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Abstract. We present a novel approach for semantically targeted ad-
versarial attacks on Optical Flow. In such attacks the goal is to corrupt
the flow predictions of a specific object category or instance. Usually,
an attacker seeks to hide the adversarial perturbations in the input.
However, a quick scan of the output reveals the attack. In contrast, our
method helps to hide the attacker’s intent in the output flow as well. We
achieve this thanks to a regularization term that encourages off-target
consistency. We perform extensive tests on leading optical flow models to
demonstrate the benefits of our approach in both white-box and black-
box settings. Also, we demonstrate the effectiveness of our attack on
subsequent tasks that depend on the optical flow.
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1 Introduction

Optical Flow (OF) is a crucial subtask of many safety-critical pipelines. It
is especially important for Advanced Driver Assistance Systems (ADAS) and
autonomous vehicles, where unreliable optical flow can be hazardous and life-
threatening. For example, Time-To-Collision (TTC) methods often rely on op-
tical flow [1–4], and their errors can have dangerous consequences.

In this paper we consider malicious manipulations aiming to lead the OF
predictions astray. These manipulations are represented by perturbations, some-
times subtle, that are introduced into the input pixels. In the literature such
perturbations are referred to as Adversarial Attacks (AA) [5–7].

The attacker’s goal is to damage a system’s performance and remain unno-
ticed. The defender’s goal is to design a system that operates reliably despite
such attacks. To achieve this goal, the defender can, for example, use some AA
detection method to discard suspicious inputs. One approach to detect AAs[9,
10], is to examine the input to the attacked model. Another approach, which we
consider in this paper, is to examine the output of the attacked model. We show
that a straightforward attack on OF may be fairly easy to detect in the output.
We propose an AA method, which is more difficult to detect, but has a similar
or stronger effect on OF.

We use the following observation: in the context of automotive applications
some objects are more important than others. Obvious examples of such impor-
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Fig. 1. An example of a targeted attack on HD3-PPAC [8] optical flow model. Top: the
original predicted flow and the corresponding input image. Bottom left: the corrupted
flow using a non-consistent attack. Bottom right: the corrupted flow using a consistent
targeted attack on the vehicle in the scene.

tant objects are pedestrians and vehicles. For TTC systems, failing to estimate
the correct flow for pedestrians and vehicles can lead to fatal accidents.

Assuming a semantic or instance segmentation of the observed scene is given,
an attacker can specify a target to attack. That is, instead of targeting the entire
image, only a subset, defined by its semantic segmentation, can be selected.
Likewise, instead of perturbing all the pixels in the image, a subset of the pixels
can be chosen at which the attacker introduces malicious perturbations.

Adversarial attacks targeting only a subset of pixels may still alter the pre-
dictions of other pixels in the image. To make the attack less detectable, it
is beneficial to corrupt the target prediction without affecting the rest of the
predictions. We refer to attacks that leave off-target predictions unaffected (or
affected as little as possible) as "consistent attacks". In this paper we present
a method to create targeted consistent adversarial attacks on optical flow. The
chosen targets for the attacks are the "vehicle" and the "human" categories.

Figure 1 depicts an example of such an attack. The bottom row presents two
attacked flows (encoded using Middlebury [11] color-wheel): consistent and non-
consistent. Both attacks achieve their goal - the flow of the corresponding target,
the vehicle, is heavily damaged. However, the difference between them is readily
seen. A consistently attacked flow looks reasonable, while a non-consistent attack
results in a flow which is chaotically cluttered. In this paper we show that the
first attack is less detectable than the second.

To achieve the effect described above, we introduce a new optimization term.
We refer to it as "consistency term". While being a relatively simple addition
to the optimization loss, the consistency term leads to multiple improvements in
the generated adversarial attacks when compared to the baseline non-consistent
settings. First, as expected, the impact on the flow predictions of non-target scene
objects is significantly reduced. Second, the effectiveness of attacks on targets
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increases. Third, our experiments show that in the "black-box" setting, i.e. where
the attacked model is inaccessible, we observe a much better transferability [12].
Finally, we demonstrate that consistent attacks are more effective on a TTC
system while being less noticeable by detection methods.

We have conducted an extensive set of evaluations using five leading optical
flow methods [13, 14, 8, 15, 16]. There are three main groups of experiments where
we compare attacks obtained with and without our consistency term: global, local
and cross-category attacks. The target of those attacks is always the same, but
the subsets of pixels that are perturbed are different. In a global attack setting,
the perturbation can be distributed over all pixels. In a local attack setting, only
pixels of the target object can be perturbed. Finally, in a cross-category setting,
in order to corrupt the flow of some target object, we perturb pixels of some
other object. We have also evaluated the effect of these attacks on a downstream
TTC task. We compare consistent and non-consistent attacks in terms of the
tradeoff between their effect on TTC and a AA detection score.

To summarize our contribution, we are the first to study targeted attacks on
optical flow models. We introduce a new term to the optimization loss, which we
name the "consistency" term, to preserve the optical flow of non-target objects.
This helps to hide the attacks in the output of the optical flow. We show that the
resulting consistent attacks are more effective than the non-consistent attacks.
We demonstrate that these attacks are more transferable, i.e. more efficient in a
black-box setting, than the non-consistent attacks. Finally, we show that under
three detection methods these attacks are more effective against a downstream
TTC system.

1.1 Related Work

The history of optical flow methods goes back to the early 1980s, when the
foundational studies of Lucas-Kanade [17] and Horn-Schunk [18] were published.
Since then, hundreds of classical computer vision techniques were proposed. A
substantive survey on the non-deep optical flow methods can be found in [19].
In the era of deep learning for computer vision much attention has been paid
to optical flow. Deep neural network (DNN) based OF methods such as [20,
21, 13, 22, 14, 8, 15, 16] have left the classical approaches far behind in terms of
performance, which is reflected in the results of the KITTI’15 benchmark [23],
where the leading non-deep optical flow method [24] is scored about 150-th place.

DNN based optical flow models can be divided into groups according to their
architecture characteristics: encoder-decoder [20, 21] and spatial pyramid [25, 13,
22, 16, 8] networks. Some models ([22, 16, 8, 15]) use a coarse-to-fine technique
to refine their predictions. Others [14] operate with full resolution features at
every stage of the model. In addition, a model can be equipped with a recurrent
refinement mechanism, which is placed on top of an optical flow model, as in
[26]. Finally, the RAFT model [14], which has demonstrated the state-of-the-art
performance on KITTI’15 [23], consists of the encoder-decoder part followed by
a simple recurrent module utilizing GRU [27] blocks.
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Although adversarial pertrubations are possible in many ML models, the
rise of deep neural networks has opened the door for massive research effort in
adversarial perturbations. Historically, many of the early adversarial attacks were
carried out in the context of image classification tasks [7, 6, 28, 29]. The attacker’s
goal was to force a model to misclassify the input image. Many attack schemes
were developed and tested on such models. One of the most cited is the so-called
Fast Gradient Sign Method (FGSM) [6]. In their original work, Goodfellow et al
[6] suggest a fast method to create adversarial input to a classification model.
Consider an input x to a classification model M , a hyper-parameter ε, a loss
function l and ytrue - the target associated with x. Assume the model predicts a
label y for an input x, i.e., M(x)=y. In their work they show that an adversarial
example xadv could then be computed by xadv = x + εSign(∇(l(M(x), ytrue)).
Shortly after [30] introduces a straightforward way to extend this method. They
named this new approach the Iterative Fast Gradient Sign Method (IFGSM) [30].
They suggest to iteratively use the same update step on the input. To do so,
set x0adv = x and iteratively update xi+1

adv = xiadv + ε ·Sign(∇(l(M(xiadv), ytrue)).
Since these attacks are thoroughly researched and well understood [31, 6, 32] we
adopt them to our attack approach.

Later on, adversarial attack methods that target specific objects in the image
were introduced against object detectors [33–35]. In [33] it is shown how to force
a SOTA detection model to classify all detections of a semantic class as another
class while leaving all other detections unchanged. Liao et al [35] proposed a
local attack that only perturb a specific detection bounding box, achieving a
stronger effect than a global perturbation for the same attack budget. In [34],
an analysis of object detection from the viewpoint of multi-task learning leads
to a method to (partially) defend object detectors against adversarial attacks.

Recently, adversarial attacks have expanded beyond image classification and
object detection to include dense prediction tasks such as semantic segmentation,
depth, and optical flow. Promising results are shown in each of these tasks [36–
39]. Such attacks often demonstrate the ability to target specific subsets of pixels
rather than the entire image. For semantic segmentation, it was shown that pixels
belonging to specific instances of pedestrians can be labeled by the attacked
model as a road [36]. In [39], depth prediction has been successfully manipulated
in many ways, such as removing the target entirely and aligning its depth with
the surrounding background.

In the past couple of years, there is a growing interest in adversarial attacks
on optical flow models [38, 40–43]. Ranjan et al [38] demonstrated the possible
benefits of a patch attack against leading models. First, they showed that this
attack is very successful against encoder-decoder like architectures, but less effec-
tive for spatial pyramid types of models. They also showed it to be reproducible
in "real life" conditions, with a hostile patch printed on a board and displayed
in front of a camera. A follow-up work [40] conjectures that a principal cause
for the success of adversarial attacks on OF is the small size of their receptive
field. [41, 42] introduce methods to corrupt the prediction of action recognition
systems by attacking the OF modules they rely on. Finally, [44] proposes to
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rank OF method, in addition to their prediction accuracy, by their robustness
to AAs. Specifically, to quantify the robustness, they propose a strong attack
against OF models which is easily bounded so the comparison between methods
is valid. Differently from the above, we consider the effectiveness of adversarial
attacks on OF methods from the perspective of the ability to hide them in the
output, in addition to their impact on performance.

Finally, one of the most important tools in risk assessment and collision avoid-
ance for autonomous agents, e.g., robots and autonomous vehicles, is estimating
the TTC [45, 46, 1–4]. A popular approach to estimate the TTC is using OF [1–
4]. For example, [1] fuses 2D OF vectors, and per-pixel estimated scale change,
to "upgrade" 2D OF to 3D, allowing the direct computation of the TTC. We
use [1] to demonstrate the impact of our consistency term on the TTC, and the
benefits it has over the non-consistent attack.

2 Method

The inputs for an optical flow network fflow are two H×W×3 RGB images
I1(x, y), I2(x, y) where RGB channels ranges between [0,1]. The output is an
H×W×2 optical flow vector map V (x, y). The goal of an attacker is to find an
additive perturbation to the input that would shift the attacked optical flow map
V ′ away from the original prediction V , as in [38].

To calculate this perturbation, we use two binary masks (see examples in
Figure 2). The first mask, Mtarget, selects target pixels with the aim to change
their optical flow, where in Figure 2, Mtarget is the vehicle’s instance mask.
The second mask, Mperturb, specifies the pixels that may change due to the
pertrubation, where in Figure 2 we allow only the pixels of the "nature" category
to change.

Consider the first mask Mtarget with N non-zero entries specifying the pix-
els of the object (category or instance) we aim to attack. Our attack term,
lattack(V

′, V ), is then defined by the L1 norm between the attacked V ′ and
original V flows, averaged over Mtarget, as given by

lattack(V
′, V ) =

1

N

∑
(x,y)∈M

|V ′(x, y)− V (x, y)|1, (1)

where (x, y) ∈M iff Mtarget(x, y) = 1.
To encourage the flow on the remaining scene to stay unaffected by the

attack, we add a consistency term, lcon(V ′, V ), which is the negative L1 norm of
the difference between original and attacked flows, averaged over non-attacked
pixels:

lcon(V
′, V ) = − 1

HW −N
∑

(x,y)/∈M

|V ′(x, y)− V (x, y)|1, (2)

where (x, y) /∈M iff Mtarget(x, y) = 0, and since N pixels are attacked, we have
HW −N non-attacked pixels.
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Attacked optical flowPerturbation

Fig. 2. Consistent attack method. In the top row, the original image (left) and OF
(right) are presented. In the middle row, the perturbation mask (left) and target mask
(right) are presented. In the bottom row, the perturbation on the "nature" category
(left) and the attacked OF (right) are presented.

Our final loss is composed of these two terms, lattack and lcon. The trade-off
between the terms is controlled by the consistency coefficient α:

ltotal = lattack + αlcon. (3)

In order to attack semantic categories we require ground truth semantic
labeling. This is only provided for the first image I1 in the data we use for the
attacks. Thus we have restricted our perturbation to the first image I1. The
second image I2 is left unperturbed by our attack.

Let us denote the first image after the i-th perturbation as I(i)1 , the i’th
perturbation as δI(i)1 and the corresponding attacked flow V (i). Thus V (0) = V

is the original flow, and I(0)1 = I1 is the unperturbed image. Since our first attack
step is when i = 1 we have δI(0)1 = 0.

Consider the second mask, Mperturb, with L non-zero entries, of the pixels
we allow the attack to perturb. Given an attack strength coefficient ε, our i-th
attack step follows the IFGSM [30] and given by

I
(i)
1 = I

(i−1)
1 + δI

(i)
1

δI
(i)
1 = ε ·Mperturb · Sign

(
∇ltotal(V (i−1), V )

)
V (i) = fflow(I

(i)
1 , I2),

(4)
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where Sign returns the negative or positive sign of its input.
In each attack step i we create a small perturbation to the first image δI(i)1 .

As shown in Figure 2 this perturbation is only applied in pixels (x, y) where
Mperturb(x, y) = 1. It is equal to the sign of the loss function’s gradient, weighted
by the attack coefficient ε. After computing the i’th perturbation we add it to
the image from the previous step I(i−1)1 to get the current perturbed input I(i)1 .
Inferring on this input with the optical flow network fflow results in the i’th
attacked optical flow map V (i). The loss between this flow V (i) and the original
flow V will then be used to compute the perturbation for the following step. It
is worth to note that for the first iteration (i = 1) we add a small amount of
white noise to the original flow V so we would have non-zero gradients.

Let us define the target L1 norm of the perturbation as ||∆I||. Given the
number of perturbed pixels L and an estimated number of steps n for the attack,
we set ε according to:

ε =
||∆I||
n · L

(5)

We then iteratively update our input using Equation 4 until ||I(i)1 −I1||1 ≈ ||∆I||
(up to 5%). We use n = 2 and ||∆I|| = 4 · 10−3(≈ 1/255) for most of our
experiments, and will specifically state experiments with other values.

2.1 Implementation details

Throughout our experiments we use five optical flow models to evaluate the
impact of adding our consistency term on targeted category-specific adversarial
attacks - HD3 [16], PPAC [8], VCN [15], RAFT [14], LFN [13]. These models are
some of the top performing methods on the KITTI”15 [23] dataset. We use the
published, pre-trained models, given by the authors of each of the five chosen
models. Since some models published multiple checkpoints, we always use the
one fine-tuned on KITTI for our attack.

All of our experiments are performed and evaluated on the KITTI 12’ [47] and
KITTI 15’ [23] datasets. These datasets contain a semantic segmentation labeling
that we employ in our attacks. We could have used any semantic segmentation
method [48–50] to label each scene. This would simulate a more realistic scenario
where ground truth labeling is unavailable. However, it would also introduce
another source of errors which we wish to avoid in order to focus our attention
on consistent attacks.

We evaluate our attack using the average end-point-error (EPE) metric [11],
which is the average L2 norm of the difference between attacked and original
flows. The averaging is usually done over all image pixels, but since we are
particularly interested in the effect of our attack on semantic classes, we compute
the EPE averaged on pixels of specific classes. Using this metric the average shift
in OF prediction due to the attack can be estimated for each class of interest.

In the subsequent section we will elaborate on the results from our main
experiments. These experiments will encapsulate three different attack settings.
These settings differ in the perturbed pixels mask (Mperturb, defined in Equation
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Original optical flow

Optical flow of local attack 

Optical flow of local consistent attack 

Image

Local consistent perturbation 

Fig. 3. A visualization of a local attack baseline and the impact of the consistency
term on a vehicle instance using LFN [13] and ||∆I|| = 2 · 10−2. Left: the original
image and the perturbation optimized by each attack. Right: the corresponding optical
flows. Adding a consistency term reduces the effect on non-vehicle pixels (as can be
seen below the vehicle), while still significantly changing the vehicle’s optical flow.

4) and the pixels we aim to attack (Mtarget, defined in Equation 1). In the first
setting, a local attack, we perturb vehicle pixels and aim to attack the same
subset of pixels. The second setting, a global attack, is where we perturb the
entire image, but aim to attack vehicle pixels only. The third setting, a cross-
category attack, is where we perturb the pixels of the "nature" catefory, and aim
to attack vehicle category pixels (presented in the Supplementary material).

3 Experiments and Results

In this section, we present the experimental results obtained for the "vehicle"
target category. The results for "human" target category, as well as the results
obtained using the KITTI 12’, are given in the supplementary.

3.1 Local attacks

Figure 3 visualizes an example local attack (||∆I|| = 2 · 10−2) experiment using
the LFN model [13]. In this experiment a vehicle instance was attacked by only
perturbing its pixels. Two attacks were conducted: a baseline, non -consistent,
method with α = 0 and a consistent attack with α = 10.

Both attacks are successful in changing the car’s optical flow and cause the
previous right (red) moving vehicle to turn left (blue). However, the consistent
attack preserves the non-targeted flow better, as can be seen by comparing the
flow under the vehicle.

To quantify this effect, this experiment was expended to the entirety of the
KITTI dataset. Here, for each image in the dataset we have attacked all of the

1665



Consistent Semantic Attacks on Optical Flow 9

E
P

E
 (p

ix
el

s)

Fig. 4. Comparison between local attacks and local-consistent attacks on the KITTI
dataset with ||∆I|| = 4 · 10−3. Left - mean error caused by a local attack (transparent
colors) and a consistent local attack (solid colors) over the corresponding category.
Right - mean EPE for each model for the target (left) and off-target (right).

Image

Global perturbation 

Global consistent perturbation Optical flow of global consistent attack 

Optical flow of global attack 

Original optical flow

Fig. 5. A visualization of a global vehicle-targeting attack and the effect of adding
a consistency term on HD3’s [16] flow with ||∆I|| = 2 · 10−2. Left: original image
and perturbations. Right: the corresponding optical flows. Adding a consistency term
reduces the effect on non-vehicle pixels while still significantly changing the vehicle
optical flow

vehicles in that image (by perturbing vehicle pixels). We then evaluated the mean
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Fig. 6. Comparison between global attacks and global-consistent attacks on vehicles in
the KITTI dataset with ||∆I|| = 4 · 10−3. Left - mean error caused by a global attack
(transparent colors) and a consistent global attack (solid colors) over the corresponding
category. Right - mean EPE for each model for the target (left) and off-target (right).

EPE between original and attacked flow on selected categories: construction, flat,
human, nature, object and vehicle.

Figure 4 presents the results on the KITTI dataset using the five selected
models. The left sub-figure presents the (undesired) effect on non-targeted pixels
per semantic category and the right sub-figure presents a summary for the (de-
sired) effect on targeted pixels (left) and non-target pixels (right). We see that
while the targeted vehicle category error does not vary much between attacks
(right table) the non-targeted categories (left figure) suffer much less damage
using a local consistent attack than our baseline non-consistent attack. The left
side of the right sub-figure, that presents the targeted EPE, shows a small dif-
ference between attacks, while the left side of the right sub-figure shows a larger
difference (in ratio). The effect on non-targeted categories is significantly reduced
using our consistent attacks. In particular there is a 35% decrease on average
(across methods) on the error induced on these categories.

3.2 Global attacks

One of the concerns with using a local attack is that since we perturb only a
subset of the image pixels, we employ a high L∞ norm to achieve the same L1

norm as a global attack that perturbs the entire image. This, in turn, causes
the local attack to be more perceptible compared to a global attack. Figure 5
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Image

TTC of global consistent attack

Original TTC

TTC of global attack

Fig. 7. Visualization of the TTC results for an AA on a vehicle instance using HD3
with ||∆I|| = 4 · 10−3. Hot colors corresponds to shorter TTC than cold colors.

demonstrates this global attack in which we perturbed the entire image. The
figure visually compares the results of the consistent and non-consistent attacks.
The left column presents the original image and its perturbations. Here, unlike
the local attack, the entire image is perturbed. The right column presents the
effect both attacks have on HD3’s optical flow. For the non-consistent attack we
can notice multiple non-vehicle flow segments that changed drastically, turning
the naturally smooth flow of the background into a rapidly varying flow. Repeat-
ing the methodology we used for the local settings, we expand this experiment
by attacking all of the vehicle category in the KITTI dataset [23], and averaging
the error over the selected classes.

Figure 6 presents the result of attacking all vehicles in a global setting over
the KITTI dataset, for our five OF models with ||∆I|| = 4 · 10−3. Similarly to
the local case, the left and right side of the right sub-figures demonstrate the
effect on the non-targeted pixels. The left side of the right sub-figure presents
the effect of the targeted pixels. The resulting targeted vehicle category error
is higher when using a consistent attack. Moreover, the non-targeted categories
suffer significantly less damage using a global consistent attack than the baseline
non-consistent attack. Thus, for example, using the consistent attack results in
a 60% stronger effect on the targeted category (averaged across models), while
removing 60% of the unwanted optical flow change on the remaining categories
(averaged across models).

3.3 Time-To-Collision (TTC)

As discussed in Section 1, we emphasize the significance of adversarial attacks
on OF models by their possible impact on TTC algorithms [1–4]. We chose
the state-of-the-art TTC algorithm presented in [1], which uses OF to compute
a per-pixel TTC. The model is supplied with the attacked OF instead of the
original OF computed by the pre-trained VCN (without fine-tuning).

An attack on a vehicle instance, which is visualized in Figure 7, demonstrates
the impact of the original flow, the global consistent and global non-consistent at-
tacked flows, on the TTC. The TTC values are log-scaled and color-coded, where
hot colors (redish) encode lower TTC than colder colors (yellowish-whitish). The
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Fig. 8. TTC error to AA detection score. The top and bottom rows correspond to the
global and local attacks, respectively. The Y-axis in all graphs corresponds to the TTC
error, while the X-axis corresponds to the AA detection score using warping error and
Gaussian defense for the left and right graphs, respectively. The graph is created using
attacks with magnitude ||m · 10−3|| for m ∈ {0.2, 0.4, 1.2, 2, 3.2, 4, 6, 8}.

attacked vehicle, which is yellow (high TTC) in the original flow, is significantly
darker (low TTC) in both the consistent and non-consistent attacks. Impor-
tantly, the backgrounds of the original and consistent attack are quite similar,
while the background of the not-consistent attack is very different.

As argued in Section 1, the effect of the off-target consistency loss term allows
a better tradeoff between the impact on the TTC and a AA detection score,
where by "detection score" we mean the output of an AA detection method.
An example for this tradeoff would be that an attacked input with the same
detection score will result in a higher average TTC impact. To quantify this
tradeoff we’ve used three AA detection methods.

Warping error: The difference between I1 and I2 warped using the (attacked)
OF V . That is, ||WV (I2) − I1||1, where WV (I2) warps I2 using the OF V . The
warping error is often used as an OF confidence measure [51]. Naturally, such
confidence measure may be used to estimate an AA detection score.

The Gaussian/Median defenses [52]: The OF error (EPE) between the pre-
dicted flow and the flow from Gaussian/Median smoothed versions of the same
images. That is, let V ′(I ′1, I2) be an attacked flow, and V ′K = V ′(K(I ′1), I2)
be an attacked flow (using the same attack) with I ′1 smoothed using a 3 × 3
Gaussian/Median kernel K before the OF computation. ||V ′ − V ′K ||1 is used to
estimate the detection score. Such defense methods were used as AA detection
methods in [52].
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Fig. 9. "Black-box" setting results for the global attacks (top) and local attacks (bot-
tom) on vehicles with ||∆I|| = 4 · 10−3. Bar height signify the mean EPE over the
vehicle category caused by an attack created using the source models (color-coded) on
the target model (x-axis). Consistent and non-consistent attacks are marked by solid
colors and transparent colors, respectively.

The graphs of the error in TTC as a function of the AA detection score are
presented in Figure 8. (The median defense is presented in the supplementary
material.) We measure the error in TTC as an average percentage of difference
relative to the original TTC; that is, |TA − TO|/TO, where TA and TO are the
TTCs of the attacked and original flows, respectively. The graphs are created
from 8 AA with different magnitudes, where all 5 OF models (in a white-box
settings) are averaged per attack magnitude. In all 3 cases, the global consistent
attack is superior to the global non-consistent attack in both the detection score
(lower in X axis), and in impact on TTC (higher Y axis). In the local attack the
trend is similar, however, the gap is much smaller. To conclude, the off-target
consistency loss term is effective in terms of the TTC - detection score tradeoff.
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3.4 Black-box attacks and transferability

Finally, we evaluated the transferability of the consistent attacks for the global
and local attacks. To this end, we used each of the chosen models to attack the
vehicle category in every image pair in the KITTI dataset. Each model was then
evaluated on the adversarial datasets generated using the remaining models.
The mean EPE over the vehicle targeted category for each attack is presented in
Figure 9. We use transparent colors to visualize non-consistent attacks and solid
colors to visualize for consistent attacks. We note that attacks created using HD3
seem to have a high impact on PPAC and vice versa, which could be related to
HD3 and PPAC having most of their architecture shared.

Similar to the results presented in the white box settings, the local attack
impact does not vary much with the addition of the consistency term. How-
ever, for the global case we observe a significant increase in the targeted impact
transferred to other models. If we examine the results on RAFT, adding the con-
sistency term resulted in a 44% increase in black-box attack strength, averaged
across targeted models.

4 Discussion

To summarize, we presented a new methodology for targeted adversarial attacks
against optical flow models. We introduced a new term to the attack, called ’con-
sistency term’, which is used to reduce the effect of the attack on the off-target
pixels. In three different settings: local, global and cross category (supplemen-
tary), adding the consistency term to the loss reduces the impact on non-targeted
object. Adding the term either preserves or increases the effect on the targeted
category. Moreover, we have demonstrated that for some of the settings using a
consistent attack results in a more transferrable attack. Finally, we have showed
that for a TTC downstream task these attacks have a better detection - impact
tradeoff, with an impact as high as 3x higher for the same detection score.

In our experiments we observe an obvious difference between the local and the
global setting, where the effect on the non-targeted object is much more apparent
in the global setting. In this setting, the danger of negatively impacting the rest
of the scene is much greater since we directly change the non-target pixels.
Adding the consistency term allows us to introduce global perturbations with a
smaller effect on the resulting non-targeted optical flow. We also note that, in
slight contrast to [38], our attacked models, which all have pyramid-like feature
encoders are attacked successfully. A further analysis is left for future work.

An interesting follow-up for our work would be utilizing adversarial targeted
attacks as a data augmentation technique for model training, which was demon-
strated effective [53]. Other works [39] have demonstrated that some semantic
classes are easier to attack than others. By leveraging consistent adversarial tar-
geted attacks in its augmentation procedure, models might be able to learn a
more robust representation of each semantic class. This, in turn, might decrease
the probability of a successful attack against them [32], and increase the ability
of a model to generalize its predictions for those classes [54].
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