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Abstract. Depth completion techniques fuse sparse depth map from
LiDAR with color image to generate accurate dense depth map. Typ-
ically, multi-modal techniques utilize complementary characteristics of
each modality, overcoming the limited information from a single modal-
ity. Especially in the depth completion, LiDAR data has relatively dense
depth information for objects in the near distance but lacks the infor-
mation of distant object and its boundary. On the other hand, color
image has dense information for objects even in the far distance includ-
ing the object boundary. Thus, the complementary characteristics of the
two modalities are well suited for fusion, and many depth completion
studies have proposed fusion networks to address the sparsity of LiDAR
data. However, the previous fusion networks tend to simply concatenate
the two-modality data and rely on deep neural network to extract useful
features, not considering the inherited characteristics of each modality.
To enable the effective modality-aware fusion, we propose a confidence
guidance module (CGM) that estimates confidence maps which empha-
sizes salient region for each modality. In experiment, we showed that the
confidence map for LiDAR data focused on near area and object surface,
while those for color image focused on distant area and object boundary.
Also, we propose a shallow feature fusion module (SFFM) to combine
two types of input modality. Furthermore, a parallel refinement stage for
each modality is proposed to reduce the computation time. Our results
showed that the proposed model showed much faster computation time
and competitive performance compared to the top-ranked models on the
KITTI depth completion online leaderboard.

1 Introduction

Depth information is important in computer vision for various applications such
as autonomous driving, and 3D reconstruction. For depth measurement, Light
Detection and Ranging (LiDAR) sensors are commonly used, which measure
accurate depth information. However, the LiDAR sensor provides the limited
amount of valid depth points due to the hardware limitations. For example,
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Fig. 1. Example of LiDAR data and color image showing their characteristic.
The blue box, which represents distant area, shows that the LiDAR data has sparse
depth information while the color image has dense color information. Also, the red
box, which represents object, shows that the LiDAR data has depth information for
object surface but hard to recognize object boundary. On the other hand, the object
boundary can be easily recognized in color image.

the projected depth map of point cloud data measured by the Velodyne HDL-
64E has a density of approximately 4% compared to the color image, which is
insufficient for high-level applications such as autonomous driving [1].

To address the sparsity of depth data, which is a fundamental problem of the
LiDAR sensor, color images can provide good complementary information. The
two modalities, LiDAR data and color image, are completely complementary
to each other. As shown in Fig. 1(a), the LiDAR data has depth information,
but lacks the data points for distant area (blue) and object boundary (red),
respectively. On the other hand, the color image counterpart part has dense
color information. Therefore, the color image can complement the sparse part of
LiDAR data to predict a dense depth map.

Recently, multi-modal depth completion networks have been proposed by
developing architecture of neural network to extract effective fused features,
such as feature extraction with the learned affinity among neighboring pixels
[2–5], two-stage framework [6, 7], a cross guidance module [8], and a content-
dependent and spatially-variant kernel from color images [9]. These novel neural
network architectures were specialized for extracting useful features related to
each modality. However, the complementary characteristic of each modality was
remained to be explored in the fusion step. To further improve the fusion process,
attention and confidence-based approaches have been developed. The estimated
attention and confidence maps were used to guide the extracted features [10–12].
Although these methods takes advantage of the complementary characteristic by
using respective attention and confidence maps, the inherited characteristics of
each modality was not fully considered.
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Table 1. Characteristics of LiDAR data and color image.

LiDAR data Color image

Depth information O X
Distant area information Sparse Dense
Object information Object surface Object surface and boundary

The 2D depth map shares the property of extremely unbalanced distribution
of structures in image space resulted from the perspective projection, because
3D point cloud data is projected on the 2D images. Close objects have a large
area in the image plane with sufficient depth points, whereas distant objects
have a small area with insufficient depth points. The data distribution of the
depth map from LiDAR data was taken into consideration [13, 14]. However,
these modality characteristic based depth completion networks only considered
the characteristic of LiDAR data.

In this study, we propose a multi-modal characteristic guided depth comple-
tion network that considers both characteristic of LiDAR data and color image,
which are represented in Table 1. The proposed two-stage depth completion net-
work predicts a dense coarse depth map in the first stage and refines it in the
second stage. The confidence guidance module (CGM) is applied to the second
stage to estimate confidence maps that represents salient region for each modal-
ity. To consider the multi-modal characteristic, the Sobel filter is utilized to
detect the object boundary in the CGM and we show that the confidence maps
are well predicted according to the properties of each modality. We also propose
the shallow feature fusion module (SFFM) applied to combine two types of input
modality with the sparsity invariant CNN (SI-Conv [1]). The color-refinement
(CR) layer and depth refinement (DR) layer, each of which refines the depth
maps in the second stage, are implemented in parallel to reduce the computa-
tion time. The final depth map is obtained by combining two depth maps from
the refinement layers using the corresponding confidence maps.

To summarize, our contributions are as follows.

– We propose a multi-modal characteristic guided depth completion network
to fully consider the both characteristic of LiDAR data and color image. The
CGM plays an important role to estimate confidence map for each modality.
The confidence map for LiDAR data focuses on the near area and object
surface while those for color image focuses on the distant area and object
boundary.

– We propose a simple and efficient combining module, SFFM, for sparse depth
map by using sparsity invariant CNN. In the ablation study, the contribution
of SFFM to performance improvement was shown.

– Our model showed much faster computation time and competitive perfor-
mance compared to the top-ranked models on the KITTI depth completion
online leaderboard by constructing the refinement layers and SFFM in par-
allel.
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2 Related work

We briefly review previous studies on depth completion grouped by three types:
conventional neural network based, attention- and confidence-map based, and
modality characteristic based approach.

2.1 Conventional neural network based approach

As with deep learning based models, most depth completion studies focus on
developing the architecture of neural network to improve performance. Cheng
et al. [2] and Cheng et al. [3] proposed a simple and efficient linear propagation
model, convolutional spatial propagation network (CSPN), to address blur of
the result depth map. CSPN learned the affinity among neighboring pixels to
refine the initial estimated depth map. As CSPN was successfully applied to
depth completion, Park et al. [4] and Cheng et al. [5] further improved CSPN
by proposing non-local spatial propagation network and CSPN++, respectively.
However, CSPN methods suffer from slow computation time.

Xu et al. [6] proposed a unified CNN framework that consisted of prediction
and refinement network. The prediction network estimated coarse depth, surface
normal and confidence map for LiDAR data, and then diffusion refinement mod-
ule aggregated the predicted maps to obtain the final results. Similarly, Liu et
al. [7] designed a two-stage residual learning framework consisting of sparse-to-
coarse and coarse-to-fine. In the sparse-to-coarse stage, the coarse dense depth
map was obtained and combined with the features from the color image by
channel shuffle. The energy-based fusion was implemented in the coarse-to-fine
stage.

In addition, Lee et al. [8] designed a cross guidance module for multi-modal
feature fusion, propagating with intersection of the features from different modal-
ity. Zhao et al. [15] applied a graph structure to extract multi-modal represen-
tation. Ma et al. [16] proposed an autoencoder network with self-supervised
training framework. Tang et al. [9] estimated content-dependent and spatially-
variant kernels from color images, where the kernels weights were applied to
sparse depth map.

Although these methods have the novel architectures to assemble the multi-
modal information by concatenating the LiDAR data and color image, the com-
plementary characteristic of each modalities was not directly used. Therefore,
the methods lacks the rationale how the information of each modality is used.

2.2 Attention- and confidence-map based approach

Van et al. [10] designed a confidence map based depth completion model that
extracted global and local information from LiDAR map and RGB image by
estimating confidence maps for each global and local branch. Then the global
and local features were weighted by their respective confidence map to predict
dense depth map. Similarly, Qiu et al. [11] considered surface normal as interme-
diate representation and fused the color image and surface normal with learned
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attention maps. An additionally confidence map was predicted for LiDAR data
to handle mixed LiDAR signals near foreground boundary. In addition, Hu et al.
[12] proposed color-dominant and depth-dominant branches, and then combined
the results of each branch with confidence map.

Like the above models, multi-branch networks adopting attention and confi-
dence maps have shown high performance improvement. However, the extremely
unbalanced distribution of structures resulted from the perspective projection in
both modalities were not considered. Therefore, a more effective method for
utilizing the property of modality is necessary.

2.3 Modality characteristic based approach

LiDAR data and color image have their own characteristic because of the unique
properties of sensors. Recent studies posed and addressed the problem of the
extremely unbalanced distribution of structures. Li et al. [13] argued that most of
the LiDAR data was distributed within a distance of 20 meters, and the variance
of depth for distant object farther than 30 meters was quite large. Based on the
claim, they proposed a multi-scale guided cascade hourglass network, considering
the unbalanced data distribution for effective fusion of two different types of data.
They extracted multi-scale features from color image and predicted multi-scale
depth map to represent the different data distributions. Also, Lee et al. [14]
changed the regression task to the classification task for depth completion by
considering data distribution of the depth map. They separated the depth map
and color image into multiple planes along the channel axis, and applied channel-
wise guided image filtering to achieve accurate depth plane classification results.
Although the modality characteristic based approaches showed the improved
performance and properly addressed the unbalanced distribution problem, they
did not consider the property of color image. Therefore, a more effective method
that considers both properties of the LiDAR data and color image is necessary.

3 METHODOLOGY

3.1 Overall Network Architecture

The entire architecture of the proposed model is described in Fig. 2. Note that
all encoder-decoder blocks, which are coarse prediction, color refinement, and
depth refinement, have same network architecture containing residual blocks as
shown in Fig. 3. Our model is a two-stage network. In the first stage, a coarse
dense depth map called first depth map is predicted from a color image and a
sparse depth map as follows:

Dc = CP (SFFM(Ic, Is)) (1)

where Dc denotes the coarse dense depth map from the first stage, Ic denotes
the input color image, Is denotes the input sparse depth map, the CP is the
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Fig. 2. Overall diagram of the proposed two-stage model. The coarse dense
depth map is obtained in the first stage by coarse-prediction (CP) layer, and refined by
color-refinement (CR) layer and depth-refinement (DR) layer in second stage. Shallow
feature fusion module (SFFM) is applied to fuse the sparse depth map and dense data

coarse-prediction layer in Fig. 2, and the SFFM is the proposed feature fusion
module.

In the second stage, the color-refinement (CR) and depth-refinement (DR)
layers refine the coarse dense depth map with the color image and the sparse
depth map respectively, and predict initial confidence maps at the same time,
which can be written as:

(Dcr, Cic) = CR(Dc, Ic) (2)

(Ddr, Cid) = DR(SFFM(Dc, Is)) (3)
where Dcr denotes the dense depth map from the CR layer, Cic denotes the
initial confidence map from the CR layer, Ddr denotes the dense depth map
from the DR layer, Cid denotes the initial confidence map from the DR layer.

The estimated initial confidence maps, Cic and Cid, are refined to repre-
sent the characteristic of each modality through the confidence guidance module
(CGM). The CGM receives two initial confidence maps and first depth map, and
outputs CR confidence map and DR confidence map, which can be written as:

(Ccr, Cdr) = CGM(Dc, Cic, Cid) (4)

where Ccr denotes the CR confidence map, and Cdr denotes the DR confidence
map.
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Fig. 3. Detailed architecture for coarse prediction, color refinement, and
depth refinement layers

The CR and DR layers do not need to predict accurate depth maps for all
regions. Each layer refines the exclusive region by using the confidence map that
can effectively make use of the distinctive characteristics of different input data
spaces. The two layers are complementary, and the final depth map is obtained
through the fusion of the depth maps using the confidence map, which can be
written as:

Df (u, v) =
eCcr(u,v) ·Dcr(u, v) + eCdr(u,v) ·Ddr(u, v)

eCcr(u,v) + eCdr(u,v)
(5)

where (u, v) denotes a pixel, and Df denotes the final depth map.

3.2 Shallow Feature Fusion Module (SFFM)

The SFFM extracts the features, which is robust to the depth validity. The point
cloud data is generated from the rotation of the LiDAR sensor, and the sparse
depth map is generated by the projection of this point cloud data. Therefore,
there is randomness in the validity of the sparse depth map even for the same
scene. Also, since invalid pixels are encoded as zero values in the projected sparse
depth map, when conventional convolution is used, it may be difficult to learn
the kernel depending on the local density of valid pixels.

To solve this problem, we proposed the SFFM. The SFFM consists of parallel
convolutional layers. For the sparse depth map, features invariant to the scale
according to the validity of pixels are extracted using the sparsity invariant CNNs
(SI-Conv [1]), and the color image is extracted by conventional convolution.
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Fig. 4. Detailed architectures of SFFM and CGM.

Depending on the application of the SI-Conv, a high-density feature map can
be extracted from the sparse depth map. To consider the remaining invalid pixels,
the final feature map is extracted using 1×1 convolution on the concatenated
features of dense color image and the high-density feature map. In this case, 1×1
convolution only needs to consider two cases, valid or invalid. SFFM makes it
possible to effectively combine two data using only a small number of parameters.

3.3 Confidence Guidance Module (CGM)

A color image and a sparse depth map are the input signals of the CR layer and
the DR layer, respectively, but there is no guarantee that each information will
be used effectively. CGM is proposed to fully utilize the different characteristics
of both data. The color image has dense data, so it has enough information about
distant area and object boundaries. On the other hand, the sparse depth map is
sparse but accurate, so it is useful to refine near area and object surface, which
have many depth measurements. Therefore, the CR confidence map should have
large values on distant area and object boundaries while the DR confidence map
should have large values on near area and object surface. It makes that the
two-modality data are fully utilized for depth completion.

CGM obtains the distance information of each pixel from the first depth map,
and then obtains information about object boundaries from the first depth map
by applying the Sobel filter[17], which are shown in Fig. 5. The sum of the two
maps can adjust the confidence map. However, to reduce the scale difference, the
final guidance map is obtained using concatenation and positive convolution.
Finally, the guidance map has high values for object boundaries and distant
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pixels. This map is added to the CR initial confidence map and subtracted from
the DR initial confidence map, to become two confidence maps.

3.4 Loss Function

The ground truth depth map is semi-dense and invalid pixels are represented as
0. Therefore, the loss is defined only for the valid pixels by calculating the mean
squared error (MSE) between the final depth map and the ground truth map as
follow:

Lfinal =
1

|V |
∑

(u,v)∈V

∥∥(Dgt(u, v)−D′
f (u, v))

∥∥2 (6)

where V denotes the set of valid pixels, D′
f (u, v) denotes the final depth map at

pixel (u, v) and Dgt(u, v) denotes the ground truth depth map at pixel (u, v).
To train the network more stable, the loss for the first stage depth map was

also computed in the early epochs as follows:

Lfirst =
1

|V |
∑

(u,v)∈V

∥(Dgt(u, v)−Dc(u, v))∥2 (7)

where Dc(u, v) denotes the coarse depth map called first depth map at pixel
(u, v).

The overall loss can be written as:

Ltotal = Cfirst × Lfirst + Lfinal (8)

where Cfirst is a hyper-parameter of 0.3 at the first epoch and reduces to 0 at
5th epoch

4 EXPERIMENTS

4.1 Experimental setup

KITTI depth completion dataset: The KITTI depth completion dataset is
a large real-world street view dataset captured for autonomous driving research
[1], [18]. It provides sparse depth maps of 3D point cloud data and corresponding
color images. The sparse depth maps have a valid pixel density of approximately
4% and the ground truth depth maps have a density of 16% compared to the
color images ([1]). This dataset contains 86K training set, 1K validation set, and
1K test set without ground truth. KITTI receives the predicted depth maps of
the test set and provides the evaluation results.
Implementation details: We trained our network on two NVIDIA TITAN
RTX GPUs with batch size of 8 for 25 epochs. We used the ADAM optimizer
[19] with β1 = 0.9, β2 = 0.99 and the weight decay of 10−6. The learning rate
started at 0.001 and was halved for every 5 epochs. For data augmentation, color
jittering and horizontal random flipping were adopted.
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Evaluation metrics: We adopt commonly used metrics for comparison study,
including the inverse root mean squared error (iRMSE [1/km]), the inverse mean
absolute error (iMAE [1/km]), the root mean squared error (RMSE [mm]), the
mean absolute error (MAE [mm]) and the runtime ([s]).

4.2 Comparison with state-of-the-art methods

We evaluated the proposed model on the KITTI depth completion test set. Table
2 shows the comparison results with other top ranked methods. The proposed
model shows the fastest runtime, and shows similar performance to SoTA model,
PENet [12], and higher than other top-ranked methods on RMSE, which is the
most important metric in depth completion. Moreover, our model shows higher
performance than SoTA model in iRMSE and iMAE.

Table 2. Comparison with state-of-the-art methods on the KITTI Depth Completion
test set.

Method iRMSE iMAE RMSE MAE Runtime
CrossGuidance [8] 2.73 1.33 807.42 253.98 0.2 s
PwP [6] 2.42 1.13 777.05 235.17 0.1 s
DeepLiDAR [11] 2.56 1.15 758.38 226.50 0.07s
CSPN++ [5] 2.07 0.90 743.69 209.28 0.2 s
ACMNet [15] 2.08 0.90 744.91 206.09 0.08 s
GuideNet [9] 2.25 0.99 736.24 218.83 0.14 s
FCFR-Net [7] 2.20 0.98 735.81 217.15 0.13 s
PENet [12] 2.17 0.94 730.08 210.55 0.032s
Ours 2.11 0.92 733.69 211.15 0.015 s

Table 3. Ablation studies on the KITTI depth completion validation set. B: basic
two-stage model, CR and DR: the second stage of B is replaced with the CR and DR
layers.

Models iRMSE iMAE RMSE MAE
B 2.29 0.98 779.68 224.91
CR and DR 2.17 0.93 769.28 213.30
CR and DR + SFFM 2.17 0.91 764.93 212.71
CR and DR + SFFM + CGM 2.17 0.91 759.90 209.25

4.3 Ablation studies

In this section, we conducted ablation studies on the KITTI validation dataset
to verify the effectiveness of the proposed model. The experimental results are
shown in Table 3. B is a basic two-stage model, which predicts a first depth
map from the concatenated input of a color image and a sparse depth map in
first stage, and predicts a final depth map from the concatenated input of a first
depth map, a color image and a sparse depth map. The CR and DR replace the
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Fig. 5. The middle results of CGM. (a) The reference color images, (b) first depth
maps form stage 1, and (c) feature maps after applying the Sobel filter. (c) Sobel-filtered
features have high intensity on the pixel of object boundary and distant area, meaning
that the Sobel filter is an essential factor in CGM to represent the characteristics of
each modality.

second stage of the basic two-stage model. Each encoder-decoder takes a first
depth map concatenated with a color image or a sparse depth map. The results
show the CR and DR layers archives significant improvement in all the metrics,
and both of the SFFM and the CGM also gives a performance improvement.

4.4 Analysis for predicted confidence map

We analyzed the predicted confidence map to verify that the proposed model
properly utilized the characteristic of the two modality. In Fig. 5, the Sobel filter
plays a important role to highlight the distant area and object boundary, where
color image can complement LiDAR data by using the dense color information.
With the first depth map through Sobel filter and the initial confidence maps
from the CR and DR layers, the CGM outputs CR and DR confidence maps
which are shown in Fig. 6. The CR confidence map highlights on the distant area
and object boundary, where specialized for the dense color image, and the DR
confidence map highlights on the near area and object surface, where specialize
for the LiDAR data. It means that the proposed model properly utilizes the two
modality inputs according to each characteristic.

Also, Fig. 7 shows that the results of multi-modal characteristic based depth
completion network. The final depth map, Fig.7 (g), which is the weighted sum
of CR depth map (Fig. 7 (e)) and DR depth map(Fig. 7 (f)), is similar to CR
depth map for the distant area and object boundary, while it is similar to DR
depth map for the near area and object surface.
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CR confidence map

DR confidence map

Fig. 6. Qualitative result of the predicted CR and DR confidence maps.
The CR confidence map focuses on the distant area and object boundary, while the
DR confidence map focuses on the near area and object surface. It shows that the
proposed model properly utilizes each modality input according to its characteristic.
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Fig. 7. Qualitative results on the KITTI depth completion validation
dataset. (a) color images, (b) sparse depth maps, (c) ground truth depth maps, (d)
first depth maps from CP layer, (e) CR depth maps from the CR layer, (f) DR depth
maps from the DR layer, and (g) final depth maps.
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5 CONCLUSION

The paper proposed a fast multi-modal characteristic guided depth completion
network to estimate accurate dense depth maps. The proposed network has a
two-stage structure including a shallow feature fusion module (SFFM), coasre-
prediction (CP) layer, color-refinement (CR) and depth-refinement (DR) layers,
and confidence guidance module (CGM). The first depth map from the CP layer
is effectively refined in the CR and DR layers and consequently combined with
the confidence map according to the multi-modal characteristic. Compared with
the top-ranked models on the KITTI depth completion online leaderboard, the
proposed model shows much faster computation time and competitive perfor-
mance.
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