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Abstract. The main objective of text-to-image (Txt2Img) synthesis is
to generate realistic images from text descriptions. We propose to insert
a gated cross word-visual attention unit (GCAU) into the conventional
multiple-stage generative adversarial network Txt2Img framework. Our
GCAU consists of two key components. First, a cross word-visual at-
tention mechanism is proposed to draw fine-grained details at different
subregions of the image by focusing on the relevant words (via the visual-
to-word attention), and select important words by paying attention to
the relevant synthesized subregions of the image (via the word-to-visual
attention). Second, a gated refinement mechanism is proposed to dy-
namically select important word information for refining the generated
image. Extensive experiments are conducted to demonstrate the supe-
rior image generation performance of the proposed approach on CUB
and MS-COCO benchmark datasets.

1 Introduction

The objective of text-to-image (Txt2Img) is to generate a realistic image from a
given text description that is consistent with the text semantics. Deep learning
techniques, particularly, Generative Adversarial Networks (GANs), have become
an effective generative approach in Txt2Img synthesis [1, 2, 11]. It has many sig-
nificant applications, such as image enhancement [10], text-image matching [8].

The GAN-based approaches encode the text description as a global sen-
tence vector and then apply it as a conditional constraint to generate an image
that matches the text description. They can be classified into two categories:
(i) one-stage methods, and (ii) multiple-stage methods. The one-stage methods
generate images by adding up-sampling layers in a single generator. However,
this may cause the generated image to be inconsistent with the input text de-
scription [15]. Thus, a matching-aware zero-centered gradient penalty method is
proposed in [19] to make the generated image better match the text description.
The multiple-stage methods generate an initial low-resolution image by the first

2028



2 B. Lai et al.

generator and then refine it by subsequent generators to create high-resolution
progressively, where the global sentence feature is used as a conditional con-
straint to the discriminator at each stage to ensure that the generated image
matches the text description [24, 25].

Considering that fine-grained details are critical in the generated image, the
attention mechanism has been exploited for Txt2Img generation. AttnGAN [22]
drew image details by computing the attention distribution of all word feature
vectors on each visual feature vector. However, the unchanged text representa-
tion is used at each stage of image refinement. Moreover, if the attention weights
are wrongly estimated at the beginning, some important word information may
be ignored. An attention regularization loss was proposed in SEGAN [17] to
highlight important words. A threshold is set so that the attention weight of
important words (above the threshold) can be gradually increased and the at-
tention weight of irrelevant words (below the threshold) can be gradually de-
creased. The limit is that it is not easy to determine the appropriate value range
of the threshold. A dynamic memory mechanism was proposed in DM-GAN [27]
to refine image details dynamically. The memory writing gate would select im-
portant word information according to the global image information and word
information, and save them in memory slots. The memory is addressed and
read according to the correlation between each subregion of the image and the
memory, thus gradually completing the refinement of the image. Its limitation
is that it considers the contribution of all subregions of the image to each word
as equal. KT-GAN [18] focused on adjusting attention distribution by using hy-
perparameters to extract important word information. However, KT-GAN is a
time-consuming method, and it requires accurately-estimated attention weight
of each word.

The fundamental challenge in Txt2Img synthesis is how to exploit the infor-
mation from the input sentence, which guides details generation in the image.
Our approach yields the following two contributions.

– Firstly, each word in the input sentence provides different information depict-
ing the image content. The image information should be taken into account
to determine the importance of every word, and the word information should
also be considered to determine the importance of every subregion of the im-
age. For that, we propose a cross word-visual attention mechanism. It draws
details at different image subregions by focusing on the relevant words via
visual-to-word (V2W) attention, and select important words by focusing on
the relevant image subregions via word-to-visual (W2V) attention.

– Secondly, if the same word representation is utilized at multiple phases of im-
age refinement, the procedure may become ineffective. For that, we propose a
gated refinement mechanism to dynamically select the important word infor-
mation from the updated word representation based on the updated image
representation at multiple image refinement stages.

We propose to include these two contributions into a multiple-stage GAN-based
Txt2Img synthesis framework by combining them to construct a gated cross
word-visual attention unit.
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Fig. 1. The framework of our proposed approach. The proposed gated cross-word visual
attention unit, which contains a W2V attention, a V2W attention, and a selecting gate,
is used for the Stage II and Stage III.

The remainder of this paper is organized as follows. The proposed Txt2Img
synthesis approach is presented in Sect. 2 by developing a gated cross word-visual
attention method. It is evaluated in extensive experiments in Sect. 3. Finally,
Section 4 concludes this paper.

2 Proposed Txt2Img synthesis approach

We leverage a conventional multiple-stage GAN-based Txt2Img framework, where
a low-resolution initial image is firstly generated and then refined via several
stages to obtain the final high-resolution synthesized image. Let Vi and Wi be
visual features and word features, respectively. Fca represents the Conditioning
Augmentation [24] that converts the sentence vector to the conditioning vector,
z ∼ N(0, 1) is a random noise vector, Fi represents the visual feature transformer
at the i-th stage, Gi represents the generator at the i-th stage, Di represents the
discriminator at the i-th stage.

As shown in Fig. 1, we propose to insert a gated cross word-visual attention
unit (GCAU) at each stage (except the first stage) of this Txt2Img framework.
Our GCAU contains a W2V attention, a V2W attention, and a selecting gate.
These three components are described in detail as follows.

2.1 Cross word-visual attention

Denote the word feature matrix Wi ∈ RDw×Nw , the visual feature matrix Vi ∈
RDv×Nv , where Dw and Dv are dimensions of a word feature vector and a visual
feature vector, Nw and Nv are numbers of word feature vectors and visual feature
vectors.
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W2V Attention Firstly, it transforms visual features from a visual semantic
space to a word semantic space by a 1× 1 convolution operator Mv(·) to obtain
a mapped visual feature matrix V′i ∈ RDw×Nv as

V′i = Mv (Vi) . (1)

Then, it calculates a similarity matrix WT
i V
′
i between the mapped visual fea-

ture matrix V′i and the word feature matrix Wi. By calculating the attention
distribution αv ∈ RNw×Nv on each mapped visual feature vector, the normalized
attention distribution is obtained as

αv = softmax
(
WT

i V
′
i

)
. (2)

Next, according to the attention distribution αv, each mapped visual feature
vector is weighted and summed up to obtain the visual-context feature matrix
as V′iαT

v .

V2W Attention It follows a similar procedure as W2V as follows. Firstly, it
applies a 1 × 1 convolution operator Mw(·) to obtain a mapped word feature
matrix W′

i ∈ RDv×Nw as
W′

i = Mw (Wi) (3)

Then, it calculates the attention distribution αw ∈ RNv×Nw on each mapped
word feature vector to obtain the normalized attention distribution as

αw = softmax
(
VT

i W
′
i

)
. (4)

Next, each mapped word feature vector is weighted and summed up to obtain
the word-context feature matrix as W′

iα
T
w.

Finally, following the idea of the Attention on Attention (AoA) method [4],
we further concatenate the visual-context feature matrix and word feature ma-
trix, then apply two separate linear transformations conditioned on the concate-
nated result. Then we add another attention using element-wise multiplication
to eventually obtain the W2V attentional information V̂i as

V̂i=
(
U1

wV
′
iα

T
v +U2

wWi+b
1
w

)
⊗ σ

(
U3

wV
′
iα

T
v +U4

wWi+b
2
w

)
, (5)

where σ(·) is the sigmoid activation function, ⊗ denotes the element-wise mul-
tiplication, U1

w,U
2
w,U

3
w,U

4
w ∈ RDw×Dw , b1w, b2w ∈ RDw . It highlights visual

subregions that each word should pay attention to, it measures the word impor-
tance that will be sent to the selecting gate in the gated refinement mechanism
for important word selection. The AoA method [4] is also applied to obtain the
V2W attentional information.

2.2 Gated refinement

We propose a selecting gate to dynamically select the important word feature
at different image refinement stages. It adopts a structure of a memory writing
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gate [27], but we modify it in two ways. Firstly, we use the word information
refined from the previous stage as the input, instead of the fixed initial word in-
formation in [27]. Secondly, we adaptively combine features from different visual
subregions according to the W2V attentional information, instead of treating
them equally in [27].

Our selecting gate is defined as follows. It inputs the previous word infor-
mation Wi−1 and the W2V attentional information V̂i−1, which are firstly
transformed by linear transformations U5

w,U
6
w ∈ R1×Dw , and normalized by

the sigmoid activation function σ(·) as

g(Wi−1, V̂i−1) = σ(U5
wWi−1 +U6

wV̂i−1). (6)

Then, it removes the past word information to be forgotten and obtains the
attentional information to be memorized as

Wi=g(Wi−1, V̂i−1)V̂i−1+(1−g(Wi−1, V̂i−1))Wi−1. (7)

2.3 Objective function

The objective function is defined by combining all stages of image refinement as

L =
∑

i
LGi

+ λ1LCA + λ2
∑

i
LDAMSM (Wi), (8)

where LGi
is an adversarial loss [22], λ1 and λ2 are the corresponding weights of

a conditioning augmentation loss LCA [27] and a loss LDAMSM (Wi), which is
modified from the DAMSM loss [22]. LGi

encourages the generated image to be
realistic and match the given text description, LCA avoids overfitting in model
training, and LDAMSM (Wi) encourages each subregion of the image to match
each word in the given text description as much as possible.

It is important to note that we use the refined word information Wi in the
objective function. We compute the DAMSM loss between the generated image
and the refined word information at each stage of image refinement. This is dif-
ferent from the initial word information W that is used in [22]. This modified
loss enables the generated image to match the text description by ensuring the
semantic consistency between the visual subregions and the selected word infor-
mation at each stage. It also enables our W2V attention to accurately highlight
visual subregions more relevant to the word.

2.4 Summary of our method

At the i-th stage of image refinement, our GCAU takes the previous word feature
Wi−1 and visual featureVi−1 as the inputs, and output the current word feature
Wi and visual feature Vi as follows.

Step 1. Apply the W2V attention to calculate the current W2V attentional
information V̂i−1 from Wi−1 and Vi−1.

Step 2. Apply the selecting gate to select current important word information
Wi from V̂i−1 and Wi−1.
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Step 3. Apply the V2W attention to calculate the V2W attentional informa-
tion Ŵi from Wi and Vi−1. Then we concatenate Ŵi with itself and input to
the visual feature transformer to obtain the updated visual feature Vi.

Step 4. Generate the refined image Ii from Vi via Gi.

3 Experimental Results

Extensive experiments in this section are carried out to compare our proposed
approach with other previous state-of-the-art Txt2Img synthesis approaches to
verify the performance of our approach. In addition, we conduct an ablation
study to verify the performance of each component.

3.1 Datasets

We use two public benchmark datasets, including CUB [20] and MS-COCO [9]
datasets. The CUB [20] dataset is a single-object dataset with 200 categories, in
which the training set contains 8,855 images and the test set contains 2,933 im-
ages. There are ten text descriptions for each image. The MS-COCO [9] dataset
is a multi-object dataset, in which the training set contains 82,783 images and
the test set contains 40,470 images. There are five text descriptions for each
image.

3.2 Implementation details

We use the bidirectional LSTM as text encoder to encode the input text de-
scription to obtain the word features and the sentence feature. An image with
64× 64 resolution is generated at the initial stage, and then refined to generate
images with 128 × 128 and 256 × 256 resolution. Dv and Dw are set to 64 and
256, respectively. Nw is set to 64 and Nv is the resolution of the generated image
at each stage, which is set to 64× 64, 128× 128, 256× 256. The model is trained
on a Nvidia GeForce RTX 2080 Ti GPU. The batch size is set to 16 on the CUB
dataset and 12 on the MS-COCO dataset. All models are optimized with the
ADAM optimizer [5], β1 and β2 are set to 0.5 and 0.999. The learning rate of
generators and discriminators are set to 0.0002. The model is trained for 800
epochs on the CUB dataset and 200 epochs on the MS-COCO dataset. For λ1
and λ2 in Eq. (8), λ1 is set to 1 on the CUB dataset and MS-COCO dataset, λ2
is set to 5 on the CUB dataset and 50 on the MS-COCO dataset.

3.3 Evaluation metrics

We evaluate the model generation performance by generating 30,000 images
based on the text descriptions from unseen test set. There are three metrics
used for evaluation: IS [16], FID [3], and R-precision [22]. IS [16] is used to
evaluate the diversity of the generated images, FID [3] is used to evaluate the
reality of the generated images, and R-precision [22] is used to evaluate how well
the generated images match the text descriptions.
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– The IS [16] metric calculates the Kullback-Leibler divergence between the
conditional class distribution and the marginal class distribution. A higher
IS means the generated images have more diversity.

– The FID [3] metric calculates the Fréchet distance between synthetic and
real-world images. It first uses the Inception v3 network to extract features,
then uses a Gaussian model to model the feature space, and finally calculates
the distance between the two features. A lower FID means that the generated
images are closer to real-world images.

– The R-precision [22] metric measures the cosine similarity between global
image features and candidate sentence features. A higher R-precision means
that the generated images match the text descriptions better.

3.4 Experimental results

The comparison results of our approach with other previous state-of-the-art ap-
proaches on the test set are shown in Table 1, Table 2 and Table 3. The following
is the analysis report of the comparison results.

Firstly, as seen in the IS performance in Table 1, our method performs only
worse than TVBi-GAN [21] and DF-GAN [19] on the CUB dataset, and only
worse than SD-GAN [23] on the MS-COCO dataset. Although SD-GAN [23]
trains the model with multiple text descriptions, our method only uses a single
text description, which may lead to a possible limitation of our method in the
diversity of generated images. Moreover, SD-GAN [23] will fail to train if each
image in the dataset contains only a single text description. In addition, SD-
GAN [23] uses the siamese structure to extract text semantic information, which
is more complex than our network and more powerful hardware equipment is
required for training.

Secondly, as seen in the FID performance in Table 2, our method performs
only worse than TVBi-GAN [21] on the CUB dataset and achieves the best
performance on the MS-COCO dataset. Our method performs worse than TVBi-
GAN [21] on the CUB dataset, but the CUB dataset is a single-object dataset,
while the MS-COCO dataset is a multi-object dataset, and our method achieves
the best performance on the MS-COCO dataset which proves that our method
performs better in generating multi-object images.

Thirdly, as seen in the R-precision performance in Table 3, our method
achieves the state-of-the-art performance on the CUB dataset and performs
only worse than Obj-GAN [7] on the MS-COCO dataset. Obj-GAN [7] uses
a discriminator based on the Fast R-CNN model to provide rich object-wise
discrimination signals, which helps semantic alignment of text descriptions and
images. This also complicates the network. Our method does not need to add
additional networks, and the performance is very close.
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Table 1. The performance of IS for our proposed method comparing with other meth-
ods on CUB and MS-COCO test sets. Higher IS means better performance.

Methods CUB [20] MS-COCO [9]
GAN-INT-CLS [15] 2.88±.04 7.88±.07

GAWWN [14] 3.62±.07 -
StackGAN [24] 3.70±.04 8.45±.03

StackGAN++ [25] 4.04±.05 -
HD-GAN [26] 4.15±.05 11.86±.18
AttnGAN [22] 4.36±.03 25.89±.47
MirrorGAN [13] 4.56±.05 26.47±.41
ControlGAN [6] 4.58±.09 24.06±.60
LeicaGAN [12] 4.62±.06 -
SEGAN [17] 4.67±.04 27.86±.31
ObjGAN [7] - 30.29±.33
DM-GAN [27] 4.75±.07 30.49±.57
SD-GAN [23] 4.67±.09 35.69±.50
DF-GAN [19] 4.86±.04 -

TVBi-GAN [21] 5.03±.03 31.01±.34
Ours 4.79±.05 31.22±.58

Table 2. The performance of FID for our proposed method comparing with other
methods on CUB and MS-COCO test sets. Lower FID means better performance.

Methods CUB [20] MS-COCO [9]
StackGAN [24] 51.89 74.05
AttnGAN [22] 23.98 35.49
SEGAN [17] 18.17 32.28
DM-GAN [27] 16.09 32.64
TVBi-GAN [21] 11.83 31.97
Obj-GAN [7] - 25.64
KT-GAN [18] 17.32 30.73

Ours 15.16 25.49

Table 3. The performance of R-precision for our proposed method comparing with
other methods on CUB and MS-COCO test sets. Higher R-precision means better
performance.

Methods CUB [20] MS-COCO [9]
AttnGAN [22] 67.82 85.47
MirrorGAN [13] 57.67 74.52
ControlGAN [6] 69.33 82.43
DM-GAN [27] 72.31 88.56
Obj-GAN [7] - 91.05

Ours 78.07 90.97

Lastly, we compare our method with SEGAN [17] and DM-GAN [27]. Firstly,
as seen in the IS performance in Table 1, our method achieves 2.57% higher
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Fig. 2. The performance comparison of ground truth images and images generated by
AttnGAN [22], DM-GAN [27] and our method. The four columns on the left are from
the CUB [20] dataset, and the four columns on the right are from the MS-COCO [9]
dataset.

than SEGAN [17], 0.84% higher than DM-GAN [27] on the CUB dataset, and
12.06% higher than SEGAN [17], 2.39% higher than DM-GAN [27] on the MS-
COCO dataset. Secondly, as seen in the FID performance in Table 2, our method
achieves 16.56% lower than SEGAN [17], 5.77% lower than DM-GAN [27] on
the CUB dataset, and 21.03% lower than SEGAN [17], 21.90% lower than DM-
GAN [27] on the MS-COCO dataset. Thirdly, as seen in the R-precision per-
formance in Table 3, our method also achieves better performance than DM-
GAN [27].

As can be seen from Fig. 2, for single-object generation and multi-object
generation, the shapes of the generated images are more realistic and the gener-
ated images also have more details, such as the black stripes and white eyebrow
in Fig. 2(d) and the microwave in Fig. 2(e). This verifies that our method can
generate more realistic images with more details.

3.5 Ablation study

Our work is to improve the V2W attention by integrating W2V attention and
gated refinement, which enables V2W attention to pay more attention to im-
portant words. We conduct an ablation study to gradually integrate various
components and evaluate the model performance using IS and FID based on the
CUB and MS-COCO dataset. As shown in Fig. 3(a) and Fig. 3(b), the perfor-
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(a) (b)

(c)

Fig. 3. (a) and (b) are the results of the ablation study on the CUB and MS-COCO
datasets. (c) is the visualization of the ablation study. Baseline denotes that only V2W
attention is integrated, WG denotes writing gate [27], W2V denotes our proposed W2V
attention, and GR denotes our proposed gated refinement.

mance of our model on IS and FID improved progressively with each component
being integrated, which demonstrates the effective contribution of each compo-
nent. We also show the images by gradually integrating various components. As
shown in Fig. 3(c), for the first text description, the generated objects obviously
do not yet have the correct shape, and the important words “bird”, “wings”, and
“belly” have not been accurately positioned and highlighted when only the V2W
attention is integrated; the shape of bird is highlighted after the writing gate with
fixed word features is integrated; the shape of bird is formed and the important
words “wings” and “belly” have been accurately positioned and highlighted af-
ter the W2V attention is integrated; the image details corresponding to “bird”,
“wings”, and “belly” have been significantly enhanced after the gated refinement
with refined word features is integrated. For the third text description, the shape
of the object is more realistic after the writing gate with fixed word features is
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(a)

Rank Baseline+WG Baseline+W2V+WG
1 the bird
2 bird small
3 small the
4 is eyering
5 that has

(b)

Rank Baseline+W2V+WG Baseline+W2V+GR
1 bird bird
2 a a
3 with with
4 yellow yellow
5 color white

Fig. 4. (a) shows the refinement effect of W2V attention on the initial image with 64×
64 resolution. (b) shows the refinement effect of gated refinement on the intermediate
image with 128× 128 resolution. The tables show the top-5 words that V2W attention
pays attention to.

integrated; the color of the object is more accurate after the W2V attention is
integrated; the object has the most realistic shape and the most accurate color
after the gated refinement with refined word features is integrated.

To further verify how our proposed W2V attention and gated refinement
improve V2W attention, we visualize the top-5 words that V2W attention pays
attention to. As shown in Fig. 4(a), the attention weights of important words
“bird”, “small” and “eyering” are improved after the W2V attention is integrated,
which means that V2W attention pays more attention to these important words.
We can also see that the shape of the object in the initial image can be effectively
improved after W2V attention is integrated, which is due to the fact that W2V
attention can focus on the relevant subregions of the image to select important
words, instead of treating each subregion of the image equally in the writing
gate [27]. As shown in Fig. 4(b), V2W attention can still pays more attention
to important words “bird” and “yellow” after gated refinement is integrated. In
addition, the attention weight of the important word “white” is improved, and
we can also see that the details on the wings of the object in the final image are
richer, which is due to the fact that gated refinement can retain important word
information selected at the previous stage.
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4 Conclusions

A new Txt2Img synthesis approach has been proposed in this paper by incor-
porating a gated cross word-visual attention unit into the multiple-stage GAN-
based image generation framework. Our approach reconstructs images with bet-
ter quality and visually realistic images, as verified in our qualitative and quan-
titative results using two benchmark datasets.

Acknowledgement. The work described in this paper is supported by China
GDSF No. 2019A1515011949.
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