. MAE values depict errors in predicted saliency maps.

4.3 Comparison with State-of-the-arts

We compare the proposed SAFNet with 15 state-of-the-art algorithms, including
S2MA [22], UCNet [41], HDFNet [27], DANet [45], PGAR [3], CMWNet [20],
ATSA [43], SPNet [46], D3Net [8], DSA2F [35], DCF [14], HAINet [19], CD-
Net [15], CDINet [40], and SSP [44]. For a fair comparison, the evaluated saliency
maps are provided by their authors or generated by the public released codes.

Quantitative Evaluation. The quantitative performances of evaluated meth-
ods in terms of F-measure, S-measure, E-measure, and MAE are demonstrated
in Tab. 1. It shows that the proposed SAFNet achieves satisfactory results and
outperforms most state-of-the-art algorithms on six challenging datasets, indi-
cating the generalization ability of our method.

Qualitative Evaluation. We illustrate the visual results of the evaluated
methods in Fig. 4.2. It shows that our method can handle various challenging
scenarios. For the first example which incorporates multiple objects with different
appearances, our proposed SAFNet can capture all salient objects compared to
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Im. SAFNet UCNet HDFNet DANet PGAR CMWNet ATSA SPNet
Dep. GT D3Net DSA2F DCF HAINet CDNet CDINet SSPNet

Fig. 5. Visual results of the proposed SAFNet and the compared methods.

many existing methods. In the second example, the target object is not salient
in the color space and the size is small. The depth image provides valuable cues
about the object and background. By properly integrating the complementary
information of the RGB-D modalities, our method successfully distinguishes the
salient object from the background. In contrast, most other methods fail to
capture the target and wrongly respond to the background regions. In the third
example, the appearance of the salient object is similar to the background. Many
other methods present blurry predictions around the object boundary. Since the
depth image shows obvious structural information, our method can segment the
target accurately from the cluttered background. For the fourth example, many
existing methods wrongly capture part of the building as saliency regions. In
contrast, our method learns the contrast information in both color and depth
space and recognizes accurate regions as saliency.

4.4 Ablation Studies

We conduct ablation studies to verify the effectiveness of the main components
in the proposed SAFNet. We also compare the key modules of our method with
the advanced fusion methods of existing algorithms. The rationality of the scale
adaptive fusion strategy is validated.
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Table 2. Ablation studies on each main component of the SAFNet.

Model
NLPR NJDU DUT-D

Fmax Sm Em MAE Fmax Sm Em MAE Fmax Sm Em MAE

(a) RGB-D Baseline (B) 0.897 0.891 0.934 0.036 0.894 0.896 0.915 0.051 0.911 0.895 0.932 0.044
(b) B+PCF 0.917 0.916 0.955 0.024 0.918 0.906 0.942 0.038 0.939 0.917 0.952 0.032
(c) B+PCF+SCR 0.921 0.918 0.955 0.024 0.919 0.908 0.094 0.036 0.941 0.919 0.955 0.030
(d) B+PCF+SCR+DCA 0.928 0.926 0.962 0.021 0.924 0.911 0.946 0.035 0.946 0.927 0.959 0.028
(e) B+PCF(BN norm)+SCR+DCA+GFM 0.930 0.929 0.965 0.020 0.926 0.913 0.944 0.034 0.948 0.928 0.960 0.026
(f) B+PCF+SCR+DCA+GFM (SAFNet) 0.934 0.930 0.965 0.020 0.929 0.915 0.947 0.033 0.950 0.931 0.962 0.026

Table 3. Ablation studies on fusion strategies.

DCADCA NLPR NJDU DUT-D
Fmax Sm Em MAE Fmax Sm Em MAE Fmax Sm Em MAE

(a) RGB-D Baseline (B1) 0.903 0.904 0.942 0.029 0.902 0.896 0.927 0.043 0.924 0.904 0.940 0.039
(b) B1+PCF+PCF+PCF 0.917 0.916 0.954 0.026 0.914 0.899 0.931 0.042 0.941 0.917 0.950 0.032
(c) B1+SCR+SCR+SCR 0.918 0.916 0.951 0.026 0.913 0.904 0.940 0.037 0.939 0.918 0.951 0.032
(d) B1+DCA+DCA+DCA 0.920 0.914 0.951 0.027 0.912 0.896 0.932 0.043 0.931 0.909 0.946 0.036
(e) B1+DAM+DAM+DAM 0.919 0.916 0.954 0.025 0.919 0.905 0.938 0.039 0.936 0.916 0.950 0.032
(f) B1+CRM+CRM+CRM 0.917 0.915 0.953 0.026 0.912 0.899 0.936 0.040 0.931 0.912 0.945 0.035
(g) B1+CIM+CIM+CIM 0.917 0.913 0.953 0.026 0.910 0.896 0.934 0.041 0.935 0.911 0.945 0.035
(h) B1+RDE+DSE+DSE 0.919 0.916 0.953 0.025 0.921 0.905 0.938 0.039 0.937 0.916 0.948 0.032
(i) B1+PCF+SCR+DCA (SAFNet) 0.934 0.930 0.965 0.020 0.929 0.915 0.947 0.033 0.950 0.931 0.962 0.026

Effectiveness of Each Main Component in SAFNet. The experimental
results of ablation studies on the effectiveness of the main components of our
method are shown in Tab. 2. We design a set of baseline networks as comparisons.
The RGB-D Baseline (B) in Tab. 2 (a) is the baseline network that takes both
RGB and depth images as input. We employ a simple concatenation and con-
volution operation to integrate the RGB-D cross-modal features in the shallow,
middle, and deep scales. The same simple fusion method is also used to replace
the GFM in the saliency decoder to combine the features in different scales.
Based on the baseline network, we successively replace the fusion strategies in
different scales with the proposed PCF, SCR, and DCA. The quantitative per-
formance is shown in Tab. 2 (b)-(d). In Tab. 2 (e) and (f), the GFM is adopted
in the saliency decoder. Especially in Tab. 2 (e), the instance normalization op-
eration in the PCF module is replaced by the batch normalization operation.
Tab. 2 (f) shows the final performance of the proposed SAFNet.

Comparing the performances in Tab. 2 (a)-(d), we can observe that our pro-
posed fusion strategies, PCF for the shallower scale, SCR for the middle scale,
and DCA for the deep scale, can improve the performance of the baseline meth-
ods, which verifies the effectiveness of the proposed fusion methods. The improve-
ment in Tab. 2 (f) over (d) indicates the validity of the GFM in the saliency
decoder. We also validate the effectiveness of the 3D-2D Normalization module
in the PCF module. Comparing Tab. 2 (e) and (f), we can see that the 3D-2D
Normalization module slightly boosts the accuracy of the saliency modal. The-
oretically, the 3D-2D Normalization operation projects the feature in 3D space
to the 2D space. It ensures the distribution consistency of multi-scale features,
which is necessary for the GFM in the saliency decoder.
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Effectiveness of Fusion Strategies. In this section, we present a series of
experiments to prove the superiority of the proposed fusion methods and the
scale adaptive fusion strategy. For this purpose, we design the RGB-D Baseline
(B1) by replacing the fusion modules, PCF, SCR, and DCA, in the proposed
SAFNet with the simple concatenation and convolution operation (the GFM in
the decoder remains). The performance is shown in Tab. 3 (a). In Tab. 3 (b)-
(g), we employ the same fusion modules on different scales. In Tab. 3 (b)-(d),
we adopt the proposed PCF, SCR, and DCA, respectively. The fusion module
DAM in work [43] is utilized in Tab. 3 (e). Different from the DCA which is
only based on the channel-wise attention module, the DAM consists of both
channel-wise attention and spatial-wise attention. The CRM in Tab. 3 (f) is the
multi-modal integration method proposed in work [14], and the CIM in Tab. 3
(g) is employed in work [46]. In Tab. 3 (h), we implement a similar idea in
work [40], which uses the RDE in shallower layers and the DSE in deeper layers
to enforce the information transmission between the RGB and depth streams.
Tab. 3 (i) is the performance of the proposed SAFNet which utilizes the PCF,
SCR, and DCA on different scales.

From the quantitative experiments in Tab. 3, we can see that all fusion meth-
ods achieve improvement over the baseline method (Tab. 3 (a)). The networks
which employ scale adaptive fusion methods (Tab. 3 (h) and (i)) gain more
promotion. Compared with the model in Tab. 3 (h), our method gives deep in-
sight into the attributes of different scales in the network, and adopts early and
mid-level fusion strategies to further enhance the interaction of multi-modal fea-
tures. As a result, the proposed SAFNet achieves superior performance against
the fusion strategies of existing methods.

5 Conclusion

In this work, we propose a Scale Adaptive Fusion Network (SAFNet) which
takes account of different attributes of multi-scale features in the network for
RGB-D SOD. For the shallow scale, we propose a Point Cloud Fusion (PCF)
method to integrate the RGB and depth features in the 3D space. For the middle
scale, a Spatial Contrast Refinement (SCR) module is designed to explore the
structural information of the scene. For the deep scale, we adopt the Depth-aware
Channel Attention (DCA) module to combine the semantic cues from the RGB-
D features. In our work, both early and mid-level fusion strategies are adopted
to enforce the in-depth fusion of the multi-modalities. Extensive experiments
show that our proposed SAFNet achieves significant performance against the
state-of-the-art algorithms and also verify the effectiveness of the scale adaptive
fusion strategy exploited by our model.
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