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Abstract. Although recent gaze estimation methods lay great empha-
sis on attentively extracting gaze-relevant features from facial or eye
images, how to define features that include gaze-relevant components
has been ambiguous. This obscurity makes the model learn not only
gaze-relevant features but also irrelevant ones. In particular, it is fa-
tal for the cross-dataset performance. To overcome this challenging is-
sue, we propose a gaze-aware analytic manipulation method, based on
a data-driven approach with generative adversarial network inversion’s
disentanglement characteristics, to selectively utilize gaze-relevant fea-
tures in a latent code. Furthermore, by utilizing GAN-based encoder-
generator process, we shift the input image from the target domain to
the source domain image, which a gaze estimator is sufficiently aware. In
addition, we propose gaze distortion loss in the encoder that prevents
the distortion of gaze information. The experimental results demon-
strate that our method achieves state-of-the-art gaze estimation accu-
racy in a cross-domain gaze estimation tasks. This code is available at
https://github.com/leeisack/LatentGaze/.

1 Introduction
Human gaze information is essential in modern applications, such as human
computer interaction [1, 2], autonomous driving [3], and robot interaction [4].
With the development of deep-learning techniques, leveraging convolution neu-
ral networks (CNNs), appearance-based gaze estimation has led to significant
improvements in gaze estimation. Recently, various unconstrained datasets with
wide gaze range, head pose range are proposed. Although these allow a gaze
estimator to learn a broader range of gaze and head pose, the improvement
is limited to the fixed environment. Because real-world datasets contain un-
seen conditions, such as the various personal appearances, illuminations, and
background environments, the performance of the gaze estimator be degraded
significantly. It suggests that gaze-irrelevant factors cause unexpected mapping
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relations, so called overfitting. It makes a model barely handle various unex-
pected factors in a changing environment. Therefore, to handle this issue, the
domain adaptation method, which uses a small number of target samples in
training, and the domain generalization method, which only utilizes source do-
main data, have received much attention recently. However, in the real world,
the former approach does not always hold in practice because the target data for
adaptation are usually unavailable. Consequently, the latter approach is highly
effective because of its practicability. Especially in gaze estimation, these prob-
lems are more because the dimensions of gaze-irrelevant features are much larger
than those of gazerelevant features, which are essential to gaze estimation. This
problem must be considered because it affects the learning of the network in an
unexpected way. Although a few studies have suggested handling this issue in
gaze estimation tasks, it remains a challenge.

Fig. 1. (a) Typical gaze estimation method which utilizes entangled features. (b) La-
tentGaze which utilizes latent code with domain shifted image.

In this paper, to solve this issue, we propose a gaze-aware latent code manip-
ulation module based on the data-driven approach. In this process, we focus
on the following two characteristics of Generative Adversarial Networks (GAN)
inversion for downstream tasks: reconstruction and editability. The former char-
acteristic assures that the attributes of the input images can be mapped into
a latent code without losing principal information. The latter enables manip-
ulation or editing concerning a specific attribute, allowing the latent code to
be selectively used by excluding or remaining the information in downstream
tasks. Based on these, our proposed method utilizes statistical analysis in the
latent domain to find elements that have a high correlation with the gaze in-
formation. To this end, we split the dataset into binary-labeled groups, which
are a left-staring group and a right-staring group. We then perform two-sample
t-tests to see whether the difference between the distributions of two groups’
latent codes is statistically significant. Therefore, we could find which elements
are related to gaze. In addition, the specific information of the latent code is
attentively used to train a gaze estimator. As shown in Fig. 1, typical gaze esti-
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mation methods are vulnerable to domain shifts because they use an image with
entangled attributes. However, GAN inversion separates intertwined character-
istics within an image into semantic units (e.g., illumination, background, and
head pose). We exploit this advantage by using the GAN inversion encoder as a
backbone for the two modules in our framework. We propose a target-to-source
domain shift module with a GAN-based encoder-decoder. This module maps
the unseen target image into the source distribution, where the gaze estimator is
sufficiently aware, by replacing the attributes of the image with the attributes of
the source domain. To this end, we first use the GAN inversion method, encoder,
to extract the input image’s attributes in a semantically disentangled manner.
Nevertheless, while coarse information is generally maintained after inversion,
finer information such as gaze angle and skin tone are subject to distortion.
Thus, we introduce our proposed gaze distortion loss in the training process of
the encoder to minimize the distortion of gaze between the input and the gen-
erated images. Our two modules complementarily improve performance during
gaze estimation because they encompass both the image and the latent domains.
The contributions of this study can be summarized as follows.
– We propose an intuitive and understandable gaze-aware latent code manip-

ulation module to select semantically useful information for gaze estimation
based on a statistical data-driven approach.

– We propose a target-to-source domain shift module that maps the target im-
age into the source domain image space with a GAN-based encoder-decoder.
It significantly improves the cross-dataset gaze estimation performance.

– We demonstrate the correlation between manipulated latent features and
gaze estimation performance through visualizations and qualitative experi-
ments. As a result, our framework outperforms the state-of-the-art (SOTA)
methods in both fixed and cross-dataset evaluations.

2 Related Work
2.1 Latent Space Embedding and GAN Inversion
Recent studies have shown that GANs effectively encode various semantic in-
formation in latent space as a result of image generation. Diverse manipulation
approaches have been proposed to extract and control image attributes. At an
early stage, Mirza et al. [5] trained to create a conditional image which enables
the control of a specific attribute of an image. Subsequently, Abdal et al. [6]
analyze three semantic editing operations that can be applied on vectors in the
latent space. Shen et al. [7] adopted a data-driven approach and used princi-
pal component analysis to learn the most important directions. Park et al. [8]
presented a simple yet effective approach to conditional continuous normalizing
flows in the GAN latent space conditioned by attribute features. In the present
study, we propose an intuitive and understandable manipulation method to find
the direction that correlates with gaze estimation performance. In addition, we
prove the effectiveness and necessity of latent code manipulation, particularly
by showing cross-domain evaluations. However, such manipulations in the latent
space are only applicable to images generated from pre-trained GANs rather than
to any given real image. GAN inversion maps a real image into a latent space
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using a pre-trained generator. Inversion not only considers reconstruction perfor-
mance but must also be semantically meaningful to perform editing. To this end,
Zhu et al. [9] introduced a domain-guided encoder and domain regularized opti-
mization to enable semantically significant inversion. Tov et al. [10] investigated
the characteristics of high-quality inversion in terms of distortion, perception,
and editability and showed the innate tradeoffs among them. Typically, encoders
learn to reduce distortion, which represents the similarity between the input and
target images, both in the RGB and feature domains. Zhe et al. [11] proposed an
architecture that learns to disentangle and encode these irrelevant variations in a
self-learned manner. Zheng et al. [12] proposed a method to relieve distortion of
the eye region by leveraging GAN training to synthesize an eye image adjusted
on a target gaze direction. However, in this study, the distortion is redefined from
the gaze estimation perspective. By utilizing GAN inversion as a backbone for
two proposed modules, we effectively improve generalization ability of our frame-
work. First, we take the editability of GAN inversion to extract gaze-relevant
features and utilize them in gaze-aware analytic selection manipulation module.
Second, we improve the estimation performance for unseen datasets by shifting
target domain images into source domain images utilizing GAN inversion and
generator. It reduces the bias between the distributions of the two independent
image spaces. These help the gaze estimator improve cross-domain performance
without touching the target samples.

2.2 Domain Adaptation and Generalization
Most machine learning methods commonly encounter the domain shift problem
in practice owing to the distribution shift between the source and target domain
datasets. Consequently, a model suffers significantly from performance degrada-
tion in the target domain. Several research fields have been explored extensively
to address this problem. Domain adaptation utilizes a few target samples dur-
ing the training [13]. Recently, Bao et al. [14] performed the domain adaptation
under the restriction of rotation consistency and proposed rotation-enhanced un-
supervised domain adaptation (RUDA) for cross-domain gaze estimation. Wang
et al. [15] proposed a gaze adaptation method, namely contrastive regression gaze
adaptation (CRGA), for generalizing gaze estimation on the target domain in
an unsupervised approach. Although such methods show performance improve-
ment, they do not always hold in practice as target data are difficult to obtain or
are unknown. In contrast, domain generalization aims to generalize a model to
perform well in any domain, using only the source domain dataset. Unsupervised
domain generalization is primarily based on two methodologies: self-supervised
learning and adversarial learning. An advantage of self-supervised learning is
that the model learns generic features while solving a pretext task. This makes
the model less prone to overfitting to the source domain [16]. Adversarial learn-
ing allows a generative model to learn the disentangled representations. Here, we
introduce GAN inversion to utilize its out-of-distribution generalization ability.

2.3 Gaze Estimation
Several appearance-based gaze estimation methods have been introduced [17–
19]. Recent studies have shown significant improvements in gaze estimation per-
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formance using various public datasets [20]. However, cross-person and cross-
dataset problems remain in gaze estimation tasks. This stems from variance
across a large number of subjects with different appearances. To improve the
cross-person performance, Park et al. [8] utilized an auto-encoder to handle
person-specific gaze and a few calibration samples. Yu et al. [21] improved the
person-specific gaze model adaptation by generating additional training samples
through the synthesis of gaze-redirected eye images. Liu et al. [22] proposed an
outlier-guided collaborative learning for generalizing gaze in the target domain.
Kellnhofer et al. [23] utilized a discriminator to adapt the model to the tar-
get domain. Cheng et al. [24] introduced domain generalization method through
gaze feature purification. This method commonly assumes that gaze-irrelevant
features make the model overfit in the source domain and perform poorly in
the target domain. Although these methods have improved cross-person per-
formance, they cannot always be applicable as the target data are difficult to
obtain or even unavailable in the real world. In consideration of this, generaliz-
ing the gaze estimation across datasets is required. However, since facial features
are tightly intertwined with illumination, face color, facial expression, it is diffi-
cult to separate gaze-relevant features from them. To address this, we improve
the generalization ability by analyzing latent codes and selectively utilize the
attributes that are favorable to the gaze estimator.

3 LatentGaze

3.1 Preliminaries
Gaze estimation models which use full-faces learn a biased mapping on the image-
specific information such as facial expressions, personal appearance, and illumi-
nation rather than learn only the gaze-relevant information of the source dataset.
While it leads to a strong mapping ability in a fixed domain, it still remains as
a challenging problem as it causes serious performance degradation in cross-
domain gaze estimation. Therefore, this paper aims to dodge the bias-variance
tradeoff dilemma by shifting the domain of image space from target dataset to
source dataset. In this section, we introduce some notations, objective definitions
and condition.
Conditions. While the majority of generalization works have been dedicated
to the multi-source setting, our work only assumes a single-source domain set-
ting for two motivations. First, it is easier to expand from a single-source domain
generalization to a multi-source domain generalization. Second, our study specif-
ically attempts to solve the out-of-distribution problem when the training data
are roughly homogeneous.
Definition of Latent Code Manipulation. The first application of GAN in-
version is to selectively utilize gaze-related attributes in the input image. We
invert a target domain image into the latent space because it allows us to ma-
nipulate the inverted image in the latent space by discovering the desired code
with gaze-related attributes. This technique is usually referred to as latent code
manipulation. In this paper, we will interchangeably use the terms “latent code”
and “latent vector”. Our goal is to ensure that the manipulated latent vector and
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gaze vector are highly correlated. Therefore, we need to find the manipulation
operator H that determines which elements are correlated to gaze information
in the latent vector. This objective can be formulated as:

H∗ = max
H

∇f(H(X)), (1)

∇f = [
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xd
]T , (2)

where f denotes an optimal gaze estimator, X denotes latent vector. x denotes
an element of X, and d denotes the dimension of latent space.
Definition of Domain Shifting Process. Given labeled source domain DS ,
the goal is to learn a shifting model f that maps an unseen image from target
domain DT to DS by only accessing source data from DS . We take GAN inver-
sion method into consideration to utilize its out-of-distribution generalization
ability. It can support inverting the real-world images, that are not generated
by the same process of the source domain training data. Our objective can be
formulated as follows:

S∗ = argmax
s

∥F (S(DT ))− F (DS)∥, (3)

where F denotes the general feature extractor, and S∗ denotes the domain
shifter. Note that domain the generalization process should not include the target
sample during the training.

3.2 The LatentGaze Framework Overview

Fig. 2. Overview of the LatentGaze framework. Our framework is mainly composed of
two modules. The target-to-source domain shift module maps the unseen target image
into the source distribution where the gaze estimator is sufficiently aware. The gaze-
aware analytic selection manipulation module finds the gaze-relevant feature through
statistical analysis in the latent domain. Thereafter, the gaze estimate model utilizes
each feature to estimate the gaze vector (θprd,ϕprd).

Fig. 2 shows the overall architecture of the proposed framework. It consists of two
complementary modules. The first module, i.e., the target-to-source domain shift
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module, maps a target domain image to a source domain image. The encoder
extracts an image into a latent code. To reduce the possible gaze distortion in
the encoder, we propose gaze distortion loss to preserve the gaze information.
The generator generates an attributes-persevered image in the source domain,
based on the extracted latent code. The second module, i.e., the gaze-aware
latent code manipulation module, improves the generalization performance by
manipulating features that are highly related to gaze in the latent code through
statistical hypothesis test. Subsequently, the latent vector and the image are
concatenated. And through two fc-layers, the gaze direction is predicted as θprd
and ϕprd. These two modules effectively utilize the property that latent code
passed through inversion is semantically disentangled. These modules achieve
complementary benefits in our framework by jointly reinforcing cross-domain
generalization. Qualitative and quantitative experiments and visualizations show
that our framework achieves robust performance, on par with the state-of-the-art
approaches.

3.3 Statistical Latent Editing
Recently, extensive research has been conducted on the discovery of semanti-
cally meaningful latent manipulations. Radford et al. [25] investigated the vector
arithmetic property in the latent space of a pre-trained generator and demon-
strated that averaging the latent code of samples for visual concepts showed
consistent and stable generations that semantically obeyed arithmetic. There-
fore, we assume that it is possible to statistically find gaze-related features that
correspond to a specific attribute. In this study, we propose an explainable and
intuitive gaze-aware analytic manipulation method to select semantically useful
information for gaze estimation based on a statistical data-driven approach. We
utilize ETH-XGaze [26] and MPIIFaceGaze [27] which have a large number of
subjects, wide gaze and head pose ranges for the analysis. This method con-
sists of four steps. First, we divide the data set into two groups GL and GR.
GL denotes the group having gaze vectors of 30 degrees to 90 degrees along the
yaw axis direction. GR denotes the group having gaze vectors of -30 degrees to
-90 degrees along the yaw axis direction. Second, we calculate the mean of the
entire latent codes for each group. Since gaze-irrelevant attributes such as illu-
mination, person-appearance, background environments are averaged out, the
divided groups have the same value of latent codes except for gaze-relevant el-
ements. We can presume that the elements with a large difference between the
group’s values are significantly related to gaze features. From then on, since ad-
jacent tensors represent similar features, we consider 16 tensors as a single chunk
and define it as a unit of statistical operations as follows.

Ci =
1

16

16∑
j=1

Cij , i = 1, 2, . . . , k, (4)

where Ci denotes i-th chunk, k denotes the number of chunks in a latent code,
and j represents the number of elements in a chunk. Ci

L and Ci
R each denotes

the chunk of the group Ci
L and Ci

R . Third, we sort the chunks in a descending
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order to select the most gaze-related chunks. Fourth, we perform paired t-tests
for two expected values of each chunk from two groups.
Paired t-test for Two Expected Values. We perform the t-test and the
size of the samples in the two groups is sufficiently large, so the distribution of
the difference between the sample means approximates to Gaussian distribution
by the central limit theorem, and each sample variance approximates to the
population variance. The hypotheses and test statistic are formulated as:

H0 : µi
L = µi

R, H1 : µi
L ̸= µi

R, i = 1, 2, . . . d, (5)

T =
Xi

L −Xi
R√

σ(Xi
L)

nL
+

σ(Xi
R)

nR

, (6)

where H0 denotes null hypothesis, H1 denotes alternative hypothesis, µi
L and µi

R

denote the population average of both groups for the i-th chunk, d denotes the
dimension of the latent space, T denotes test statistic, Xi

L and Xi
R each denotes

sample statistic of Ci
L and Ci

R, nL and nR each denotes to the number of GL and
GR, and σ denotes standard deviation. The above procedure can be found in
Fig. 3. We found that a number of chunks belonging to the critical region are in
the channels 4 and 5. However, as the indices of the gaze-related chunks subject
to slightly differ depending on the dataset, we utilize a channel attention layer
(CA-layer) [28] to improve generalization performance in cross-domain. We verify
the efficacy of our proposed manipulation method through visualizations and
experiments. Furthermore, we show the effectiveness of our gaze-aware analytic
manipulation method. As shown in Fig. 4, it shows the chunks extracted from
our manipulation method are related to gaze information The Fig. 4(c) shows
the generated images from the latent code that are replaced only gaze-relevant
chunks from the other group. They are similar to the appearance of the Fig. 4(b)
while preserving the gaze direction of the Fig. 4(a). Since it is not completely
disentangled, it does not completely maintain the appearance, illumination of
Fig. 4(b), but it does not affect the performance of gaze estimation.
3.4 Domain Shift Module
The goal of this module is to properly map a target image to the source la-
tent space by an out-of-distribution generalization of GAN inversion. Latent
code should be mapped to a semantically aligned code based on the knowledge
that emerged in the latent space. However, due to the large bias of distribu-
tions between the source and target datasets, the mapping ability of the encoder
network hardly covers the target domain. Furthermore, general extraction of
features from the entire image makes it extremely difficult in that it requires ex-
tracting features from infinitely large unseen real-world image space. Therefore,
to minimize the space of the space that unseen images could possibly have, we
capture only face with RetinaFace [29] and crop images. This could drastically
reduce the unexpected input from different environments. Since the values of
a latent code is set along one specific direction to the corresponding attribute,
the latent code is meaningful beyond simply compressing the facial information.
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Fig. 3. Overview of the statistical latent editing. The person-paired gaze datasets are
divided into the left staring group (GL) and right staring group (GR). Each image is
embedded into latent code by the GaP-encoder. After that, the latent code values of
each group averaged and subtracted the mean values of GL and GR. The larger values
of the result have a high correlation with the gaze information. Due to this statistical
hypothesis test, we classify the gaze-relevant and gaze-irrelevant.

Fig. 4. Visualizations of latent code manipulation. (a) shows images staring one side.
(b) shows images staring the other side in the same subjects. (c) shows the generated
images with the latent codes that combines the gaze-irrelevant chunks of (b) and the
gaze-relevant chunks of (a).

The second goal of the generator is to perform image reconstruction at the pixel
level. The generator is pre-trained with the source dataset. This makes it possible
to utilize dataset-specific mapping ability as the generated images in the space
where the gaze estimator is fully capable. Especially, the label space of the gaze
estimation task remains the same as it can be represented with two angles of
azimuth and elevation. In general, since the generatable space of each attribute
trained with the source domain is larger, the generator can reconstruct an image
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Fig. 5. Training process of GaP-encoder that preserves gaze-relevant feature during
domain shifting. The training process consists of two phases. First, the gaze-relevant
extractor is trained to estimate the gaze vector from the facial image. Second, the
GaP-encoder is trained by LGD that is difference between the estimated result from
generated image F (G(E(l))) and ground truth g.

domain from the latent domain with attributes aligned in a semantical way. To
obtain latent codes, we benchmarked e4e-encoder [10] which embed images into
latent code with disentanglement characters. However, e4e-encoder cannot pre-
serve gaze-relevant features, since the gaze-relevant feature is a relatively finer
attribute. To tackle this issue, we propose novel gaze distortion loss LGD that
preserves gaze features in the encoding process. We call the encoder with this
loss the GaP-encoder. As shown in Fig. 5, training process of encoder consists
of two phases. First, we train extractor F that is combined with ResNet-18 and
MLP to estimate gaze vector from face images. Second, we utilize F to calculate
LGD from the generated image G(E(I)).E is an encoder, G is a generator, I is
input image, respectively. Therefore, LGD is denoted as:

LGD = ∥F (G(E(I)))− g∥22, (7)

where g denotes 3D ground-truth gaze angle. The encoder is trained with our
proposed LGD on top of three losses used in [10] that consists of L2. LLPIPS

[30], Lsim [10] and total loss is formulated as follows:

Ltotal(I) = λl2L2(I) + λLPIPSLLPIPS(I) + λsimLsim(I) + λGDLGD(I), (8)

where λl2 , λLPIPS , λsim , λGD are the weights of each loss. In our method,
the extractor F may have gaze angle error. Since our method performs end-to-
end training with encoder and extractor F during training process, F can be
optimized to generate the image which preserved gaze relevant features.

4 Experiments
4.1 Datasets and Setting

Datasets. Based on the datasets used in recent gaze estimation studies, we used
four gaze datasets, ETH-XGaze [26], MPIIFaceGaze [27], and EyeDiap [31]. The
ETH-XGaze dataset provides 80 subjects (i.e., 756,540 images) that consist of
various illumination conditions, gaze and head pose ranges. The MPIIFaceGaze
provides 45000 facial images from 15 subjects. The EyeDiap dataset provides
16,674 facial images from 14 participants. The smaller the number of subjects
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and various gaze direction datasets, the better to extract gaze-relevant features
through statistical methods. For this reason, datasets such as ETH-XGaze and
MPIIFaceGaze are useful for extracting gaze-relevant features.
Cross-domain Evaluation Environment. We used ETH-XGaze that has
wider gaze and head pose ranges than the others. To evaluate cross-dataset
performance of gaze estimation, MPIIFaceGaze and EyeDiap are used. All facial
images are resized to 256×256 for stable encoder-decoder training. We conducted
two cross-dataset evaluation tasks, E(ETH-XGaze) → M (MPIIGaze), E → D
(EyeDiap).
Dataset Preparation. We utilized RetinaFace [30] to detect the face region
of an image and consistently cropped according to the region for all datasets to
induce the generator to generate equal size of faces.
Evaluation Metric. To numerically represent the performance of the gaze esti-
mation models, we computed the angular error between the predicted gaze vector
ĝ and 3D ground-truth gaze angle g, and the angular error can be computed as:

Langular =
ĝ · g

∥ĝ∥∥g∥
(9)

where ĝ and g each denotes predicted 3D gaze angle and the ground truth angle,
and ∥g∥ denotes absolute value of g, and · is the dot product.

4.2 Comparison with Gaze Estimation Models on Single Domain
An experiment was conducted to verify the performance of the gaze estimation
model in a single dataset. We achieved favorable performance against other gaze
estimation methods on single-domain as well as cross-domain evaluations. We
utilized the ETH-XGaze and MPIIFaceGaze dataset which provides a standard
gaze estimation protocol on this experiment. ETH-XGaze is divided into 15 vali-
dation sets and the rest of the training sets. MPIIFaceGaze is divided into 36,000
training sets, 9,000 validation sets based on each individual. To compare with
the SOTA gaze estimation model, we tested RT-Gene, Dilated-Net models using
eye images, and ResNet-18, Pure-Gaze using face images. As shown in Table 1,
the proposed LatentGaze shows a lower angular error than most others, indicat-
ing the superiority of our framework. In addition, as shown in Fig. 6, personal
appearances are converted into favorable conditions for gaze estimation. Since it
helps the gaze estimation model extract high-quality gaze-relevant features, the
model can provide good gaze estimation performance in single domain. In ad-
dition to the SOTA performance of our model on the single domain evaluation,
we propose a specialized model to cover the cross-domain evaluation.
Table 1. Performance comparison with gaze estimation models for ETH-XGaze and
MPIIFaceGaze dataset.

Method ETH-XGaze angular error (◦) MPIIFaceGaze angular error (◦)

ResNet-18 4.71 5.14
Dilated-Net 4.79 4.82
Pure-Gaze 4.52 5.51
RT-Gene 4.21 4.31

LatentGaze 3.94 3.63

3389
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Fig. 6. Visual results of LatentGaze in single domain. (a) The glasses are eliminated
without blurring and geometric deformation. (b) The illumination is changed favorable
to the gaze estimator.

4.3 Comparison with Gaze Estimation Models on Cross Domain
We compare LatentGaze with the SOTA gaze estimation methods on cross-
domain evaluation. In general, in a cross-dataset environment, gaze estimation
methods show significant performance degradation due to overfitting to the
source domain. However, our model solves the overfitting of gaze-irrelevant fea-
tures by enabling selective latent codes utilization through gaze-aware analytic
manipulation. In addition, the target-to-source domain shift module maps the
input image to an image space where the gaze estimator is sufficiently aware.
As shown in Table 2, our method shows the best or favorable gaze angular error
in two cross-domain environments. Here, the performance of E→D is poor com-
pared to E→M. The reason is that the difference in resolution between the source
domain and the target domain used for generator training is extreme. However,
we can solve this through preprocessing through super-resolution and denoising.
In this experiment, no more than 100 target samples for adoption were randomly
selected. It demonstrates that our framework is suitable for a real-world appli-
cation where the distribution of target domain is usually unknown. Moreover,
as shown in Fig. 7, it shows that the proposed framework can shift the target
domain to the source domain while preserving gaze-relevant features. Since it
helps the gaze estimation module maintains gaze estimation performance, our
framework provides the robustness of cross-domain evaluation. Even if small il-
lumination change is generated during the domain shift process as shown in Fig.
7, it does not affect the gaze estimation performance as shown in Table 2.

Table 2. Performance comparison with SOTA gaze estimation models on cross-dataset
evaluation. The best and the second-best results are highlighted in red and blue colors,
respectively.

Method Target Samples E→M E→D

Gaze360 [23] > 100 5.97 7.84
GazeAdv [32] 500 6.75 8.10
DAGEN [16] 500 6.16 9.73
ADDA [33] 1000 6.33 7.90
UMA [34] 100 7.52 12.37

PnP-GA [22] < 100 5.53 6.42
PureGaze [24] < 100 5.68 7.26

CSA [15] < 100 5.87 5.95
RUDA [14] < 100 5.70 6.29
LatentGaze N/A 7.98 9.81
LatentGaze < 100 5.21 7.81
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Fig. 7. Visualizations of generated images by target-to-source domain shift module.
The results show that our module maps the unseen target images into the source
distribution by replacing the image’s attributes with the source domain’s. (a) MPI-
IFaceGaze dataset is mapped into the domain of the ETH-XGaze dataset. (b) EyeDiap
dataset is mapped into the domain of the ETH-XGaze dataset.

4.4 Ablation Study
In this section, we conduct experiments about how two modules affect the gaze
estimation performance. We also show the necessity of our LGD in the en-
coder training process by comparing the generated images with and without
the loss. Finally, to show the effectiveness of the gaze-aware analytic manipula-
tion method, we first find out the gaze-related index in latent codes through the
proposed method and replace one group’s gaze-related elements from the other
group’s ones. And we visualize the generated images from the replaced latent
codes to show the gaze of the images are replaced accordingly.
Effect of Gaze-aware Analytic Manipulation. In this section, we demon-
strate the effectiveness of the gaze-aware analytic manipulation. We used both
an image and the manipulated latent code for the MPIIFaceGaze dataset. We
used 448 (all), 256 (56%), and 64 (14%) chunks in the latent code, respectively.
We removed gaze-irrelevant chunks found by our gaze-aware analytic manip-
ulation method. As presented in Table 3, the angular error using gaze-aware
analytic manipulation is lower than that when using many chunks. It indicates
that our manipulation method correctly separates gaze-relevant features from
tightly intertwined ones. Consequently, the gaze estimation model does not have
to consider features that impede the gaze estimation performance.

Table 3. Quantitative results for evaluating the effects of gaze-aware analytic manip-
ulation.

# of Chucks MPIIFaceGaze angular error (◦)

None (only Resnet-18) 5.14
All 11.34
256 7.21
64 3.63

Effect of GaP-encoder. To verify the effectiveness of the Gap-encoder, we
compare the e4e-encoder benchmarked in this paper with the GaP-encoder. To
fair comparison, we train each encoder with 30 epochs, and the angular error is
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measured by the same gaze estimation module. Also, each image result is gener-
ated by the same generator. As presented in Table 4, the GaP-encoder exhibits
better gaze estimation performance because our model preserves gaze-relevant
features after the domain shifting. As shown in Fig. 8, since our GaP-encoder
effectively embed the image into latent code with preserving gaze-relevant fea-
tures, the generated image shows the same pupil position which is highly related
to gaze estimation performance.

Fig. 8. Visual comparison with e4e-encoder and GaP-encoder. All results are generated
by the same generator. (a) Images generated by e4e-encoder’s latent codes. (b) The
original images, (c) Images generated by GaP-encoder’s latent codes. Red and blue dots
represent the predicted gaze vectors. Green dot represents ground-truth gaze vector.

Table 4. Performance comparison with encoder models. This is the result of using
only the latent code from each encoder.

# of Chucks MPIIFaceGaze angular error (◦)

e4e-encoder 28.51
GaP-encoder 3.54

5 Conclusion

In this paper, we presented the first practical application of GAN inversion to
solve the cross-dataset problem in gaze estimation with latent code. Our pro-
posed LatentGaze framework consists of a target-to-source domain shift mod-
ule, which maps the target image into the source domain image space, and a
gaze-aware analytic selection manipulation module, which selectively manipu-
lates gaze-relevant features by a statistical data-driven approach. Furthermore,
we propose gaze distortion loss that prevents the distortion of gaze information
caused by inversion. Our quantitative and qualitative experiments and visual-
izations show our approach performs favorably against the SOTA methods.
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