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Abstract. Learning discriminative target-specific feature representation
for object localization is the core of the 3D Siamese object tracking algo-
rithms. Current Siamese trackers focus on aggregating the target infor-
mation from the latest template into the search area for target-specific
feature construction, which presents the limited performance in the case
of object occlusion or object missing. To this end, in this paper, we pro-
pose a novel temporal-aware Siamese tracking framework, where the rich
target clue lying in a set of historical templates is integrated into the
search area for reliable target-specific feature aggregation. Specifically,
our method consists of three modules, including a template set sampling
module, a temporal feature enhancement module and a temporal-aware
feature aggregation module. In the template set sampling module, an
effective scoring network is proposed to evaluate the tracking quality of
the template so that the high-quality templates are collected to form
the historical template set. Then, with the initial feature embeddings
of the historical templates, the temporal feature enhancement module
concatenates all template embeddings as a whole and then feeds them
into a linear attention module for cross-template feature enhancement.
Furthermore, the temporal-aware feature aggregation module aggregates
the target clue lying in each template into the search area to construct
multiple historical target-specific search-area features. Particularly, we
follow the collection orders of the templates to fuse all generated target-
specific features via an RNN-based module so that the fusion weight
of the previous template information can be discounted to better fit the
current tracking state. Finally, we feed the temporal fused target-specific
feature into a modified CenterPoint detection head for target position re-
gression. Extensive experiments on KITTI, NuScenes and waymo open
datasets show the effectiveness of our proposed method. Source code is
available at https://github.com/tqsdyy/TAT.

1 Introduction

Visual object tracking is a fundamental task in the computer vision field, and
has achieved extensive applications such as autonomous driving [19] and robotics
vision [4]. With the development of cheap LiDAR sensors, the point cloud-based
3D object tracking has obtained much more attention. Compared with the visual
tracking using 2D images, point cloud data can effectively handle the challenges,
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such as the changes in the light condition and the object size. Generally, with the
high-quality 3D bounding box in the first frame, 3D single object tracking aims
to continuously evaluate the state of the object throughout the tracking video
sequence. However, the sparsity of the point cloud and the noise interference still
hinder its applications in the real world.

In recent years, inspired by the successful applications of Siamese network [1]
in 2D object tracking, 3D tracker focuses on exploiting the Siamese network
paradigm for object tracking. As a pioneer, SC3D [8] is proposed to perform the
3D Siamese object tracking by matching the embedded shape information in the
template to a large number of candidate proposals in the search area. However,
SC3D is time-consuming and not end-to-end. To this end, Qi et al. [25] pro-
posed the Point-to-Box network (P2B) for object tracking. A PointNet++ [24]
is employed to extract the features of the template and search area, which are
then utilized to construct the target-specific feature for object position regression
via the VoteNet [23]. Based on P2B, Zheng et al. [37] further proposed a box-
aware feature embedding to capture the prior shape information of the object
for robust object location. In addition, Hui et al. [10] proposed a voxel-to-BEV
Siamese tracker to improve the tracking performance in the cases of sparse point
clouds. In summary, current Siamese trackers mainly focus on exploiting a single
template for target-specific feature generation while ignoring the rich temporal
context information lying in the set of the historical templates.

In this paper, we propose a simple yet powerful temporal-aware Siamese
tracking framework, where the high-quality historical templates are collected to
learn the discriminative target-specific feature for object localization. Our key
idea is to utilize a powerful linear attention mechanism for temporal context
learning among the historical templates, which is then integrated into the search
area for robust temporal-aware target information aggregation and object local-
ization.

Specifically, our framework consists of three modules, including a template set
sampling module, a temporal feature enhancement module and a temporal-aware
feature aggregation module. In the template set sampling module, with the tem-
plate as input, a lightweight scoring network is designed to evaluate the 3DIoU
between the template and the ground-truth target so that the high-quality tem-
plate set can be obtained by sampling the templates with high 3DIoUs. Then,
taking as input the initial features of historical templates, the temporal fea-
ture enhancement concatenates the point features of all templates as the whole
and feeds them into a linear attention module for efficient cross-template feature
enhancement. Furthermore, the temporal-aware feature aggregation module con-
structs a feature matching matrix between each template feature and the search-
area feature, which guides the target information transferring in each template
into the search area for the target-specific search-area feature generation. In par-
ticular, a RNN-based (Recurrent Neural Network) module is employed to fuse
multiple target-specific features in the collection order of the templates, based
on the intuition that the target information in the latter templates tend to own
a higher correlation with the current tracking state. Finally, with the learned
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target-specific feature, we utilize a modified CenterPoint [36] detection head for
object position regression. Notably, benefitting from the target information ag-
gregation from the historical templates, our method can still obtain effective
target-specific feature representation in the case of occlusion or object missing.
Extensive experiments verify the effectiveness of our proposed method.

The main contributions of our work are as follows:

– We propose a novel temporal-aware Siamese tracking framework, where the
target information lying in the multiple historical templates is aggregated for
the discriminative target-specific feature learning and the target localization.

– An effective 3DIoU-aware template selector is designed to collect high-quality
templates as the historical template set.

– Our method can achieve state-of-the-art performance on multiple bench-
marks and be robust in the cases of object occlusion or object missing.

2 Related Work

2.1 2D Object Tracking

In recent years, with the successful application of Siamese network [1] in the 2D
object tracking, Siamese-based trackers [9,30,33,39] have become mainstream.
The core idea of the Siamese tracker is to extract features from the template
image and the current image by using the shared weight backbone network to
ensure that the two images are mapped to the same feature space, and use
the idea of similarity matching to locate the most similar part of the image to
the template. However, the lack of depth information in RGB images makes it
difficult for trackers to accurately estimate the depth of objects in the images.
Therefore, scholars try to study the object tracking method based on RGB-D
data, but it is still some efforts have been made on RGB-D object tracking. The
subject approach used in RGB-D data-based trackers [2,22] is not much different
from the 2D object tracking method, except that additional depth information
enhances the tracker’s ability to perceive depth information. Therefore, these
methods still rely heavily on RGB information and still suffer from problems
such as sensitivity to illumination changes and object size variations.

2.2 3D Single Object Tracking

Due to the characteristics of point cloud data, object tracking based on 3D point
cloud can effectively avoid a series of problems in 2D image tracking field. There-
fore, in recent years, much more work [6,27,32] focuses on 3D object tracking
based on point clouds. As a pioneer, Giancola et al. [8] proposed a Siamese track-
er named SC3D dedicated to 3D single object tracking (SOT). SC3D uses shape
completion on the template to obtain the shape information of the target, gener-
ates a large number of candidate proposals in the search area and compares them
with the template, and takes the most similar proposal as the current tracking
result. Qi et al. [25] proposed a point-to-box network (P2B) for the problem that
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SC3D cannot be trained end-to-end, P2B uses feature augmentation to enhance
the perception ability of the search area to a specific template, and then uses
VoteNet [23] to locate the target in the search area. Zheng et al. [37] proposed
a box-aware module based on P2B to enhance the network’s mining of bound-
ing box prior information. Furthermore, to enhance the tracking performance
of the tracker for sparse point clouds, V2B proposed by Hui et al. [10] uses a
shape-aware feature learning module and uses a voxel-to-BEV detector to regress
the object center. Lately, Jiang et al. [12] proposed a two-stage Siamese track-
er named RDT, which uses point cloud registration to achieve robust feature
matching between the template and potential targets in the search area.

In the 3D SOT task, existing Siamese trackers use a single-template matching
mechanism for object localization, which ignores the rich temporal templates
information of historical tracking results. This makes the trackers suffer from
low-quality template feature representation in the presence of noise interference
or occlusion, leading to the tracking failure. Therefore, we consider designing
a novel Temporal-aware Siamese Tracker to associate temporal templates and
sufficiently mine temporal context to improve the tracking robustness.

2.3 3D Multi Object Tracking.

Unlike SOT, most of the multi object tracking (MOT) algorithms follow the
paradigm of “tracking-by-detection” [15,26,35], it including two stages: targets
detection and targets association. Specifically, first, they use a detector to detect
a large number of instance objects in each frame, and then use methods such as
motion information to associate objects across frames. The difference between
3D-MOT and 2D-MOT is that 3D detection [17,28,23] and association [14] al-
gorithms are used instead of 2D methods. As a pioneer, Weng et al. [34] uses
PointRCNN [28] to detect instance targets per frame, and uses a 3D Kalman
filter to predict object motion trajectories, finally using the Hungarian algorith-
m for detected objects matching. Recently, Luo et al. [18] attempted to unify
detection and association into a unified framework, and achieved good results.
In summary, 3D MOT pays more attention to the completeness of detection
and the accuracy of association, and 3D SOT pays more attention to learning
discriminative target-specific feature representation for object localization.

3 Approch

3.1 Problem Setting

In 3D single object tracking task, given the initial bounding box (BBox) of the
object in the first frame, the tracker needs to continuously predict the BBox-
es of the object throughout the tracking sequence. Specifically, an object BBox
consists of nine parameters, including the object center coordinate (x, y, z), ob-
ject size (l, w, h), and rotation angle (α, β, θ) (corresponding to three coordinate
axes, respectively). Generally, in the 3D SOT field, we assume that the target
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size is fixed and the rotation direction is just around the z-axis. Therefore, the
estimation of the object states will only contain the center coordinates (x, y, z)
and rotation angle θ.

Our temporal-aware Siamese tracking framework mainly consists of three
modules, including the template set sampling module (Sec. 3.2), the temporal
feature enhancement module (Sec. 3.3) and the temporal-aware feature aggre-
gation module (Sec. 3.4).

3.2 Template Set Sampling

Following the Siamese tracking paradigm, the traditional Siamese tracker takes
as input a single template point cloud P t = {pt

i ∈ R3|i = 1, 2, ..., N} and
a search area point cloud P s = {ps

j ∈ R3|j = 1, 2, ...,M}, and matches the
closest target object to the template in the search area. Instead, we focus on
extracting the rich temporal context information from a set of collected templates
T = {P t

1 ,P
t
2 , ...,P

t
k} for robust object localization. We consider three sampling

mechanisms for template set generation, including the random sampling, the
closest sampling and the template score ranking sampling, and in Sec. 4.3, we
will discuss the effects of different ways of generating template set:
Random sampling. We randomly select k templates from the whole historical
template buffer as the template set.
Closest sampling. We select k templates closest to the current frame as the
template set, which tends to be more related to the current frame.
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Fig. 1. The framework of the 3DIoU-aware template selection network.

Template score ranking sampling. To collect high-quality templates, we
construct a scoring network to predict the 3DIoU score between each historical
template and the ground-truth target, and then select k templates with the
highest scores as the template set. Specifically, as shown in Fig. 1, we exploit
the original template P t and the scale-expanded template P tg = {ptg

i ∈ R3|i =
1, 2, ..., N} as the network input, where the scale-expanded template is used to
provide the necessary context information for reliable 3DIoU prediction. Then,
a weight-shared MLP is employed to extract their local point features F t

local ∈
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Fig. 2. The framework of our Temporal-aware Siamese Tracker. (a) Template set
sampling: We first exploit the template selector to collect the high-quality template
set. (b) Siamese feature extraction: Then, the weight-shared backbone network
followed by a self-attention module is employed as the Siamese network to extract
the point-level features of the template set and the search area. (c) Target-specific
feature fusion: We integrate the target clue from k templates into the search area to
learn k target-specific search area features, and an RNN-based fusion module is then
employed to obtain the adaptively-fused target-specific feature. Finally, We pass the
fused target-specific feature into a modified CenterPoint detector for object localization.

RC×N and F tg
local ∈ RC×N , and meanwhile a max-pooling function is performed

to extract their global feature F t
global ∈ RC×N and F tg

global ∈ RC×N , respectively.
Finally, taking as input the concatenated features of the local and global features,
an MLP is used to predict the score of the template:

Score = MLP(Cat(F t
local,F

t
global,F

tg
local,F

tg
global)). (1)

We use PointNet++ [24] as the backbone network to extract the initial fea-
tures of the template set and the search area. We denote the obtained initial
search-area feature as S ∈ RM×C , and the initial feature of l-th template in the
template set as T l ∈ RN×C , where C indicates the feature dimension.

3.3 Temporal Feature Enhancement

Temporal feature enhancement module aims to enhance the initial template fea-
tures T 1,T 2, ...,T k with the cross-template message passing based on the linear
attention. In this section, we briefly introduce the linear attention mechanis-
m, and then demonstrate how to exploit the temporal context information to
enhance the feature representation of each template.
Linear-attention mechanism. The basic attention mechanism uses the dot-
product attention [31] between the queryQ ∈ RNq×C and keyK ∈ RNk×C as the
cross-attention weights for message passing. However, for the large-scale tasks,
the dot-product attention is inefficient and usually needs high computational
complexity for long-range relationship modeling. To relieve it, Katharopoulos
et al. [13] proposed the linear attention that just needs a linear dot-product of
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kernel feature maps for efficient attention weight generation. In detail, the linear
attention can be defined as:

LA(Q,K,V ) = φ(Q)
(
φ(K)>(V )

)
(2)

where φ(·) = elu(·)+ 1. The linear attention can also be extended to multi-head
attention (denoted as “MultiHead-LA(Q,K,V )”) to capture richer feature rep-
resentations. In the following, we employ such linear attention to integrate the
temporal context information among the template set for the feature enhance-
ment of each template.
Temporal feature enhancement. Given a set of initial template features,
we first concatenate them to form an ensemble of the template features T =
Concat(T 1,T 2, ...,T k), where k is the template number of template set. Then,
we treat them as a whole by reshaping T ∈ Rk×N×C to T ∈ RNt×C (Nt = k×N)
to satisfy the input shape of linear-attention module. The feature enhancement
can be formulated as below:

T
′
= MultiHead-LA(T + Tp,T + Tp,T + Tp) (3)

where T
′ ∈ RNt×C is the enhanced template feature with the linear-attention

module, and Tp ∈ RNt×C is the coordinate embedding of the template points via
a MLP. Furthermore, the enhanced feature T

′
is added as the residual item to the

initial feature T , followed by an instance normalization operation Ins.Norm(·):

T
′′
= Ins.Norm(T

′
+ T ). (4)

In addition, in order to improve the generalization ability of the network, we
enhance T

′′
using a feed-forward neural network (FFN(·)) followed by a instance

normalization:
T̂ = Ins.Norm(FFN(T

′′
) + T

′′
). (5)

Finally, for sufficient message passing among the template set, we iteratively
perform the feature enhancement above in m times to achieve the deeper tempo-
ral context information aggregation. We will discuss the performance changes of
different attention-iteration times m and different attention heads n in Sec. 4.3.
Also, to ensure the feature-space consistency between the template set and the
search area, we share the linear-attention module to the search area feature for
feature transformation, i.e. S → Ŝ ∈ RM×C .

3.4 Temporal-aware Feature Aggregation

The Siamese tracker focuses on constructing the feature similarity between the
template and the search area, which guides the transferring of the target in-
formation from the template to the search area for the target-specific feature
learning and the object localization. However, the current 3D Siamese trackers
just exploit a single template for tracking while ignoring the rich template clue
lying in the historical templates, resulting in low tracking performance in some
challenging cases (e.g., the object occlusion and the missing).
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Fig. 3. Framework of the linear attention-based template enhancement module, which
is iteratively performed m-times to achieve a richer temporal feature fusion.

Target-specific feature learning. Instead of using a single template, we focus
on exploiting the sampled high-quality template set (in Sec. 3.2) for target-
specific feature learning. Specifically, taking as input the enhanced template-set
features T̂ ∈ Rk×N×C and search area feature Ŝ ∈ RM×C , we construct the
feature similarity map via the Cosine similarity for each template T̂ l (1 ≤ l ≤ k)
and the search area Ŝ:

Siml
i,j =

ti
T · sj

‖ti‖2 · ‖sj‖2
,∀ti ∈ T̂ l, sj ∈ Ŝ. (6)

Then, based on the feature similarity above, we use it to guide the target-
specific search-area feature learning. Specifically, for j-th search-area point ps

j ,
we gather the target information in its most related template point pt

x∗ (index
x∗ = argmaxi Sim

l
i,j) of the l-th template, and use it to guide the transfer-

ring of the information into the ps
j . The target information of template point

pt
x∗ consists of the point coordinate pt

x∗ , enhanced point feature tlx∗ ∈ T̂ l

and the similarity score Siml
x∗,j . These target information will be sent to a

MLP together with the corresponding search area feature sj ∈ Ŝ to build the
fusion feature slj = MLP([sj ,p

t
x∗ , t

l
x∗ ,Sim

l
x∗,j ]) of the j-th search-area point

by the l-th template. Then, we can form the multiple target-specific features
S1
fused,S

2
fused, . . . ,S

k
fused.

RNN-based temporal-aware feature fusion. With the generated multiple
target-specific features above, we exploit a GRU network (Gated Recurrent Unit,
a popular RNN network) to fuse them, where the GRU network can adaptive-
ly assign higher fusion weights on the target-specific features from the latter
templates while discounting the fusion weights of the features from the previous
templates. It is mainly based on the intuition that compared to the previous
template information, the latter ones tend to own a higher correlation with the
current tracking state, thereby can benefit the current tracking performance. A-
mong them, for the k features s1j , s2j , . . . , skj at the j-th point in the search area,
the process of GRU network to fuse the historical template information can be
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formulated as:
zt
j = σ(W z · [ht−1

j , stj ]),

rtj = σ(W r · [ht−1
j , stj ]),

ĥt
j = tanh(W · [rtj ∗ ht−1j , stj ]),

ht
j = (1− zt

j) ∗ ht−1
j + zt

j ∗ ĥt
j ,

(7)

where W ,W z,W r are learnable parameter matrices, and H = {ht
j ∈ RC |1 ≤

j ≤ M, 1 ≤ t ≤ k} is initialized to a zero matrix. We regard the output Hk ∈
RM×C of the last layer as our final temporal-aware feature Sfinal.

3.5 Loss Function

Templet scoring supervision. In the training phase, we first add the noise on
the GT BBox of the target to generate the sample BBox and then generate the
template by cropping the point cloud with the sample BBox. We use the IoU
(Intersection over Union) between the GT BBox and the sample BBox as the
GT score, and use the SmoothL1 Loss to supervise network training. Assuming
that the GT score is Sgt and the predicted score of the network is Spred, the loss
of score supervision Lscore can be written as:

Lscore = SmoothL1(Sgt − Spred) (8)

Detection head supervision. Based on the temporal-aware feature aggrega-
tion module, we obtain the temporal-aware fusion feature map, and we utilize
the modified CenterPoint [36] detection network on this feature map to regress
the target position. Following [10], we first voxelize the feature maps of each
point by the averaging operation, and then use a stack of 3D convolutions to
aggragte the features in the volumetric space. Next, we obtain the bird’s eye
view (BEV) feature map along the z-axis by max pooling operation. Finally, we
aggregate the feature map using a stack of 2D convolution on the BEV feature
map and use three different heads to regress the target position. Specifically, the
three heads are 2D-center head, offset&rotation head, and z-axis head. We will
use three losses to constrain them separately, and the details of the design can
be found in [10], where we denote them as Ldetect.

The final loss function L is obtained by simply adding the two terms:

L = Lscore + Ldetect. (9)

4 Experiments

4.1 Experimental Settings

Implementation details. Following [25], we randomly sample N = 512 for
template point cloud P t and M = 1024 for search area point cloud, and sample
N = 512 for scale-expand template point cloud in the template scoring module.
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We set the size of the template set k = 8. In our attention enhancement module,
we employ the number of iterations n = 2 and the number of heads of multi-heads
attention m = 4. And for the temporal-aware feature aggregation module, we
use the GRU network to associate k-temporal features, which can be defined and
used via torch.nn.GRUCell in PyTorch [21]. We use the Adam [16] optimizer
to update the network’s parameters, and set the learning rate from initial 0.001
decayed by 0.2 every 6 epochs. The network will converge by training for about 30
epochs. We implement our model with PyTorch [21] and deploy all experiments
on a server with TITAN RTX GPU and Intel i5 2.2GHz CPU.

Datasets. We use the KITTI [7], nuScenes [3] and waymo open [29] datasets
for our experiments. Among them, the KITTI dataset has 21 video sequences.
Following the P2B [25], we split the sequences into three parts: sequences 0-16
for training, 17-18 for validation, and 19-20 for testing. In addition, the nuScenes
dataset with 700 training video sequences and 150 validation video sequences.
Since the nuScenes dataset only labels the ground truth in key frames, following
V2B [10], we use the official toolkit to interpolate the corresponding labels for
the unlabeled frames. For the waymo open dataset (WOD), it is currently one of
the largest outdoor point cloud datasets. Pang et al. [20] established a 3D SOT
benchmark based on the WOD, which we will use directly.

Evaluation metrics. Following [25], we use Success and Precision criteria
to measure the model performance. Specifically, Success is used to measure the
IoU between the predicted BBox and the GT BBox, and Precision is used to
measure the AUC (Area Under Curve) of the distance between the predicted
BBox and the GT BBox centers from 0 to 2 meters.

Data pre-processing. The input to the core network consists of a template
point cloud set, search area point cloud, and an additional scale-expand template
point cloud is required for the template scoring module. For training, we enlarge
the GT BBox of the previous frame by 2 meters and plus random offset and
crop the search area from the current frame point cloud. In order to build the
template set, we will randomly select k frame from the first frame of the current
tracking sequence to the current frame, a small random noise is added to the GT
BBox corresponding to each frame, and it is concatenated with the point cloud
of the first frame as the template set. In addition, we will enlarge the BBox
by 1 meter as the scale-expand template point cloud. For testing, we enlarge
the predicted BBox of the previous frame by 2 meters in the current frame
and collect the points inside to generate the search area. The template set of
the current frame will evaluate all the tracking results of the historical frame
through the template scoring module, and select the k frames with the highest
scores to be spliced with the first frame respectively. The scale-expand template
corresponding to each template will be obtained by expanding the respective
BBox by 1 meter. For simplicity, in the subsequent discussion we name our
Temporal-Aware Siamese Tracker as TAT.
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Table 1. The performance of different methods on the KITTI and nuScenes datasets.
Bold and underline denote the best performance and the second-best performance
of the compared methods, respectively. “Mean” denotes the average results of four
categories.

Metrics Success Precision
Category Car Pedestrian Van Cyclist Mean Car Pedestrian Van Cyclist Mean

Frame Num. 6424 6088 1248 308 14068 6424 6088 1248 308 14068

K
IT

T
I

SC3D [8] 41.3 18.2 40.4 41.5 31.2 57.9 37.8 47.0 70.4 48.5
P2B [25] 56.2 28.7 40.8 32.1 42.4 72.8 49.6 48.4 44.7 60.0
LTTR [5] 65.0 33.2 35.8 66.2 48.7 77.1 56.8 45.6 89.9 65.8
BAT [37] 60.5 42.1 52.4 33.7 51.2 77.7 70.1 67.0 45.4 72.8
PTT [27] 67.8 44.9 43.6 37.2 55.1 81.8 72.0 52.5 47.3 74.2
PTTR [38] 65.2 50.9 52.5 65.1 58.4 77.4 81.6 61.8 90.5 77.8
V2B [10] 70.5 48.3 50.1 40.8 58.4 81.3 73.5 58.0 49.7 75.2
STNet [11] 72.1 49.9 58.0 73.5 61.3 84.0 77.2 70.6 93.7 80.1
TAT (ours) 72.2 57.4 58.9 74.2 64.7 83.3 84.4 69.2 93.9 82.8
Category Car Pedestrian Truck Bicycle Mean Car Pedestrian Truck Bicycle Mean

Frame Num. 15578 8019 3710 501 27808 15578 8019 3710 501 27808

nu
Sc
en

es

SC3D [8] 23.9 13.6 28.9 16.1 21.5 26.2 15.1 26.4 18.5 22.9
P2B [25] 32.7 18.1 28.1 18.5 27.6 35.5 25.0 25.8 23.9 30.9
BAT [37] 32.9 19.6 29.4 17.8 28.3 35.3 30.3 26.2 21.9 32.4
V2B [10] 36.5 19.4 30.8 18.9 30.5 39.0 26.9 28.6 22.0 33.8

TAT (ours) 36.8 20.7 32.2 19.0 31.2 39.6 29.5 28.9 22.6 34.9

4.2 Result

Evaluation on KITTI dataset. Following [25], we select the four most rep-
resentative categories from all object categories in the KITTI dataset [7] for
our experiments, including Car, Pedestrian, Van and Cyclist. We compare our
method with the previous state-of-art approaches [5,8,10,11,25,27,37,38]. Each of
these methods have published their results on KITTI, and we use them directly.
As shown at the top of Tab. 1, our method outperforms other methods in most
metrics. For the mean result of the four categories, our method can improve
the Success from 61.3(STNet) to 64.7(TAT) and Precision from 80.1(STNet) to
82.8(TAT), which boosted by 5.5% and 3.4%, respectively.

Evaluation on nuScenes dataset. We compare our method with the most
typical four Siamese trackers [8,10,25,37] on the Car, Pedestrian, Truck and
Bicycle categories of nuScenes dataset [3]. Following [10], since the nuScenes
dataset is only labeled on key frames, we only report the performance evaluation
on key frames. Compared with the KITTI dataset, the scenes of the nuScenes
dataset are more complex and diverse, and the point cloud is more sparse, which
greatly increases the challenge of the 3D SOT task. Nonetheless, as shown at
the bottom of Tab. 1, our method can still achieve the best performance on the
mean results of the four categories.

Evaluation on generalization ability. To evaluate the generalization a-
bility of the model, we directly use the model trained on the corresponding
classes of the KITTI dataset to evaluate its tracking performance on the WOD.
Among them, the corresponding categories between WOD and KITTI are Vehi-

409



12 K. Lan et al.

Table 2. The performance of different methods on the waymo open dataset. Each
category is divided into three levels of difficulty: Easy, Medium and Hard. “Mean”
denotes the average results of three difficulty.

Category Vehicle Pedestrian
Split Easy Medium Hard Mean Easy Medium Hard Mean

Frame Num. 67832 61252 56647 185731 85280 82253 74219 241752

Su
cc

es
s P2B [25] 57.1 52.0 47.9 52.6 18.1 17.8 17.7 17.9

BAT [37] 61.0 53.3 48.9 54.7 19.3 17.8 17.2 18.2
V2B [10] 64.5 55.1 52.0 57.6 27.9 22.5 20.1 23.7

TAT (ours) 66.0 56.6 52.9 58.9 32.1 25.6 21.8 26.7

P
re

ci
si

on P2B [25] 65.4 60.7 58.5 61.7 30.8 30.0 29.3 30.1
BAT [37] 68.3 60.9 57.8 62.7 32.6 29.8 28.3 30.3
V2B [10] 71.5 63.2 62.0 65.9 43.9 36.2 33.1 37.9

TAT (ours) 72.6 64.2 62.5 66.7 49.5 40.3 35.9 42.2

cle → Car, Pedestrian → Pedestrian respectively. As shown in the Tab. 2, our
method still shows excellent performance, which verifies that our model still has
an advantage in generalization ability.

V2BGround truth TAT(ours) Background Target

Timeline1T=15 T=30 T=45 T=60T=0

Timeline2T=10 T=15 T=20 T=50T=0

Fig. 4. The sequence tracking visualization of V2B and our TAT on the KITTI dataset.
We color the GT BBoxes in green, while the BBoxes predicted by TAT and V2B are
colored red and skyblue, respectively. In addition, we mark the points of target object
in orange for better identification from the background.

Visualization. As shown in Fig. 4, we show the visualization results of se-
quence tracking of car and pedestrian on the KITTI dataset. For the car, our
method can achieve more precise localization. For the pedestrian, the existing
Siamese trackers (such as V2B) are easy to match incorrectly when multiple
pedestrians are adjacent or occluded. However, our method can accurately lo-
calize the target object among multiple candidates in complex scenes. In the
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Detection result

High attention Low attentionHigh attention High attention

Fig. 5. The attention heatmap visualization of target-specific features, using histor-
ical templates to alleviate low-quality fusion features brought by recent low-quality
templates, so that high-quality detection can still be achieved.

case of occlusion, since the point cloud of the real target surface is extremely
sparse (T=15 in the bottom row), our method will also be biased to locate the
surrounding wrong target. However, when the occlusion disappears (T=20 in
the bottom row), our method can use the historical template context to quickly
locate the correct target, which is impossible for ordinary Siamese trackers.

In addition, we provide an attention heatmap of fused features for this ex-
ample to explain why our TAT can achieve high-quality tracking even after
occlusion. As shown in the Fig. 5, although the recent template is of poor qual-
ity due to the previous occlusion, the historical temporal context allows us to
obtain high matching confidence for the current frame.

More results. In addition, we provide more experimental results in the sup-
plementary material, including quantitative results on the different sparse scenes,
more categories visualizations of sequence tracking on the different datasets,
running speed, and several visualizations of tracking videos. Please refer to the
supplementary material for more experimental results and analyses.

4.3 Ablation Study

In this section, we design a rich ablation study to validate our proposed module
and the effect of some hyperparameters on the results. We will simultaneously
conduct experiments on the two main categories of car and pedestrian to provide
comprehensive and reliable ablation study results.

Different collection strategies for template set. As we discussed earlier,
the main purpose of introducing the template set is to use the historical successful
tracking results to optimize the recent low-quality tracking. As shown at the
bottom of Tab. 3, take the car category as an example, the performance of Closest
sample method is significantly reduced by 2.6/3.2 (from 72.2/83.3 to 69.6/80.1),
this further validates the effectiveness of our method for this situation. And
compared with Random sample method, our proposed template score selector
can bring performance gains of 0.7/0.6 (from 71.5/82.7 to 72.2/83.3) points.
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Table 3. Ablation study on different template collection strategies and components.
CSTS: Collection Strategies for Template Set. TFEM: Temporal Feature Enhancement
Module. TFAM: Temporal-aware Feature Aggregation Module.

CSTS Components Car Pedestrian
Random Closest Score TFEM TFAM Success Precision Success Precision√

68.1 (-4.1) 79.3 (-4.0) 51.4 (-6.0) 78.1 (-6.3)√ √
69.0 (-3.2) 80.6 (-2.7) 52.1 (-5.3) 81.6 (-2.8)√ √
70.2 (-2.0) 81.5 (-1.8) 54.4 (-3.0) 83.0 (-1.4)√ √ √
71.5 (-0.7) 82.7 (-0.6) 55.3 (-2.1) 83.3 (-1.1)√ √ √
69.6 (-2.6) 80.1 (-3.2) 52.7 (-4.7) 81.8 (-2.6)√ √ √

72.2 83.3 57.4 84.4

Temporal-aware components. The temporal-aware components consist
of temporal feature enhancement module and temporal-aware feature aggrega-
tion module. For the temporal feature enhancement module, the dimensions of
the input and output features are consistent, and we can directly remove it to
verify the effectiveness of the module. For the temporal-aware feature aggrega-
tions module, we use the RNN-based network to associate the k fusion feature
maps of different time series. In addition, we can also ignore the temporal rela-
tionship between templates, and use an MLP to obtain the final fusion feature
map after concat k feature maps. As shown in the upper part of Tab. 3, take
the car category as an example, these two modules can bring performance im-
provement of 2.0/1.8 (from 70.2/81.5 to 72.2/83.3) and 3.2/2.7 (from 69.0/80.6
to 72.2/83.3) respectively. These ablation experiments effectively verify that our
proposed module can utilize the temporal context more effectively.

More ablation studies. We also investigate the effect of different numbers
of templates and hyperparameters of attention modules on the results. Based on
the experiments, the number of template sets is 8, the number of heads for multi-
head attention is 4, and the number of iterations of the template enhancement
module is 2 is a good experimental setting. For more experimental data and
analysis, please refer to Supplementary Materials.

5 Conclusions

In this paper, we proposed a simple yet powerful Temporal-aware Siamese track-
ing framework, where we introduce the temporal feature enhancement module
and the temporal-aware feature aggregation module into the architecture of the
Siamese 3D tracking methods. Our method optimizes the current tracking pro-
cess by correlating multi-frame template set and making full use of temporal
context. In addition, we designed a simple yet effective 3DIoU-aware template
selector to build a high-quality temporal template set. Our proposed method sig-
nificantly improves the performance of 3D SOT on several benchmark datasets.
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