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Abstract. This paper introduces Exp-GAN, a 3D-aware facial image
generator with explicit control of facial expressions. Unlike previous 3D-
aware GANs, Exp-GAN supports fine-grained control over facial shapes
and expressions disentangled from poses. To this ends, we propose a novel
hybrid approach that adopts a 3D morphable model (3DMM) with neu-
ral textures for the facial region and a neural radiance field (NeRF) for
non-facial regions with multi-view consistency. The 3DMM allows fine-
grained control over facial expressions, whereas the NeRF contains vol-
umetric features for the non-facial regions. The two features, generated
separately, are combined seamlessly with our depth-based integration
method that integrates the two complementary features through volume
rendering. We also propose a training scheme that encourages generated
images to reflect control over shapes and expressions faithfully. Experi-
mental results show that the proposed approach successfully synthesizes
realistic view-consistent face images with fine-grained controls. Code is
available at https://github.com/kakaobrain/expgan.

generated face pose expression shape appearance
Fig. 1. Exp-GAN generates realistic images of human faces, with explicit control of
camera pose, facial expression, and facial shape. It is also capable of generating faces
with different appearances keeping given facial expression and camera pose unchanged.
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1 Introduction

Recent years have seen a significant increase in photo-realism of synthetic im-
ages built on generative models such as generative adversarial networks (GANs)
[11], variational autoencoders (VAEs) [17] and diffusion models [30]. Among
them, state-of-the-art GAN models such as StyleGAN [15,16] have realized gen-
eration of extremely realistic face images of massive identities with scale-wise
style control. To control over more sophisticated semantic attributes, much re-
search has been done to explore semantically meaningful directions in the la-
tent space [26,13,27,34] or to learn mappings for disentangled representations
[31,7,18,10,1,28,2]. However, face shapes and expressions can be controlled in a
limited way because they are manipulated through attribute editing in a latent
space.

For more intuitive control over semantic attributes including facial shapes
and expressions, several methods that adopt 3D morphable models (3DMM) of
faces to the 2D GAN framework have been proposed [31,10,2]. In [10,2], a 3D face
mesh is rendered to inject various information (RGB, normal, neural features)
of face shapes and expressions to the generator. However, despite using a 3D
face mesh model, their results show entanglement between facial expressions and
other attributes such as camera poses and identities due to the lack of multi-view
consistency of the 2D GAN framework.

3D-aware GANs have been proposed to synthesize high-fidelity face images
with multi-view consistency [4,5,12,35,3,8]. In general, 3D-aware GANs learn
to generate an implicit volume feature field that can be realized as images with
volume rendering. Since implicit volume features already contain 3D information,
3D-aware GANs can be successfully trained to generate face images with multi-
view consistency. However, to our best knowledge, control over facial shapes and
expressions in 3D-aware GANs has not yet been considered.

This paper proposes Exp-GAN, a 3D-aware facial image generator that gives
us explicit controls over facial shapes and expressions with multi-view consis-
tency. Specifically, Exp-GAN learns to synthesize a variety of facial expressions
disentangled from identities and camera poses, as shown in Fig. 1. To accom-
plish this, Exp-GAN adopts a hybrid approach that combines the 3D morphable
model (3DMM) of faces and the 3D-aware GAN into a single framework of con-
ditional GAN that can be trained with a collection of 2D facial images. The
3DMM allows us fine-grained and intuitive control over the facial shape and ex-
pressions, while the 3D-aware GAN enables multi-view consistent photo-realistic
image synthesis.

Specifically, Exp-GAN synthesizes the facial and non-facial parts separately
using a neural face generator and a neural volume generator, respectively. The
neural face generator adopts a 3DMM with the neural texture to synthesize fea-
tures of a realistic and multi-view consistent face that fully reflect user controls
over facial expression and shape given by blendshape coefficients. The neural
volume generator adopts the 3D-aware GAN approach to generate volumetric
features, supporting diverse and realistic image synthesis with multi-view con-
sistency. For the seamless integration of the two separately generated features,
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we also introduce a feature integration method based on the volume rendering
process of NeRF [22]. Finally, we propose a training scheme based on the regres-
sion of blendshape coefficients with discriminators for faithful image synthesis
with respect to user control parameters.

We empirically show that Exp-GAN can generate various expressions, poses,
and shapes of human faces. We also show that the proposed method improves
the result quantitatively compared to previous works that provide expression
controls with 2D StyleGANs. Our contributions can be summarized as follows:
– We propose Exp-GAN, the first 3D-aware facial image generator to achieve

both multi-view consistency and fine-grained control over facial expressions.
– We propose geometrically explicit conditioning of a 3D-aware GAN with

facial expression controls based on 3DMMs.
– Our hybrid approach combines the 3DMM and volumetric features for the

synthesis of the facial and non-facial regions, and adopts a novel depth inte-
gration method for seamless integration of separately synthesized features.

– We also propose a novel training scheme leveraging discriminators with re-
gression branches to train our network to faithfully reflect user controls.

2 Related Work

Expression Controls in Generative Models. Semantic editing in the la-
tent space of GANs has been studied in [34,27,28,1,26,13], in which facial ex-
pression controls are handled through semantic attribute editing. SeFa [27] and
GANSpace [13] discover semantically interpretable directions through latent
space factorization. InterFaceGAN [26] finds linear directions in the latent space
using binary-classified samples with respect to semantic attributes. StyleFlow [1]
finds non-linear paths in the StyleGAN’s latent space for manipulating semantic
attributes using attribute-conditioned normalizing flow models. However, these
approaches treat facial expression controls by means of semantic attribute editing
over the pretrained StyleGAN’s latent space, the diversity of expression controls
is limited to simple expressions, such as smiles. To support fine-grained control
over facial expressions, StyleRig [31] presents a facial attribute editing approach
based on rig-like controls via 3DMMs. While StyleRig adopts the 3DMM, it still
relies on the predefined StyleGAN’s latent space, thus it suffers from a similar
limitation to the aforementioned approaches, i.e., limited to simple expressions.

Several generative networks have been proposed that employ 3DMMs to syn-
thesize facial images with complicated expressions [7,10,18,2]. DiscoFaceGAN [7]
trains a StyleGAN-like image generator via an imitative-contrastive paradigm.
GIF [10] and VariTex [2] leverage generated 3DMM face images to learn con-
trollable face image generation. GIF [10] generates face images with expressions,
with FLAME [19] conditioning signals and rendered images. VariTex [2] learns
to synthesize pose-independent textures for 3DMM faces with expressions and
additive features for non-facial parts to generate facial images with camera pose
and expression controls. Since previous approaches with 3DMMs [7,10,18,2] rely
on 2D generators such that expression information from 3DMMs is injected as
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projected facial features in 2D image spaces, entanglement between camera poses
and expressions still exists due to the limitation of 2D approaches.
3D-aware GANs. Recently, 3D-aware GANs have been proposed to disen-
tangle camera poses from other attributes to achieve multi-view consistency
[23,25,4,5,12,35,3,8]. They learn to map a random noise vector to an implicit
feature field that can be consistently rendered from multiple viewpoints. Sof-
GAN [5] decouples the latent space of portraits into a geometry and a texture
space and uses the geometry space to generate a 3D geometry with a canonical
pose. π-GAN [4] proposes a SIREN-based network [29] to learn a neural radiance
field (NeRF)-based generator that can synthesize 3D-aware images. StyleNeRF
[12] combines the NeRF and a style-based generator to improve rendering effi-
ciency and 3D consistency for high-resolution image generation. CIPS-3D [35]
learns a style-based NeRF generator with a deep 2D implicit neural represen-
tation network that efficiently generates high-resolution rendering results with
partial gradient backpropagation. EG3D [3] proposes a tri-plane-based hybrid 3D
representation to learn high-quality 3D geometry with fine details. GRAM [8]
learns generative neural radiance fields for 3D-aware GAN by constraining point
sampling and radiance field learning on 2D manifolds to generate high-quality
images with fine details. Recent 3D-aware GANs successfully disentangle pose
and identity to provide high-quality multi-view-consistent images. However, dis-
entanglement of facial expression has not yet been considered in 3D-aware face
image generation.

3 Framework

Fig. 2 shows an overview of our framework. Our framework consists of four
parts: a neural face generator, a neural volume generator, an image synthesis
module, and a discrimination module. For the synthesis part of our framework,
StyleGAN2-based generators [16] are used, namely Gtex for the neural face tex-
ture, Gvol for the volume feature, and Gimg for the final image, respectively. Two
StyleGAN2-based discriminators are used for the discrimination module: Dimg

for the final output and Daux for the low-resolution auxiliary output.
Similar to previous generative NeRF models, we provide a camera pose (R, t)

as an input to our framework to generate images from various viewpoints, where
R is a rotation matrix, and t is a translation vector. We assume a fixed intrin-
sic camera matrix as a hyperparameter. For the explicit control of shapes and
expressions of faces, we use a blendshape-based 3DMM. Specifically, we adopt
DECA [9] that allows us to control the facial shape and expression using coef-
ficient vectors α ∈ R100 and β ∈ R50, respectively. To model the jaw motion,
which is not supported by DECA, we introduce additional three coefficients to
the expression coefficients, i.e., we use β ∈ R50+3 as an expression coefficient vec-
tor in our framework. With the 3DMM, a face mesh that reflects user-provided
coefficients α and β can be created (Fig. 2, top-left).

Mathematically, our synthesis framework can be expressed as:

I = G(z,α,β,R, t), (1)
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Fig. 2. Our framework. Facial feature map is generated in the neural face generator
block, while the neural volume generator block synthesizes the feature volume repre-
senting non-facial regions. In the image synthesis block, the two features are composited
by volume ray casting and upsampled to produce the output image. The synthesized
output as well as a low-resolution auxiliary result are evaluated by the two discrimina-
tors in the discriminators block with adversarial and parameter regression losses.

where I is a 2D output image, G is our synthesis network, and z ∈ R256 is a ran-
dom latent vector. Our synthesis framework takes a form of a conditional GAN
framework that produces a realistic 2D output image I from a latent vector z
conditioned by a camera pose (R, t), a facial shape vector α, and an expression
vector β. The latent code z, sampled from a multivariate unit Gaussian distribu-
tion, enables the generation of diverse identities while conditioned on the other
parameters. Note that, in our framework, both α and z control the identities of
generated face images; the blendshape coefficient vector α provides fine control
over the facial shape, while the latent code z controls the appearance like hair
and skin.

Following the StyleGAN architecture [15,16], our framework adopts a map-
ping network that transforms z to an intermediate latent vectorw ∈ R512 instead
of directly using z. In addition, to constrain our synthesis process on the facial
shape coefficient vector α, we feed α to the mapping network by concatenating
it with z as shown in Fig. 2.

3.1 Neural Face Generator

The goal of the neural face generator is to generate a 2D feature map representing
the facial region that fully reflects the user control parameters and the latent
vector z. Inspired by neural texture approaches [32,2,20], we generate a neural
texture of size 256×256 for the facial region from the intermediate latent vector
w. Each texel within the texture has a 32-dimensional feature vector representing
the appearance of the facial region and an opacity value a ∈ [0, 1]. At the same
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time, a face mesh is created and rendered from α, β, R and t, resulting in
a texture UV map and a depth map of size 256 × 256. By sampling the neural
texture with the UV map, we get a facial feature map and an opacity map of size
256× 256. We then downsample the depth map, facial feature map, and opacity
map to 64×64 using average pooling to suppress aliasing artifacts caused by the
sampling process. We denote the downsampled depth map, facial feature map,
and opacity map by D, T , and A, respectively.
Disentanglement of Pose and Facial Attributes. As done in [3], our texture
decoder takes camera pose parameters R and t as inputs, although it synthe-
sizes a pose-independent texture map. As noted in [3], most real-world datasets
have biases that correlate camera poses and other attributes such as facial ex-
pressions, and improper handling of such biases leads to unwanted artifacts in
generation results. We adopt the idea of generator pose conditioning proposed
in [3] to address this problem. During training, the generator is conditioned by
the camera pose so that it can learn the joint distribution of pose-independent
and -dependent attributes inherent in the dataset. We refer the readers to [3] for
more details about the generator pose conditioning.

3.2 Neural Volume Generator

The neural volume generator generates a 3D feature volume representing non-
facial regions including the hair, clothes, and background. For this purpose,
we employ EG3D [3] as a backbone 3D-aware generative model because of its
generation performance and architectural simplicity. Nonetheless, our method
can be incorporated with other 3D-aware generative models as long as they use
volumetric feature fields [4,35,12,8].

Our neural volume generator takes an intermediate latent code w as input
and feeds it to a StyleGAN2-based generator to produce a tri-plane representa-
tion [3], a light-weight representation for volumetric features, for the non-facial
region. Then, we obtain a feature volume from the generated tri-plane repre-
sentation. Specifically, given a camera pose (R, t), we shoot a bundle of rays
from the camera to sample features from the tri-plane representation. In our
implementation, we shoot 64 × 64 rays and sample 48 points per ray from the
feature field. We aggregate features from the tri-planes and decode them using
a small multi-layer perceptron for each point. Finally, we obtain a 3D feature
volume V of size 64 × 64 × 48 where each voxel has a 32-dimensional feature
vector and a scalar density value σ. We refer to [3] for more details about the
tri-plane representation.

3.3 Image Synthesis with Feature Integration

The image synthesis module first integrates the facial feature map T and the
feature volume V based on the depth map D and performs volume rendering to
obtain a 2D feature map F ∈ R64×64×32. To this end, we adopt the volume ray
casting algorithm with per-ray feature composition [22]. Specifically, for each spa-
tial location in V , we have 48 features {f0, . . . , f47}, density values {σ0, . . . , σ47},
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(a) (b) (c)
Fig. 3. Depth-based feature composition process and feature visualizations. (a)
Depth-based feature composition process. Green dots represent features from V , as
{f0, f1, . . .}, and yellow dot represents a facial feature ff . (b) Visualization of a facial
feature map. (c) Feature volume rendered without facial features. Non-facial regions in-
cluding teeth and inner mouth are synthesized, complementing the facial feature map.

and their corresponding depths {d0, d1, . . . , d47} where d0 ≤ d1 ≤ . . . ≤ d47.
For volume ray casting, we compute a set of opacity values {a0, . . . , a46} where
ai = 1−exp(−σi(di+1−di)). Then, we insert the feature ff and opacity af from
T and A into the sets of features and opacity values according to the depth df
from D, and obtain:

F =
{
f ′0 = f0, . . . , f

′
i = f i, f

′
i+1 = ff , f ′i+2 = f i+1, . . . f

′
N = fN−1

}
, and (2)

A =
{
a′0 = a0, . . . , a

′
i = ai, a

′
i+1 = at, a

′
i+2 = ai+1, . . . a

′
N = aN−1

}
, (3)

where di ≤ df ≤ di+1. We then perform volume ray casting as:

f =

N∑
i=0

Ti(1− a′i)f
′
i, where Ti =

i−1∏
j=0

a′j , (4)

where N = 48 and f is an integrated feature vector. Collecting f , we construct
a 2D feature map F . Fig. 3 illustrates the composition process.

The feature map F is then fed to a StyleGAN2-based superresolution network
Gimg to produce a high-resolution final RGB image. Gimg also takes the inter-
mediate latent vector w to synthesize realistic-looking high-resolution details for
the final output image.

3.4 Training

We train our entire network in an end-to-end fashion, as our framework is com-
posed of differentiable modules except for the morphing and rendering steps
for the face mesh, which do not have learnable parameters. To synthesize novel
images, we use adversarial learning using only 2D real images. Specifically, we
attach a discriminator Dimg to the output of the superresolution network to
predict whether the final output looks real or fake.

To encourage our generator to synthesize images with correct camera poses
and facial expressions, Dimg has an additional branch that estimates the pose
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and expression coefficients of an input image. Using Dimg, we train our generator
by minimizing Lgen

img, which is defined as:

Lgen
img = Ez,p

[
f(−Dimg,s(G(z,p))) + λp‖Dimg,p(G(z,p))− p‖2

]
(5)

where f(·) represents the softplus function [15,16] and p = (α,β,R, t). Ez,p is
the expectation under the joint distribution of z and p.Dimg,s andDimg,p are the
outputs of the prediction score branch and the pose and expression parameter
branch, respectively. λp is a weight to balance the loss terms.

The discriminator Dimg is trained by Ldisc
img , which is defined as:

Ldisc
img = Ez,p [f(Dimg,s(G(z,p)))] (6)

+ EI

[
f(−Dimg,s(I)) + λp‖Dimg,p(I)− pgt‖2 + λr1‖∇Dimg,s(I)‖2

]
where I is a real image sample, EI is the expectation under the distribution
of real images, and pgt is the ground-truth (GT) label for the camera pose
and expression parameters of I. We obtain pgt by applying a pretrained DECA
encoder [9] to the real image samples before training. The last term in EI is an
R1 regularization term [21] to stabilize GAN training.

Training our generator with only Dimg may converge to a low-quality local
minimum as the superresolution network can be trained to synthesize images
with an average pose and facial expression regardless of its input F . To re-
solve this, we let our network to produce an auxiliary low-resolution RGB image
Iaux directly from F , and introduce another discriminator Daux, which predicts
whether F looks realistic. For this purpose, we assume the first three channels
of F as the low-resolution RGB output; a similar technique is also used in DNR
[32]. We then train the generator minimizing a loss function Lgen

aux, defined as:

Lgen
aux = Ez,p

[
−Daux,s(F1,2,3(z,p)) + λp‖Daux,p(F1,2,3(z,p))− p‖2

]
(7)

where F1,2,3(z,p) represents the first three channels of F as a function of z and
p. The loss Ldisc

aux for the discriminator Daux is also defined similarly to Ldisc
img .

Specifically, Ldisc
aux is defined as:

Ldisc
aux = Ez,p [Daux,s(F1,2,3(z,p))] (8)

+ EI

[
−Daux,s(I ↓) + λp‖Daux,p(I ↓)− pgt‖2 + λr1‖∇Daux,s(I ↓)‖2

]
where I ↓ is a downsampled version of I. For both Dimg and Daux, we employ
the network architecture of the discriminator of StyleGAN2 [16].

In addition, as similarly done in [12,3], we employ an MSE loss to make I
and Iaux similar to each other, defined as:

LMSE =
1

NIaux

NIaux∑
i

(Iaux(j)− I ↓ (j))2 , (9)

where j is a pixel index and NIaux is the number of pixels in Iaux. Lastly, based
on the observation that the facial region is opaque, we introduce an opacity loss

Lopacity =
1

NA

NA∑
j

− log (1−A(j)) , (10)
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Fig. 4. Qualitative results with varying expression coefficients β and camera poses. In
each method, an identity is fixed with a random seed. (top row) Three reference images
from which β are extracted and corresponding face meshes are also rendered. In (a-c),
we generate samples with respect to β, except for π-GAN which cannot control facial
expressions. For (d) and (e), we use β from (b) and (c), respectively, with different
camera poses.

where NA is the number of pixels in A. Our final loss for the generator is then

Lgen = Lgen
img + L

gen
aux + λMSELMSE + λopacityLopacity (11)

where λMSE and λopacity are weights for LMSE and Lopacity, respectively.
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4 Experiments

We train and evaluate our network with the FFHQ dataset [15]. In our training
stage, we randomly sample parameters from the GT labels ggt for each training
sample to expand the sampling space, i.e., for each training sample, we randomly
sample image indices i, j, and k and use the GT labels αi, βj , and (Rk,tk) of
the i-, j-, and k-th training images in the FFHQ dataset, respectively. The GT
labels ggt are obtained by applying a pretrained DECA [9] encoder to the FFHQ
dataset. All of our qualitative results are generated with the truncation trick [15],
with truncation ψ = 0.5. For quantitative comparisons truncation trick is not
used except for the multi-view consistency score. Qualitative comparisons are
conducted with images of different identities, due to the nature of GAN training.
Further training details and more results, including additional comparisons and
ablations, are presented in the supplementary material.

4.1 Comparison

We compare qualitative and quantitative results between our Exp-GAN and
several baseline methods. We first compare our method against 3DMM-based 2D
generative models, such as DiscoFaceGAN [7], GIF [10], and VariTex [2], to show
how well our Exp-GAN reflects facial expression conditions in the final images
with all the attributes disentangled. We also compare our method against π-GAN
[4] as a baseline 3D-aware GAN to show how accurately Exp-GAN disentangles
all the attributes. For DiscoFaceGAN [7] and GIF [10], we use pretrained models
provided the authors. For VariTex [2], we change its 3DMM model parameters
to match ours and train the model from scratch using the FFHQ dataset and
the authors’ implementation. For π-GAN [4] we train the model from scratch on
the FFHQ dataset using the authors’ implementation.
Qualitative Results. Fig. 4 shows a qualitative comparison where we fix the
identity (z,α) but vary the camera pose (R, t) and expression β. As shown in
the figure, π-GAN [4] generates view-consistent facial images but has no ex-
pression control. On the other hand, all the 2D generative models incorporating
3DMM provide control over the pose and expression, but they do not guarantee
view consistency. Also, despite using the 3DMM, DiscoFaceGAN [7] shows only
slight facial expression changes. Compared to all the other methods, our method
generates high-fidelity 3D-aware face images that faithfully reflect input facial
expressions while keeping all the other attributes unchanged.
Quantitative Results. Table 1 provides quantitative comparisons in Frechét
Inception Distance (FID) [14], blendshape metric (BS), multi-view consistency
score (MV), and identity consistency score (ID). As DiscoFaceGAN [7] uses the
Basel Face Model (BFM) [24] for 3DMM differently from others, for a fair com-
parison, we estimate BFM blendshape coefficients from all the images in FFHQ
and use them in place of DECA blendshape coefficients to generate images with
DiscoFaceGAN [7]. We exclude VariTex [2] from our quantitative comparisons
due to the domain difference caused by background masking.
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Table 1. Quantitative comparisons. Bold is the best result, and underscore is the
second-best result. Refer the manuscript for details of the comparison protocols specific
to algorithms and metrics.

FID ↓ BS ↓ MV ↑ ID ↑
π-GAN [4] (1282) 16.91 — 24.58 —
DiscoFaceGAN [7] 15.57 0.147 23.28 0.699
GIF [10] 28.0 0.1 16.56 0.435

Ours 7.44 0.05 23.84 0.622

We first evaluate image quality with FID between 50K real images from
FFHQ and 50K generated images. For DiscoFaceGAN and GIF, we generate
50K facial images with random latent vectors and GT parameters, similarly to
ours. For π-GAN, 50K images are generated with random latent vectors and
sampled GT camera poses. As shown in the FID column in Table 1, our Exp-
GAN generates higher-quality images than the other methods. The FID score
of Exp-GAN is comparable to 4.8 of EG3D, which is reported in [3], while Exp-
GAN also provides explicitly control over shape and expression unlike EG3D.

Next, we evaluate how well input conditional facial expressions are reflected
in generated images with the BS metric. For this, we generate 50K images and
re-estimate blendshape coefficients from them. The BS metric is measured by
the mean squared distance between the input blendshape coefficients and re-
estimated ones. As shown in the BS column in Table 1, our Exp-GAN achieves
a better result than previous 2D-based generative models, validating that our
method can faithfully reflect the input facial expression.

To evaluate multi-view consistency of our results, we measure MV scores as
proposed in StyleNeRF [12]. From the given parameters (z,α,β), we generate
9 images by varying camera poses from left to right, changing the yaw value
in [−0.5, 0.5] radian. Among 9 generated images, we use 5 of them as reference
images and reconstruct the remaining ones with IBRNet [33]. Then we compute
the MV score in terms of PSNR for the reconstructed images with the generated
images as references. For evaluation, we generate 1K test cases, each with 9
images, and measure the average MV score of the test cases. Our Exp-GAN
shows comparable results with that of π-GAN. DiscoFaceGAN, interestingly,
shows good multi-view consistency even though it is a 2D-based approach, but
it achieves relatively low facial expression accuracy as discussed earlier.

We evaluate ID score that measures how well the facial identity is preserved
in various camera poses and expressions. We evaluate ID score by computing
the average ArcFace [6] cosine similarity from 50K pairs of generated images.
For each pair, we generate images by fixing z and α and changing β, R and
t. ID score is evaluated only on the models that allow explicit control of ex-
pression. The ‘ID’ column of Table 1 shows that DiscoFaceGAN performs the
best, followed by ours. However, DiscoFaceGAN generates images where facial
expressions are not changed as expected.
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Fig. 5. Limitation of a naïve baseline. All the results are generated using a single
baseline model with the same code for z but different values for β. Despite the fixed
z, the images show different identities due to the entanglement between z and β.

Fig. 6. Effect of the expression coefficient regression. (top) input expressions, as neu-
tral, open mouth, half-open mouth, smile, and frown, respectively. (middle) our result,
(bottom) without regression loss of expression coefficients.

4.2 Ablation Study

Comparison with a Naïve Baseline. As a naïve baseline, we train an EG3D
network with a simple modification to control facial expressions. The mapping
network is modified to get not only latent vectors but also expression coefficients,
as the form of a concatenated vector [z,β]. Here, the 3DMM-related components
are ablated, i.e., the neural face generator and the feature composition in Fig.
2. As shown in Fig. 5, changing facial expressions affects identities, evidencing
entanglement between the blendshape coefficients and latent vectors.
Feature Integration Scheme. Similar to [10,2], facial and non-facial parts
may be integrated with feature concatenation and then fed to the image synthesis
module by ablating the depth composition in Sec. 3.3. We train with feature
concatenation in place of our composition method for ablation and evaluate with
the FID metric. The FID score is 13.19, which is worse than that of ours, 7.44.
Additional qualitative comparisons are provided in the supplementary material.
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Table 2. Ablation study of the loss terms.

FID ↓ BS ↓ MV ↑ ID ↑
Ours (full) 7.44 0.05 23.84 0.622

w/o blendshape coeff. reg. 8.90 0.10 25.93 0.723
w/o LMSE 12.08 0.05 23.30 0.628
w/o Lopacity 10.53 0.05 23.96 0.617

Impact of Loss Terms. We conduct an ablation study to study the impact of
each loss term. The quantitative results are reported in Table 2. Fig. 6 shows the
impact of the expression coefficient regression loss in our discriminator. Here, we
ablate the blendshape coefficient β in p estimated by the discriminators Daux

andDimg in Fig. 2. Thanks to the face mesh, which guides the generation process,
it is still possible for the network to reflect expressions without the regression
loss to some extent. Still, its expressiveness is limited compared to that of our full
model. Next, We ablate each term from Eq. (11) to evaluate its impact on the
generator. Without Lgen

aux, we cannot generate plausible images. Without LMSE

or Lopacity, FID scores are far inferior to that of our full model. As shown in
Table 2, our final model can achieve the best performance, especially in both
FID and BS scores.

4.3 Additional Results

Fig. 7 shows the effect of changing shape coefficients α. Although α is entangled
with the latent vector z in our framework, it is shown that changing α results
in natural-looking results with similar appearances. Fig. 8 shows various facial
expressions while the camera pose changes. Lastly, as shown in Fig. 9, our Exp-
GAN successfully synthesizes asymmetrical facial expressions that are rare in the
FFHQ dataset [16]. See the supplementary material for more results, including
examples of GAN inversion and facial reenactment.

5 Conclusion

We presented Exp-GAN, a novel 3D-aware GAN that can explicitly control cam-
era poses, facial shapes and expressions. Leveraging the advantages of 3DMM
and NeRF, our Exp-GAN generates features for facial and non-facial parts sep-
arately with appropriate neural approaches and seamlessly combines them to
synthesize high-fidelity images via neural rendering. We showed that the depth-
based feature integration in our generator and blendshape coefficient regressions
in our discriminator play essential roles in the training of Exp-GAN for synthe-
sizing images that faithfully reflect input shape and expression parameters.

Although Exp-GAN successfully disentangled several attributes as a 3D-
aware GAN, it still lacks control over gaze and placement of accessories (e.g.,
glasses, earrings, etc.). Furthermore, Exp-GAN shows limited rendering qualities
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Fig. 7. Example of changing the face shape coefficients. (left) reference images from
which α is extracted; (right) our synthesis results. Fixing the latent code z and changing
only α, we can obtain images with similar appearances but different face shapes.

Fig. 8. While the camera pose changes, facial expressions of each example are controlled
as neutral, smile, open mouth, half-open mouth, and frown, respectively. See uncurated
results in the supplementary material.

Fig. 9. Asymmetrical facial expressions generated by our method. Our method can
generate asymmetrical facial expressions that are rare in the FFHQ dataset [16] thanks
to the explicit modeling of facial expressions using a 3DMM model.

for the inside of the mouth mainly due to the lack of examples containing such
a region in the dataset. We plan to address these issues for future work.
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