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Abstract. Online knowledge distillation is a method to train multiple
networks simultaneously by distilling the knowledge among each other
from scratch. An efficient way for this is to attach auxiliary classifiers
(called exits) to the main network. However, in this multi-exit approach,
there are important questions that have not been answered in previ-
ous studies: What structure should be used for exits? What can be a
good teacher for distillation? How should the overall training loss be
constructed? In this paper, we propose a new online knowledge dis-
tillation method using multi-exits by answering these questions. First,
we examine the influence of the structure of the exits on the perfor-
mance of the main network, and propose a bottleneck structure that
leads to improved performance for a wide range of main network struc-
tures. Second, we propose a new distillation teacher using an ensemble
of all the classifiers (main network and exits) by exploiting the diver-
sity in the outputs and features of the classifiers. Third, we propose a
new technique to form the overall training loss, which balances classi-
fication losses and distillation losses for effective training of the whole
network. Our proposed method is termed balanced exit-ensemble dis-
tillation (BEED). Experimental results demonstrate that our method
achieves significant improvement of classification performance on var-
ious popular convolutional neural network (CNN) structures. Code is
available at https://github.com/hjdw2/BEED.

Keywords: Online knowledge distillation · Multi-exits · Ensemble.

1 Introduction

Deep neural networks have made remarkable achievements in the field of im-
age classification with the advancement of convolutional neural networks. These
achievements are often based on deep and wide networks [11]. In order to suc-
cessfully use deep learning in resource-limited environments such as mobile or
embedded systems, model compression approaches have been studied. Knowl-
edge distillation [10, 13] is one such approach, which transfers learned knowledge,
such as predictions or intermediate feature maps, from a large pre-trained teacher
network to a smaller student network. The student network tries to mimic the
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(a) Using independent networks

(b) Using auxiliary classifiers (exits)

Fig. 1. Comparison of online distillation methods using additional networks. A black
arrow indicates the forward path; a red arrow indicates the cross-entropy loss; a green
arrow implies the prediction distillation; and a blue arrow implies the feature distilla-
tion.

teacher’s knowledge, which improves the performance of the student network.
Then, the student network can be deployed instead of the teacher network for
a resource-constrained environment. However, pre-training a large teacher net-
work is a significant burden, and this issue becomes even worse when an ensemble
model is used as a teacher [1].

Knowledge distillation can also be used without a pre-trained model, which
is called online distillation. Online distillation trains multiple networks simul-
taneously by distilling the knowledge with each other from scratch. There are
generally two ways to configure the networks as shown in Figure 1. One is to use
multiple independent networks in addition to the main network [42, 4, 15], and
the other is to attach auxiliary classifiers (called exits) in the middle of the main
network [27, 40, 23]. In the former case, independent networks are used and thus
computational complexity is high, which reduces the advantage of online distil-
lation. In the latter case, on the other hand, the exits are usually small and the
complexity can be effectively decreased. For example, when ResNet34 is trained
for CIFAR-100 [18] using two independent networks, the total number of param-
eters is 42.96M; when three exits are used, however, only 31.30M parameters are
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Fig. 2. Structures of the exits (the first exit in ResNet18) in the previous studies (LCT
[21], BYOT [40], TOFD [39]) and this paper. G means group convolution.

required (and four classifiers are obtained). Therefore, the approach using exits
has the advantages of involving reduced complexity and obtaining more outputs
that can be used for distillation.

While the success of online distillation using multi-exits was shown in the
previous studies [27, 40, 23], we note that there are three important questions
that have not been answered. In this paper, we offer solutions for the questions
and propose a new online distillation method using multi-exits.

Q1. What structure should be used for exits? In most previous studies [40, 27,
39], the structure of an exit is determined mainly to match the resolution of the
final feature maps to that of the main network without much consideration about
its influence on the performance (Figure 2). However, our analysis reveals that
the performance of the main network can be significantly changed depending on
which structure is used for exits in the same main network. In particular, we
show that it is beneficial to use a different block type from the main network
for exits. In addition, we present a bottleneck structure for exits, which has a
simple structure but yields higher performance than other previously proposed
bottleneck structures.

Q2. What can be a good teacher for distillation? The previous distillation
methods using multi-exits [27, 40, 23] consider the exists as students and the main
network as a teacher, and expect that distillation of the teacher’s knowledge
to the students eases learning of the network, especially for the early layers.
However, we rethink this typical role assignment: Since the multi-exits inherently
provide multiple outputs, we can use them to constitute a better teacher. Thus,
we propose a new ensemble distillation teacher using an ensemble of all the
classifiers in the network, which allows us to exploit diversity in the outputs and
features of the classifiers. In particular, we apply an importance coefficient to
adjust the relative contribution of each exit in the ensemble, which maximizes
the advantage of the ensemble.

Q3. How should the overall training loss be constructed? After the distillation
losses and the classification losses are obtained, how to properly reflect them in
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the overall training loss is still an open problem. In general, the learning ability
of a network is closely related to its size. Thus, it is difficult for early exits
having small sizes to learn properly only with the classification loss using the
one-hot labels, and they often find a shortcut for classification criteria [9]. The
distillation loss can alleviate this limitation, but applying the distillation loss at
the same rate to all exits, as in the previous studies [27, 40, 23], does not consider
the size-dependent learning ability of each exit. Thus, we propose a new loss-
balancing technique, which adjusts the weights of the classification loss and the
distillation loss for each exit. This technique can improve the performance of the
main network by helping the exits learn appropriate features.

To sum up, our contributions are as follows: 1) We propose a new online
knowledge distillation method using multi-exits. 2) We investigate the effect
of the structure of the exits and present a simple but effective structure. 3)
We propose a method to form an ensemble of the classifiers as a teacher for
distillation. 4) We propose a loss-balancing technique to combine classification
losses and distillation losses.

2 Related Work

Knowledge distillation is a method to use a pre-trained network as a teacher
network and distill its learned knowledge to a smaller student network [13]. The
teacher’s knowledge can be extracted at different levels, including logits [13] and
features [28], which can be used directly or after transformation using another
network or a kernel function [12, 3, 17, 43]. In addition, a teacher can be a single
pre-trained network or an ensemble of multiple pre-trained networks [1].

Online distillation trains multiple networks simultaneously by distilling the
knowledge with each other without a pre-trained teacher. To this end, several
independent networks can be used [42, 4, 35, 24, 15, 30, 31] or auxiliary classifiers
(i.e., exits) attached to the main network can be used [27, 40, 23]. The latter
approach is preferable in terms of complexity, since the former approach requires
higher complexity due to the large network size. In a multi-exit architecture
[27, 40, 23], the exits can be used as paths to deliver the information at the
main network’s output to its early layers via distillation. Through this, each
exit and shared parts of the main network can learn more general features, by
not only following the true label but also receiving the knowledge of the main
network from the final output. Consequently, the performance of not only the
exits but also the main network is enhanced. While these studies have shown the
success of online distillation using multi-exits, we focus on the research questions
mentioned in the introduction, which have not been addressed yet. We show that
careful consideration of the questions can significantly improve the classification
performance of the trained network.

The on-the-fly native ensemble (ONE) method in [19] attaches multiple exits
at a certain location of the main network, where the exits have the same structure
to the main network and the ensemble of the exits form a teacher. However,
since the exits are attached at the same location and have the same structure,
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the added value of using them for an ensemble is limited. Our experiments show
that this method is outperformed by our proposed method.

3 Structure of Auxiliary Classifiers

In the previous studies, the structure of the exits is usually designed heuristically.
More specifically, in an exit, the number of convolutional layers having a stride of
two is determined so that the dimension of the features at the penultimate layer
of the exit becomes the same to that of the main network. However, it is well
known that the network structure is important in determining its performance
[16]. From the same point of view, we can infer that the structure of the exits
can also have a significant impact on the performance, which is investigated in
this section.

The role of the exits is to provide additional training objectives to the network
other than the classification loss at the final output. These additional objectives
act as regularizers to prevent overfitting, which improves the generalization per-
formance of the main network [34]. Considering this, we can hypothesize as
follows: It is beneficial to use exit structures different from that of the main net-
work so that the exits produce features and outputs that are distinguished from
those of the main network, and this diversity in turn can result in informative
regularizers.

Most popular CNNs are constructed based on the ResNet structure, which
consist of either basic blocks or bottleneck blocks. Therefore, as a way of using a
different structure for exits from the main network, we suggest using bottleneck
blocks for an exit if the main network consists of basic blocks, and using basic
blocks for an exit if the main network consists of bottleneck blocks.

To verify our argument, we train multi-exit architectures using different exit
structures shown in Figure 2. When we build a multi-exit architecture by in-
serting k − 1 exits into a CNN (e.g., k = 4 in Figure 1b), the exits, denoted
as ci (i = 1, ..., k − 1), divide the CNN (main network) into k blocks, which
are denoted as gi (i = 1, ..., k). Then, the input data x produces k predictions
(logits), denoted as zi (i = 1, ..., k), by a single feedforward process, i.e.,

zi =

{
ci(gi(· · · g1(x))) if i < k

gi(· · · g1(x)) if i = k
(1)

In addition, the feature information right before the fully connected layer of each
exit or the main network is denoted as fi (i = 1, ..., k). Then, the basic way to
train the multi-exit architecture is to use the joint classification loss LC with
cross entropy (CE) for true label y, i.e.,

LC =

k∑
i=1

CE(qi, y), (2)

where qi =
exp(zi/T )∑
j exp(zj/T ) is the softmax output and T is the temperature.
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Table 1. Test accuracy (%) of the main network trained with different multi-exit
structures (LCT [21], BYOT [40], TOFD [39]) for CIFAR-100. ‘Baseline’ indicates the
case without multi-exits and ‘Self’ indicates the case where the structure of each exit
is the same as the remaining main network. Basic block-based networks are marked
in red and bottleneck block-based networks are marked in blue. The best results are
marked in bold.

Network
Exit Baseline LCT BYOT TOFD Self Proposed

ResNet18 77.70 78.22 78.51 79.01 78.79 79.39
ResNet34 78.01 79.80 79.41 79.92 79.41 80.22
WRN16-4 76.42 75.71 76.61 76.81 77.31 77.49
WRN28-4 78.50 78.19 78.56 79.02 79.48 80.05
MobileNet-V2 71.92 74.31 74.10 73.51 72.91 73.73
EfficientNetB0 72.01 75.01 74.51 74.38 73.52 74.21

The test accuracy of the main network trained for CIFAR-100 is shown in Ta-
ble 1 for various main network architectures (see Section 6 for more details of the
experimental setup). Significant differences in performance are observed depend-
ing on the combination of the main network structure and the exit structure.
When the results of the previous exit structures are compared (LCT, BYOT,
and TOFD), the exits consisting of a different kind of blocks from the main
network lead to higher accuracy than the exits consisting of the same kind of
blocks in most cases. For the main networks composed of basic blocks (i.e.,
ResNets and WRNs), the exit structures using bottleneck blocks are beneficial,
including BYOT and TOFD. On the other hand, even though LCT uses a very
shallow structure, it shows the best performance among the exit structures when
MobileNet-V2 and EfficientNetB0 are used as the main network. These demon-
strate that an exit structure using a different type of blocks from that of the
main network is preferable as a regularizer.

However, BYOT uses only one bottleneck block, which is too simple to ob-
tain sufficiently high performance. TOFD uses a complex structure, but the
rationale for selecting such a structure is not clear. Thus, we propose to use
the standardized bottleneck structure employed in the original ResNet [11] for
exits as shown in Figure 2. We make slight modifications by excluding channel
expansion in the last convolution layer in the block (in order to match the di-
mension of the penultimate layer’s features to that of the main network) and the
residual connection (to reduce the computational burden as discussed in [22]).
As shown in Table 1, our proposed bottleneck exit achieves better performance
than the other bottleneck-based exit structures for the main networks based on
basic blocks. In addition, our bottleneck achieves the best performance also for
MobileNet-V2 and EfficientNetB0 when distillation is applied, which is shown
in the supplementary material.

It is possible to use the exits having the same structure to the main network
but initialize them differently to impose diversity in the additional training ob-
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Table 2. Test accuracy (%) of each classifier (main network or exit) and diversity
(prediction disagreement / cosine similarity) between the main network and each exit
when ResNet18 is used as the main network for CIFAR-100. The exit structure is
denoted as (Exit1 structure)-(Exit2 structure)-(Exit3 structure). For example, ‘C-B-
B’ means that Exit1 uses the LCT structure and Exit2 and Exit3 use the proposed
bottleneck structure. ‘X’ means that Exit1 is not attached.

Exit Structure Exit1 Acc.(Div.) Exit2 Acc.(Div.) Exit3 Acc.(Div.) Main Acc.
LCT

(C-C-C)
70.90

(0.2731/0.7914)
75.20

(0.2016/0.8577)
77.72

(0.0547/0.9831) 78.22

BYOT 66.88
(0.3146/0.7578)

73.33
(0.2176/0.8433)

77.37
(0.0766/0.9671) 78.51

TOFD 72.17
(0.2590/0.8009)

75.30
(0.2119/0.8447)

77.82
(0.0952/0.9577) 79.01

Proposed
Bottleneck
(B-B-B)

74.55
(0.2376/0.8263)

77.19
(0.1897/0.8670)

78.84
(0.1017/0.9485) 79.39

B-B-C 74.12
(0.2456/0.8160)

76.90
(0.1970/0.8613)

77.71
(0.0637/0.9805) 78.18

C-C-B 71.58
(0.2663/0.8014)

75.24
(0.2012/0.8612)

78.09
(0.0964/0.9545) 79.12

C-C-ResNet50 70.79
(0.2776/0.7951)

74.48
(0.2107/0.8518)

78.68
(0.1061/0.9408) 79.35

B-C-C 73.80
(0.2435/0.8179)

74.73
(0.2102/0.8497)

77.36
(0.0560/0.9485) 78.20

C-B-B 70.85
(0.2714/0.7942)

77.19
(0.1860/0.8692)

78.75
(0.1059/0.9450) 79.30

ResNet50-C-C 78.17
(0.2068/0.8437)

73.36
(0.2296/0.8333)

76.87
(0.0629/0.9784) 77.31

X-C-C - 74.05
(0.2188/0.8474)

77.42
(0.0626/0.9813) 77.82

X-B-B - 76.55
(0.1989/0.8605)

78.58
(0.1138/0.9395) 79.11

jectives through the exits. This case is denoted as ‘Self’ in Table 1, which is
outperformed by the existing exit structures for several main networks and by
our proposed structure for all main networks. Thus, different initializations do
not provide a sufficient regularization effect. In addition, the structure of the ex-
its becomes excessively large, which is inefficient in terms of memory complexity
and computational complexity.

3.1 Diversity of Exits

We perform further analysis on how the diversity of exits, achieved by their
structures, influences the classification performance. We employ two measures for
diversity of each exit. One is the prediction disagreement, which is defined as the
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ratio of the number of test samples that the exit classifier and the main network
classifier classify differently [8]. The other is the cosine similarity between the
predictions of the exit classifier and the main network classifier [7]. Table 2
shows the test accuracy and the diversity of each classifier when different exit
structures are used with ResNet18 as the main network for CIFAR-100. Rows
1 to 4 compare the existing and proposed structures. In addition, we examine
several variations on the block type of Exit3 (rows from 5 to 7) or Exit1 (rows
from 8 to 12).

When the existing and proposed exit structures are compared, it is observed
that high diversity of Exit3 leads to improving the accuracy of the main network
(rows 1 to 4). The classifier obtained by Exit3 shares most of the layers with
the main network, thus they inherently tend to produce highly similar outputs.
Therefore, in order for Exit3 to act as a proper regularizer, its structure needs
to be different from that of the main network so that it can provide meaningful
additional information to improve the performance of the main network. Even
though when we use the bottleneck structure for Exit1 and Exit2, if Exit3 uses
the basic block structure (B-B-C), the accuracy of the main network becomes
lower due to the low diversity of Exit3. In contrast, even if Exit1 and Exit2 use
the basic block structure, using the bottleneck block (C-C-B) or even a large
ResNet (C-C-ResNet50) allows Exit3 to have relatively high diversity and thus
can improve the performance of the main network.

In the case of the earlier exits (Exit1 and Exit2), their diversity is already high
since they share only small numbers of layers with the main network. Thus, their
diversity is not necessarily correlated to the performance of the main network.
For instance, when different structures for Exit1 are used while Exit2 and Exit3
are kept as the basic block structure (B-C-C and ResNet50-C-C), the accuracy
of the main network does not change much. And, changing the structure of Exit1
(from C-C-C to B-C-C or B-B-B to C-B-B) does not change the accuracy of the
main network much, either. Nevertheless, without Exit1, the main network does
not achieve high performance (X-C-C and X-B-B).

In summary, the key to improving the performance of the main network is
to set the structure of the exit at the later stage different from that of the main
network (e.g., bottleneck structure for ResNet18). And, the proposed bottleneck
exit is a reasonable choice for all exits when the performance and compactness
are considered.

4 Ensemble Classifier Distillation

For online distillation using a multi-exit architecture, distillation losses are used
together with the classification loss given by (2). The predictions (qk) and/or fea-
ture information (fk) can be used as teacher signals. Thus, the joint distillation
loss LD is generally written as

LD =

k−1∑
i=1

{
αKL(qi, qk) + β‖fi − fk‖22

}
, (3)
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where KL is the Kullback-Leibler (KL) divergence and α and β are coefficients.
Thus, the overall loss is given by

L =

k∑
i=1

CE(qi, y) +

k−1∑
i=1

{
αKL(qi, qk) + β‖fi − fk‖22

}
. (4)

The joint distillation loss (3) assumes that the outputs of the main network
can act as a teacher for the exits because the performance of the main network
is usually higher than that of the exits.

However, we pay attention to the potential advantage of an ensemble teacher
[1]. In the multi-exit architecture, we can inherently obtain multiple outputs
(from the exit classifiers and the main network) simultaneously, which can form
an ensemble teacher. Moreover, the classifiers in the multi-exit architecture have
significant diversity as shown in the previous section due to their structural
differences, which maximizes the infomativeness of the ensemble [41]. Thus, we
exploit this superior ensemble knowledge, which can be transferred to not only
the exits but also the main network.

To construct an effective ensemble teacher, we propose a non-uniform strat-
egy using an importance coefficient λ to reflect the logit of each exit at a different
rate, i.e.,

zE =
1∑k

i=1 λ
i−1

k∑
i=1

(
λi−1 · zi

)
, (5)

where λ > 1. The idea is to allow high-performing exits at the later stage to
contribute more in order to obtain a teacher of good quality while the exits at
the earlier stage mainly enhance diversity in the ensemble teacher at appropriate
levels.

Using zE , the prediction ensemble teacher is defined as

qE =
exp(zE/T )∑
j exp(zE/T )

. (6)

Similarly, we define an ensemble teacher for feature distillation as

fE =
1∑k

i=1 λ
i−1

k∑
i=1

(
λi−1 · fi

)
. (7)

Thus, our new joint distillation loss is written as

LD =

k∑
i=1

{
αKL(qi, qE) + β‖fi − fE‖22

}
, (8)

which applies the distillation mechanism to both the exits and the main network.
Finally, the overall loss becomes

L =

k∑
i=1

{
CE(qi, y) + αKL(qi, qE) + β‖fi − fE‖22

}
. (9)
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Fig. 3. Illustration of the proposed method. fi, zi, and qi mean the features, logits,
and predictions, respectively.

The whole network including the main network and the attached exits is trained
using this training loss from scratch as depicted in Figure 3. We call this ensemble
distillation Exit-Ensemble Distillation (EED), which will be further improved in
the following section.

5 Loss-Balancing

In general, if the size of the network is not sufficiently large, the characteris-
tics of the data cannot be learned properly through the classification loss, and
instead, shortcuts are learned [9], which yield degraded generalization perfor-
mance. Therefore, in multi-exit architectures, since the sizes of the early exits
are relatively small, they are more difficult to learn proper features if they de-
pend more on the classification loss during training. In this case, a distillation
loss can be of help since it additionally provides the information of the non-true
classes [33].

In particular, we propose to control relative contributions of the classification
loss and the distillation loss for each classifier in a way that an exit at the
early stage is trained more with the distillation loss than the classification loss.
Therefore, the total loss using this loss-balancing method can be expressed as

L =

k∑
i=1

{
(1 + α− γk−i) · CE(qi, y) + γk−i ·KL(qi, qE) + β‖fi − fE‖22

}
(10)

where γ is a balancing constant satisfying γ > 1 and γk−1 < 1 + α. We call
this Balanced EED (BEED), which is the final proposed method. Note that the
coefficient for feature distillation (β) is fixed as a small value for simplicity, since
we found that its contribution to the overall learning is only secondary.
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Table 3. Test accuracy (%) of the main network trained by different methods using
multi-exits for CIFAR-100.

Network CE KD EED BEED
ResNet18 79.39 79.21 80.03 80.58
ResNet34 80.22 80.17 81.61 81.62
WRN16-4 77.49 77.75 78.26 78.51
WRN28-4 80.05 80.06 80.55 80.93
MobileNet-V2 73.73 73.68 76.63 76.74
EfficientNetB0 74.21 74.44 77.47 77.62
MSDNet 74.44 75.13 74.63 75.79

Table 4. Test accuracy (%) (top-1 / top-5) of the main network trained by different
methods using multi-exits for ImageNet.

Network CE KD BEED
ResNet18 69.91 / 88.75 70.12 / 89.14 70.28 / 89.50
ResNet34 73.13 / 91.30 73.75 / 91.66 73.96 / 91.75

6 Experiments

We evaluate our proposed BEED in comparison to existing methods for multi-
exits and other online distillation methods using the CIFAR-100 [18] and Im-
ageNet [5] datasets. We use several different CNN architectures composed of
residual blocks as main networks such as ResNet [11], WideResNet (WRN) [37],
MobileNet-V2 [29], and EfficientNetB0 [32]. MSDNet [14] is also considered,
which was specially designed for anytime prediction.

We divide the main network before each residual block containing the con-
volutional layer having a stride of two, resulting in three or four parts. Then, we
insert our proposed bottleneck structure as an exit network between the residual
blocks. We use the same number of bottlenecks for an exit as the remaining resid-
ual blocks in the main network in order to match the dimension of the feature
map for feature distillation. For ResNet, as an example, we use three bottlenecks
for the first exit, two for the second exit, and one for the third exit. The number
of channels of the bottleneck is the same to that of the corresponding residual
block in the main network.

We set α to 1.0 , β to 0.1, γ to 1.15, and λ to 1.6 by default. We conduct
all experiments three times with different random seeds and report the average
accuracy. Other implementation details and the ablation study of the hyper-
parameters tuning are given in the supplementary material.

6.1 Main Network

To prove the effectiveness of our method for training the main network, we com-
pare the test performance of the methods using multi-exits, including the method
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Table 5. Test accuracy (%) of the main network trained for CIFAR-100 using online
distillation methods.

Network DML ONE DCL OKDDip BEED
ResNet18 78.97 78.89 79.58 79.83 80.58
ResNet34 78.98 78.84 79.71 79.54 81.62
WRN16-4 78.10 78.23 78.25 78.49 78.51
WRN28-4 80.35 80.67 80.71 80.89 80.93

Table 6. Test accuracy (%) (and GFLOPs required for one feedforward pass) of en-
semble inference for CIFAR-100. The ensemble of the four classifiers (three exits and
main network) trained by our BEED is compared to the case when four independent
networks having the same structure are trained and used for ensembling.

Network Indep. ens. BEED ens.
ResNet18 80.56 (2.24) 81.45 (0.86)
ResNet34 80.80 (4.64) 82.50 (1.47)
MobileNet-V2 75.94 (0.40) 78.86 (0.27)
EfficientNetB0 76.58 (0.48) 79.36 (0.32)

in [34] using (2) (denoted by CE), the method in [40] using (4) (denoted by KD),
and the proposed BEED method using (10). We also show the performance of
EED using (9) to verify the effectiveness of our loss-balancing.

The results for CIFAR-100 are shown in Table 3. Our BEED method achieves
the best performance for all networks. The KD method is not always better
than CE, but using an ensemble teacher on top of KD (i.e., EED) brings clear
performance improvement. Especially, the performance of MoblieNet-V2 and
EfficientNetB0 is greatly enhanced by the ensemble teacher (73.68% → 76.63%
and 74.44% → 77.47%, respectively). In addition, our loss-balancing strategy
with EED (i.e., BEED) enhances the performance further. With MSDNet, EED
does not yield performance gain compared to KD, but by using BEED for proper
loss-balancing, performance improvement is obtained (75.13% → 75.79%). Our
BEED also achieves better performance than CE and KD for ImageNet as shown
in Table 4.

In addition, we compare the performance of our BEED with that of the
representative online distillation methods for image classification [4] (deep mu-
tual learning (DML) [42] and on-the-fly native ensemble (ONE) [19]) and recent
methods (deep collaborative learning (DCL) [26] and online knowledge distilla-
tion with diverse peers (OKDDip) [2]). As shown in Table 5, BEED achieves
better performance than all methods with large performance gaps.

6.2 Ensemble Inference

Although we originally used the multi-exits to improve the performance of the
main network, we can also use them to perform ensemble inference. As discussed
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Table 7. Test accuracy (%) of the main network with data augmentation for CIFAR-
100.

Network Aug. KD FRSKD BEED

ResNet18

No aug. 79.21 77.88 80.58
Mixup 80.32 78.83 81.12
Cutout 80.16 79.80 80.89
CutMix 80.81 81.22 81.37
SLA 80.68 81.25 80.75

ResNet34

No aug. 80.17 77.02 81.62
Mixup 81.01 78.37 81.57
Cutout 81.82 80.08 82.75
CutMix 82.47 81.16 83.13
SLA 82.12 81.54 82.14

in Section 3, our design of the structure of the exits aimed to enhance diversity.
We can also make good use of this diversity to form a strong ensemble for
ensemble inference.

Table 6 compares the performance of the ensemble formed by all classifiers
(exits and main network) in the mult-exit structure trained by BEED and the en-
semble of independently trained main networks, showing that our BEED achieves
better ensemble performance. Note that the performance of BEED in this case
is significantly higher than that in Table 3 (e.g., 77.62% → 79.36% for Efficient-
NetB0); in other words, when a multi-exit structure is trained by our BEED, en-
sembling the obtained classifiers further enhances the classification performance.
Besides, the FLOPs required for ensemble inference is significantly reduced in
BEED because the exit classifiers are smaller than the main network. In ad-
dition, even when we compare the ensemble performance of BEED to that of
CE and KD, our method achieves better performance, which is shown in the
supplementary material. Thus, our BEED is a good option even when ensemble
inference is considered.

6.3 Performance with Data Augmentation

The recent online distillation method, feature refinement via self-knowledge dis-
tillation (FRSKD) [15], showed that data augmentation can improve perfor-
mance of online distillation. Thus, we evaluate the performance of our BEED
when applying the popular data augmentation methods, including Mixup [38],
Cutout [6], CutMix [36], and self-supervised label augmentation (SLA) [20]. For
Mixup, Cutout, and CutMix, we apply them to all exits, but SLA is applied only
to the main network due to the excessive complexity of applying it to all exits.

The results in Table 7 show that CutMix is effective for KD and BEED, and
SLA is effective for FRSKD. When the performance of the best data augmenta-
tion strategy in each method is compared, our BEED with CutMix outperforms
the other methods for both ResNet18 and ResNet34.
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(a) MSE (main net-
work)

(b) MSE (ensemble) (c) Acc. (main net-
work)

(d) Acc. (ensemble)

Fig. 4. MSE and test accuracy (%) of different methods with ResNet34 for CIFAR-100.

6.4 Good Teacher

In a recent study [25], it was found that teachers with low mean square error
(MSE) between the output probabilities and the one-hot labels produce better
students via distillation. Thus, we compare the MSE of the teacher in each
method to verify whether our ensemble teacher is good in this criterion.

In Figure 4, we show the MSE of the main network output (a) and ensemble
output (b) with their accuracy (c and d). Overall, there exists a tendency that
the lower the MSE is, the higher the accuracy is. The teacher in KD is the
main network and the teacher in BEED is the ensemble output. Thus, when we
compare the MSE for KD in Figure 4a and the MSE for BEED in Figure 4b,
the latter (32.80) is much lower than the former (39.62). The ensemble teacher
in BEED is the best teacher showing the smallest MSE among all cases (Figures
4a and 4b), which results in the highest accuracy in Figures 4c and 4d.

7 Conclusion

We proposed a new online knowledge distillation method using auxiliary classi-
fiers (exits), called BEED. Our method is based on the selection of the struc-
ture of the exits to promote diversity, the newly proposed ensemble distillation
method to obtain an improved teacher signal, and the new loss-balancing strat-
egy to control the contributions of different losses. The experimental results
showed that our method outperforms the existing online distillation methods.
Further improvement was achieved by ensemble inference and data augmenta-
tion.

Acknowledgements This work was supported by the Artificial Intelligence
Graduate School Program, Yonsei University under Grant 2020-0-01361.

References

1. Asif, U., Tang, J., Harrer, S.: Ensemble knowledge distillation for learning improved
and efficient networks. In: Proceedings of the European Conference on Artificial
Intelligence (ECAI) (2020)

2302



Rethinking Online Knowledge Distillation with Multi-Exits 15

2. Chen, D., Mei, J.P., Wang, C., Feng, Y., Chen, C.: Online knowledge distillation
with diverse peers. In: Proceedings of the Association for the Advancement of
Artificial Intelligence (AAAI). pp. 3430–3437 (2020)

3. Chen, P., Liu, S., Zhao, H., Jia, J.: Distilling knowledge via knowledge review.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 5006–5015 (2021)

4. Chung, I., Park, S., Kim, J., Kwak, N.: Feature-map-level online adversarial knowl-
edge distillation. In: Proceedings of the International Conference on Machine
Learning (ICML). vol. 119, pp. 2006–2015 (2020)

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2009)

6. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. arXiv preprint arXiv:1708.04552 (2017)

7. Dvornik, N., Mairal, J., Schmid, C.: Diversity with cooperation: Ensemble meth-
ods for few-shot classification. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). pp. 3722–3730 (2019)

8. Fort, S., Hu, H., Lakshminarayanan, B.: Deep ensembles: A loss landscape per-
spective. arXiv preprint arXiv:1912.02757 (2019)

9. Geirhos, R., Jacobsen, J.H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M.,
Wichmann, F.A.: Shortcut learning in deep neural networks. Nature Machine In-
telligence 2, 665âĂŞ673 (2020)

10. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: A survey. Inter-
national Journal of Computer Vision 129, 1789–1819 (2021)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 770–778. Las Vegas, Nevada (2016)

12. Heo, B., Kim, J., Yun, S., Park, H., Kwak, N., Choi, J.Y.: A comprehensive overhaul
of feature distillation. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV). pp. 1921–1930 (2019)

13. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
Proceedings of the Neural Information Processing Systems (NeurIPS) Workshop
(2014)

14. Huang, G., Chen, D., Li, T., Wu, F., v. d. Maaten, L., Weinberger, K.Q.: Multi-
scale dense networks for resource efficient image classification. In: Proceedings of
the International Conference on Learning Representations (ICLR) (2018)

15. Ji, M., Shin, S., Hwang, S., Park, G., Moon, I.C.: Refine myself by teaching
myself: Feature refinement via self-knowledge distillation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 10659–10668 (2021)

16. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architec-
tures of deep convolutional neural networks. Artificial Intelligence Review pp. 1 –
62 (2020)

17. Kim, Y., Park, J., Jang, Y., Ali, M., Oh, T.H., Bae, S.H.: Distilling global and
local logits with densely connected relations. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). pp. 6290–6300 (2021)

18. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto (2009)

19. Lan, X., Zhu, X., Gong, S.: Knowledge distillation by on-the-fly native ensemble. In:
Proceedings of the Neural Information Processing Systems (NeurIPS). pp. 7528–
7538 (2018)

2303



16 H. Lee et al.

20. Lee, H., Hwang, S.J., Shin, J.: Self-supervised label augmentation via input trans-
formations. In: Proceedings of the International Conference on Machine Learning
(ICML). vol. 119, pp. 5714–5724 (2020)

21. Lee, H., Lee, J.S.: Local critic training of deep neural networks. In: Proceedings of
the International Joint Conference on Neural Networks (IJCNN) (2019)

22. Li, G., Zhang, J., Wang, Y., Liu, C., Tan, M., Lin, Y., Zhang, W., Feng, J., Zhang,
T.: Residual distillation: Towards portable deep neural networks without shortcuts.
In: Proceedings of the Neural Information Processing Systems (NeurIPS). vol. 33,
pp. 8935–8946 (2020)

23. Li, H., Zhang, H., Qi, X., Ruigang, Y., Huang, G.: Improved techniques for training
adaptive deep networks. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV). pp. 1891–1900 (2019)

24. Liu, B., Rao, Y., Lu, J., Zhou, J., Hsieh, C.J.: Metadistiller: Network self-boosting
via meta-learned top-down distillation. In: Proceedings of the European Conference
on Computer Vision (ECCV). vol. 12359, pp. 694–709 (2020)

25. Menon, A.K., Rawat, A.S., Reddi, S., Kim, S., Kumar, S.: A statistical perspec-
tive on distillation. In: Proceedings of the International Conference on Machine
Learning (ICML). vol. 139, pp. 7632–7642 (2021)

26. Minami, S., Hirakawa, T., Yamashita, T., Fujiyoshi, H.: Knowledge transfer graph
for deep collaborative learning. In: Proceedings of the Asian Conference on Com-
puter Vision (ACCV). p. 203âĂŞ217 (2020)

27. Phuong, M., Lampert, C.: Distillation-based training for multi-exit architectures.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 1355–1364 (2019)

28. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fit-
Nets: Hints for thin deep nets. In: Proceedings of the International Conference on
Learning Representations (ICLR) (2015)

29. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 4510–4520 (2018)

30. Song, J., Chen, Y., Ye, J., Song, M.: Spot-adaptive knowledge distillation. IEEE
Transactions on Image Processing 31, 3359–3370 (2022)

31. Song, J., Zhang, H., Wang, X., Xue, M., Chen, Y., Sun, L., Tao, D., Song, M.:
Tree-like decision distillation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 13488–13497 (2021)

32. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural
networks. In: Proceedings of the International Conference on Machine Learning
(ICML). vol. 97, pp. 6105–6114 (2019)

33. Tang, J., Shivanna, R., Zhao, Z., Lin, D., Singh, A., Chi, E.H., Jain, S.: Under-
standing and improving knowledge distillation. arXiv preprint arXiv:2002.03532
(2020)

34. Teerapittayanon, S., McDanel, B., Kung, H.T.: BranchyNet: Fast inference via
early exiting from deep neural networks. In: Proceedings of the International Con-
ference on Pattern Recognition (ICPR). pp. 2464–2469 (2016)

35. Yao, A., Sun, D.: Knowledge transfer via dense cross-layer mutual-distillation. In:
Proceedings of the European Conference on Computer Vision (ECCV). vol. 12360,
pp. 294–311 (2020)

36. Yun, S., Han, D., Chun, S., Oh, S.J., Yoo, Y., Choe, J.: Cutmix: Regularization
strategy to train strong classifiers with localizable features. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). pp. 6022–6031
(2019)

2304



Rethinking Online Knowledge Distillation with Multi-Exits 17

37. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proceedings of the
British Machine Vision Conference (BMVC) (2016)

38. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical
risk minimization. In: Proceedings of the International Conference on Learning
Representations (ICLR) (2018)

39. Zhang, L., Shi, Y., Shi, Z., Ma, K., Bao, C.: Task-oriented feature distillation. In:
Proceedings of the Neural Information Processing Systems (NeurIPS). vol. 33, pp.
14759–14771 (2020)

40. Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., Ma, K.: Be your own teacher:
Improve the performance of convolutional neural networks via self distillation.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 3712–3721 (2019)

41. Zhang, S., Liu, M., Yan, J.: The diversified ensemble neural network. In: Pro-
ceedings of the Neural Information Processing Systems (NeurIPS). vol. 33, pp.
16001–16011 (2020)

42. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2018)

43. Zhu, Y., Wang, Y.: Student customized knowledge distillation: Bridging the gap
between student and teacher. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV). pp. 5057–5066 (2021)

2305


