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Abstract. We present a novel SEgmentaion TRansformer variant based
on causal intervention. It serves as an improved vision encoder for se-
mantic segmentation. Many studies have proved that vision transformers
(ViT) can achieve a competitive benchmark on these downstream tasks,
which shows that they can learn feature representations well. In other
words, it is good at observing the instance from the image. However,
in the human visual system, to recognize the objects in the scene, it is
necessary to observe the objects themselves and introduce some prior
knowledge for producing higher confidence results. Inspired by this, we
introduced a structural causal model (SCM) to model images, category
labels, and context. Beyond observing, we propose a causal intervention
method by removing the confounding bias of global context and plug-
ging it in the ViT encoder. Unlike other sequence-to-sequence prediction
tasks, we use causal intervention instead of likelihood. Besides, the proxy
training objective of the framework is to predict the contextual objects of
a region. Finally, we combine this encoder with the segmentation decoder.
Experiments show that our proposed method is flexible and effective.

Keywords: Causal intervention · Vision transformer · Semantic seg-
mentation.

1 Introduction

Semantic segmentation divides visual input into different semantically inter-
pretable categories, which is a challenging task requiring accurate prediction
of the object category, shape, and location. Both convolutional-based encoders
[19,5,25] and transformer-based encoders [10,38,17] are good at telling us “what",
but not “why". In particular, once the input image has been fed to the en-
coder, the rich and effective feature representation can be learned to provide a
high confidence probability P (Y ). Furthermore, some empirical investigations
⋆ This work is supported by National Natural Science Foundation of China (Nos.
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[36,11,26,37] use prior knowledge, graph neural networks and other techniques
to learn the co-occurrence probability P (Y |X) between objects and integrate it
with the probability learned by the encoder for joint learning in order to increase
the prediction probability. However, Wang et al. [30] raise questions about the
validity of the co-occurrence probability learned by machine, and they think the
machine usually fails to describe the exact visual relationships, or, even if the
prediction is correct, the underlying visual attention is illogical. Improving the
capabilities of the segmentation systems by acquiring higher co-occurrence in-
formation with a better degree of confidence is thus a crucial issue.Contextual
information is crucial for semantic segmentation tasks. Some methods based on
graph convolutional networks (GCN) learn the rich context to improve the fea-
ture representation capability. Moreover, Zheng et al.[38] provide a rethinking
of the segmentation model and contribute a new encoder-decoder architecture
built by pure transformers. This architecture does not involve spatial resolu-
tion down-sampling, but rather global context modeling at each layer of the
encoder transformer. With the global context, they propose a new perspective
to the semantic segmentation. As previously stated, the machine is incapable
of describing the precise visual relationship. (For example, the "visual" simply
conveys the "what" or "where" of a "person" or "car".) It is just a more descrip-
tive symbol than its corresponding English word. When there is a bias, such as
when more "car" areas than “human" regions co-occur with the term "road,"
visual attention is more likely to focus on the “car" region. These works [7,6,31]
attempt to introduce unsupervised external features to obtain more robust co-
occurrence relations, thus improving the segmentation performance. Contrary to
human’s recognition system, current deep learning approaches cannot yet extract
or explain causality.

According to these causal theories [22,21,23], we intend to reconsider the
segmentation based on the vision transformer model design and contribute a
causal intervention attempt. In particular, we model images, category labels, and
contextual information using SCM and eliminate confounder bias through causal
intervention. Thus, we obtain contextual information regarding causality to drive
the learning of more robust semantic features and the exploration of the deeper
relationships between various objects. In addition, we design a fusion module for
integrating the original feature and the causality context, so intervening in the
learnt features and making the learning process more like the human learning
process. It’s worth noticing that the proposed module is plug and play. We can
easily plug it into other downstream tasks. In summary, we make the following
contributions in this paper:

– We introduced the structural casual model to model images, category labels,
contextural information, and removed the observation bias by causal inter-
vention. Thus, we get the contextural causality information, which collects
more robust semantic relations.

– We incorporated external knowledge into the processing of causal interven-
tion as well as further guided the ViT model to provide a more robust feature
representation.
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– We designed a fusion module for integrating the original feature and the
causality context, which performs reasoning and directs the downstream task
(e.g., semantic segmentation) to explore more causality interconnections.

To demonstrate the efficacy of the proposed method, we duplicated these
approaches into an end-to-end training network and performed extensive exper-
iments on the benchmark of semantic segmentation. Experiments demonstrate
that our proposed methods are practicable and efficient.

2 Related work

2.1 Vision Transformer

The most related to our work is the vision transformer (ViT) [10] and its
variants [28,32]. ViT treats an image as a set of fixed size (i.e., 16 × 16) and
non-overlapping patches, then directly feeds them to a transformer architecture.
Thus, it converts the dense prediction task to a sequence-to-sequence task. Com-
pared to CNNs, it achieves a competitive speed-accuracy tradeoff on classifica-
tion. However, ViT requires large-scale training datasets (i.e., JFT-300M). DeiT
[29] adapts the knowledge distillation for reducing the complexity and finetuning
the ViT, allowing ViT to be effective using the smaller ImageNet-1K dataset.
We noticed that ViT lefts the results of image classification. However, it is still
unsuitable for use as a general-purpose backbone on dense prediction tasks or
handling high-resolution images due to its low-resolution feature map and the
quadratic increase in complexity with image resolution. DETR [3], SETR [38]
directly upsampling or deconvolution the features but with dissatisfied perfor-
mance in detection and segmentation respectively. As far as we know, no one has
tried to introduce the perspective of causality into ViT for semantic segmenta-
tion. Empirically, our proposed approaches are effective and flexible, achieving
a new state-of-the-art in semantic segmentation task.

2.2 Causality in vision

Due to the fact that deep learning is an effective yet unexplained black box, more
and more academics are attempting to combine its complementary strengths.
Causal inference [22,21,23] has been researched in several domains, including
classification [4,20], adversarial learning [14,15], and reinforcement learning [9,2].
The most related to our work is VC R-CNN [30]. They constructed a causal re-
gion of interest (RoI) using Faster R-CNN [27] and then use this contextual RoI
further to improve the performance of several multimodal downstream tasks,
including image caption (IC), visual question answering (VQA), vision com-
monsense reasoning (VCR).

The core idea between ours and VC R-CNN is backdoor adjustment solution.
However, they did not report the potential interest in semantic segmentationfield.
We observed that semantic segmentation tasks also require causal contextual in-
formation for advancement. Due to the task gap, we cannot directly introduce
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the causal RoI information [30] as context in our investigation. Therefore, we
reconstructed a structural causal model on the benchmark of semantic segmen-
tation tasks. Despite the fact that we both intend to mine the rich contextual
via a backdoor modification approach, VC R-CNN uses a backdoor adjustment
method to eliminate the visual bias caused by the model’s "observing" behavior.
Consequently, VC R-CNN may learn “common sense" without any external mon-
itoring. It is important to note that the most significant distinction between VC
R-CNN and our approach is that we additionally intervene on external knowl-
edge to improve the performance of semantic segmentation.

CONTA [35] proposes a contextual adjustment network to improve the semi-
supervised semantic segmentation benchmark. Similar to the case with the causal
RoI features [30] , we cannot directly utilize the CONTA-supplied SCM. On the
one hand, the backbone we use is a ViT rather than a CNN, and on the other
hand, the general paradigm for weakly supervised semantic segmentation tasks
does not correspond to the paradigm used for fully supervised image recognition
tasks. We aim to improve the performance of ViT via adapting the backdoor
adjustment solution for semantic segmentation tasks.

Hybridization effect will result in harmful bias, mislead attention module to
learn false correlation in data, and consequently reduce the model’s generalizabil-
ity. However, Xu et al. [34] think that confounding is unobservable. Thus, they
propose a novel attention mechanism: causal attention (CATT) which can elim-
inate the confounding effect in existing attention-based vision-language models.
Unlike CATT, we employ backdoor adjustment solution as opposed to front-
door adjustment solution. Furthermore, we focus on designing a generic ViT
architecture via causal intervention, not a attention mechanism.

In summary, we aim to model the semantic segmentation tasks in detail
using backdoor adjustment. VC R-CNN reported the inspiring performance in
IC, VQA and VCR tasks. Similarly, CONTA reported the good performance in
semi-supervised semantic segmentation task. They eliminate the observation bi-
ases from within the model using backdoor adjustment. However, we extracted
some common sense from an external knowledge dataset which are presented
as textual data, and introduced them into the backdoor adjustment process-
ing. For segmentation tasks, contextual information plays an important role,
thus, we convert the external knowledge (textual data) to visual commonsense
features using GCN. Afterthat, we notice that ViT is a unified framework for
modeling language and vision, and we make an attempt to rethink the advantage
of causal intervention in the ViT-based model. Different from CNN, ViT lacks
some inductive bias (e.g., invariance, local connectivity, weight sharing) due to
the framework design. Therefore, we complement external knowledge with the
strengths of ViT from a causal perspective. As a result, we further improve the
benchmark in segmentation tasks.
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3 Methods

We attempt to intervene in the feature representation learned by the vision
transformer encoder, thus, obtaining more explanatory contextual information,
which improves the performance of semantic segmentation tasks. For example,
the deep encoder learns contextual information with observation bias from the
dataset (e.g., if there are “car", “road" and “person" co-occur in an input image,
the encoder is more likely to focus on the common co-occurrence relationships
in the dataset.). Perhaps the classification result is correct, but the underly-
ing visual attention is not reasonable. To address this, we propose the causal-
intervention-based framework for obtaining a more causal context. The overview
of the framework for semantic segmentation is shown in Fig. 1. It is worth noting
that our proposed method can be used plug and play on any transformer-based
encoders and is compatible with downstream recognition tasks.

Decoder

Causal Intervention

X Y

Do-caculus

NWGM

...
FC

X Y

...

... ...

... ...

...24x

C C

Fig. 1: Overview of our proposed semantic segmentation framework.

Visual attention is effective at learning the correlation (P (Y |X)) between
objects. However, it is limited to the fixed input image. Therefore, it can only
learn the explicit correlation in this image. In other words, visual attention is
incapable of observing nonexistent objects in the input image. It disregards the
implicit causality that causes the observation bias to confound the existence of
objects X and Y .

To mine the implicit causality, we first build the confounder set C ∈ RN×D.
N represents the number of objects in the datasets„ and D is the dimension of
the middle output produced by the feature encoder. Besides, we build another C

′

using external knowledge. Then, we “take” the objects C from other context, and
“put” them around X and Y for testing if X causes the existence of Y when given
C. The operators (“take” and “put” ) are the paradigm of intervention, implying
that the probability of C depends on human intervention, but is independent
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on X or Y . By intervening, we force the conversion of the correlation observed
only in the fixed image to a global or external causal-based context. (P (Y |X)→
P (Y |do(X)))

More intuitively, human will not make corresponding inferences just based on
what they “see” in front of eyes. That is what we are different from the machine’s
visual recognition system. For example, we always keep rethinking or imaging
“If there are other objects C , will object X still causes object Y ?” instead of
the passive observation: "If there is object X, how likely there will exist object
Y ? ". Thanks to intervention, we convert P (Y |X) to P (Y |do(X)). We simulate
the do − calculus by "taking" non-local context that even might not be in the
input image, "putting" them around pairs of objects that we want to intervene.

3.1 Structural Causal Model

As shown in Fig. 2, we intuitively demonstrate the principle of do-calculus.
Specifically, we formulate causalities among observed objects X, confounder set
C, and observed objects Y with a structural causal model. The symbol “→"
denotes the causalities between two nodes (e.g., X causes Y ).

X Y

C

X Y

C

Fig. 2: Modeling the causalities by SCM

C → X . It is widely known that context C affects the performance of the
semantic segmentation model. In other words, C guide the model to what or
where is “car", “road", and “person" in an image. We can hardly ever build a
generative context for C → X, but we will introduce an ingenious method to
extract the links suitable for segmentation tasks
X →Y . The link between X and Y denotes X causes Y (e.g. , if X exists in the
image, what is the probability of Y exists in the same image?). It is learned by
the likelihood: P (Y |X). Although we have seen many successful convolutional-
based methods make great progress by alleviating this likelihood, we still firmly
believe that this is biased.
X ← C → Y . The confounder set C can be interpreted as a generic contextual
corpus. It will cause both of X and Y by “taking” the implicit context that
can not be observed in the local images and “putting” it to the local receptive
field. However, it might leads to spurious correlations by only learning from the
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likelihood which is formulated as:

P (Y |X) =
∑
c

P (Y |X, c)P (c|X) (1)

Where the context C introduces the observational bias P (c|X). We are more
concerned with the prediction of Y , so the causal link between C and X is not
the major link we need to focus on. If we intervene X, the causal link between
C and X is cutoff. We apply the Bayes rules again. Thus, we have:

P (Y |X) =
∑
c

P (Y |X, c)P (c) (2)

Where P (c) denotes the probability of prior label, it deliberately forces X to
incorporate every c fairly. c ∈ C is the set of the objects from the contextual
corpus.

3.2 Deconfounding Bias

Where will we intervene in the human reasoning system when we find that con-
founding factors interfere with the output results? The optimal solution defined
by mathematics is to average the different confounders and give the maximum
weight to the more reliable and fewer error signals [1].

Therefore, we approximate the confounder set Cinternal = {c1, c2, . . . , cn},
where cn is the N × d matrix, N denotes the category size in the datasets (
e.g., N = 19 in the cityscapes dataset) , and d is the averaged mask of the i-th
category features produced by the ViT encoder. In another word, Cinternal is
produced by the model itself which means to deconfound the internal bias.

Furthermore, we acquire an external knowledge set E from Visual Genome
dataset [16]. However, the Visual Genome dataset consists of 30K object cat-
egories for the specific downstream task. For the semantic segmentation task,
we attempt to mine the co-occurrence relationships about different object cat-
egories that appear in Cityscapes and ADE20K. Specifically, we get the subset
Eexternal ∈ RC×C of E . C is set to 150 (ADE20K contains 150 object categories
and overlaps with Citiscapes). Eexternal ∈ R150×150 is a 150×150 symmetric ma-
tric which means the relation pairs are symmetric. After that, we normalized the
matrix elements to obtain D. Dii =

∑C
j=1 Eij The final Eexternal ∈ {E00, · · · Eij}

is calculated by Eij =
Eij√

DijDjj

. To maintain the consistency between semantic

relations and visual features, we introduce a graph structure G = (NL, Eexternal),
where NL is produced by global vectors for word representation such as GloVe
[24]. Besides, we feed it to two GCN layers to capture external semantic knowl-
edge. Each GCN layer is fomulated by

H(l+1) = σ(D̃− 1
2 EexternalD̃− 1

2H(l)W (l)) (3)

Where D̃ denotes the degree of Eexternal. We get H1 ∈ RC×d and H2 ∈ RC×D

through each GCN layer respectively. C and d denote the number of objects and
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the dimension of the representation, respectively. D denotes the depth of visual
features produced by GCN.

To project H2 ∈ RC×D and the visual features Xvisual ∈ RD×W×H to a com-
mon subspace, we adopt a feature mapping module. Specifically, we compressed
the dimension of Xvisual ∈ RD×W×H to X̂visual ∈ RD×(W⊙H). Then, we trans-
pose the dimension of X̂visual to R(W⊙H)×D. We further compressed channels of
visual features with the same of the numbers of objects: X̂visual ∈ R(W⊙H)×C

with two fully connection (FC) layers F1 ∈ RD×C . After that, we flatterned the
multiple of H2 and X̂visual and got K̂ ∈ RD×W×H. Furthermore, we concate-
nated Xvisual and K̂ and fed it to FC layer F2 ∈ R2D×D. In this way, we have
converted the textual to the visual features.

However, despite the major challenge in trading off between annotation cost
and noisy multi-modal pairs, common sense is not always recorded in text due to
the reporting bias. Thus, we try to alleviate the bias with the intervention. With
the same as the internal knowledge, we average mask of the i-th category features
in the dimension D and got the deconfound external knowledge Cexternal. The
overall logits are formulated by

Cexternal = AVG(F2{[ϕ(F1(ϕ(Xvisual))
T ⊙H2)]||Xvisual}T ) (4)

Where ϕ(·) denotes the dimension transpose function. ⊙, || are matrix multipli-
cation and matrix concatenation respectively.

3.3 Causal Intervention Module

Recalling the Fig.1, we get X’s context (see in the red arrow) x and Y (see in
the yellow arrow) after the image fed to the ViT encoder. The last layer of classi-
fication tasks is the Softmax layer: P (yc|x, c) = Softmax(fy(x, c)), where fy(·)
calculates the logits for N categories, and y denotes that f(·) is parameterized
by Y ’s context y. The overall output of logits is defined as:

P (Y |do(X)) := Ec[Softmax(fy(x, c))] (5)

We use the normalized weighted geometric mean (NWGM) [33] to move the
outer expectation into the Softmax function as:

Ec[Softmax(f(x, c))] ≈ Softmax(Ec[fy(x, c)]) (6)

For the classification task, we use the linear model fy(x, c) = W1x+W2E[gy(c)],
where W1,W2 denote the fully connected layers, it is formulated by:

Ec[fy(x, c)] = W1x+W2Ec[gy(c)] (7)

where Ec[gy(c)] is calculated by the attention mechanism. Specifically, we are
given y ∈ Y and c ∈ C, the attention vector α is calculated by softmax(qTK/

√
σ),

then, we get A = [α; . . . , α] by the broadcasting operation. The most intuitive ex-
planation is that we use attention mechanism to obtain the focus point between

763



A SEgmentations Transformer Variant Based on Causal Intervention 9

two objects, where [; ] denotes broacasting along the row. q = W3y,K = W4C
T .

W3,W4 map each vector to the common subspace and σ is a constant scaling
factor with the first dimension of W3,W4. Finally, E[gy(c)] =

∑
c[A ⊙ C]P (c),

where ⊙ and P (c) denote the element-wise product and prior statistic proba-
bility respectively. In summary, we obtain regions of interest similar to human
visual system from a global perspective.
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Sense-making Features

Fig. 3: “sense-making" processing.

3.4 Objective function

Given the two features, x ∈ X and y ∈ Y from ViT encoder, x and the con-
text C are fed to the NWGM module, and the removed confounder features are
obtained. Furthermore, we adapt the fully connected layer to learned the rela-
tionship pi between y and do(x). The loss of this processing is 1

K

∑
i Lcxt(pi, y

c
i ),

Finally an enhanced feature is feed to the decoder. Our training objective is
formulated by:

argminL = Lseg(pi, ŷ
c
i ) +

1

K

∑
i

Lcxt(pi, y
c
i ) (8)

where ŷci denotes the ground-truth label provided by dataset, and yci denotes
the label on sub classification task. According to P (Y |do(X)), Y is one of the
K context objects with the label yci . Lcxt(pi, y

c
i ) is calculated by − log(pi[y

c
i ]).

4 Experiments

We conduct experiments on semantic segmentation task semantic segmentation
with Cityscapes and ADE20K. The details are as below.
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4.1 Settings

Datasets: We use two commonly used datasets for semantic segmentation:
Cityscapes [8], ADE20K [39]. The Cityscapes dataset contains 5000 images of
driving scenes in urban environments (2975 for train, 500 for validation, 1525
for test). The resolution per image is 1024× 2048 contains 19 categories of fine-
grained annotations. ADE20K contains over 25K images (20k for training, 2k
for validation, 3k for test). These images are densely annotated with an open
dictionary label set.

Metric : We use mean intersection-over-union (mIoU) to calculate the ratio
of the intersection and union of the two sets of true and predicted values. The
classification task returns a true positive (TP), false positive (FP), true negative
(TN) and false-negative (FN). It is formulated by

mIoU =
TP

FP + FN+ TP

=
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(9)

Where pij represents the total number whose true value is i but predicted to be
j. pii denotes the number of TP, pij and pji denote FP and FN, respectively.
k + 1 is the count of classes (including the background class.)

Implementation details : We use the mmsegmentation toolbox to carry on
experiments effectively. (i) the random resize with a ratio between 0.5 and 2, the
random cropping (768, 512) and 480 for Cityscapes, ADE20K, and the random
horizontal flipping during training all the experiments. (ii) The total iteration
is set to 80,000 and 160,000 for the experiments on Cityscapes and ADE20K,
respectively, and both cases with batch size 16 and 8, respectively. (iii) We adopt
a polynomial learning rate decay schedule and employ SGD as the optimizer.
Momentum and weight decay are set to 0.9 and 0, respectively, for all the ex-
periments on the two datasets. The initial learning rates are set to 0.001 on
ADE20K and 0.01 on Cityscapes. (iv) To obtain the context C, we employed
the pre-trained ViT model with the ground-truth labels as the input to extract
the features for each object.

4.2 Comparision to state-of-the-art

We conducted comparative experiments on some representative models; the re-
sults are shown in Table 1. APNB [40], CCNET [13], SPNet [12] proposed to
explore the way of enhancing the ability of spatial contextual representation.
SETR [38], Segmenter [28] provides us with a new perspective, that is, using
transformer-based encoder [18] to capture richer and more effective global con-
text semantic information. Swin Transformer provides an effective patch embed-
ding method based on shift windows to reduce network size. However, all of the
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above models do not provide a causal explanation. It is worth noting that we
only plug the causal intervention module with the internal and external context
in SETR and achieve a new SOTA in both Cityscapes and ADE20K.

Table 1: Comparison with the state-of-the-art methods.

Method Publication Backbone mIoU (%)
Cityscapes ADE20K

APNB ICCV’19 ResNet101 81.30 45.24
CCNET ICCV’19 ResNet101 81.40 45.76
SPNet CVPR’20 ResNet101 82.00 45.60
EfficientFCN ECCV’20 ResNet101 - 45.28
KRNet ICASSP’21 ResNet101 82.20 45.65
SETR CVPR’21 ViT-L 82.15 50.28
Swin Transformer ICCV’21 Swin-L - 53.50
Segformer NIPS’21 Seg-L-Mask/16 82.20 51.80
Segmenter ICCV’21 ViT-L - 53.63
Ours - ViT-L 83.21 54.48

Qualitative Analysis Qualitative results are shown in Fig. 4. We use different
coloured boxes to mark the differences between our model and the SETR. From
the figure, we can observe that our proposed model has more accurate and
more fine segmentation performance (marked with orange or yellow boxes). More
objects are segmented: small, occluded, and indistinct segments. Global context
information can effectively learn the co-occurrence relationship between different
objects. However, some examples of objects being misclassified are circled with
black boxes. It is effective for using causal intervention to remove the bias in
contextual information.

4.3 Ablation Study

The contributions of different module: To fairly evaluate our proposed
method, we carry out different settings and report results in table 2. Multi-scale
test with random flipping (MS+Flip) is commonly used to improve semantic
segmentation performance. We plugged the internal contextual information, re-
moved confounder bias in SETR, and achieved 52.35% mIoU. It significantly
increases mAP over the baseline by up to 2.07. By using MS+Filp, we achieved
53. 28% mIoU. Furthermore, we study the influence of introducing external
contextual information with two settings: 1) The external knowledge without
de-confounding (marked by External); 2) The external knowledge with de-
confounding (marked by External∗). We first introduced the external knowl-
edge without de-confounding, and got the margin improvement (0/13%mIoU).
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Fig. 4: Qualitative results on Cityscapes dataset.

Secondly, with de-confounded external knowledge, we achieve an improvement of
1.05%mIoU.Plugging the de-confounded external knowledge without MS+Flip,
the mIoU is up to 52. 70%. Finally, we adopt MS+Flip, internal knowledge,
and de-confounded external knowledge. The overall performance is over SETR
by up to 8%. In summary, it is effective to improve the performance of ViT by
introducing internal knowledge and external knowledge.

Table 2: Ablation study on ADE20K datasets. Internal: intervention with in-
ternal knowledge. External: The external knowledge without de-confounding.
External∗: The external knowledge with de-confounding

Method MS+Filp Internal External External∗ mIoU (%)
SETR ✓ 50.28
Ours ✓ 52.35
Ours ✓ ✓ 53.28
Ours ✓ 50.41
Ours ✓ ✓ 50.94
Ours ✓ 51.33
Ours ✓ ✓ 52.70
Ours ✓ ✓ 52.93
Ours ✓ ✓ ✓ 53.40
Ours ✓ ✓ 53.93
Ours ✓ ✓ ✓ 54.48

The influence of adapting different GCN layers: As mentioned in Section
3.2, we map the natural language co-occurrence probability in the Visual Gnome
dataset to a common feature space using the word embedding method.Then,
the GCN is used to extract the semantic information of the different objects
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from the common feature space. Therefore, it is necessary to discuss how many
GCN layers are most beneficial for our method. As shown in Table.3, when
the number of GCN layers increases, segmentation performance drops on both
datasets. The optimal layer number of GCN is related to the sparsity degree of
the adjacency matrix. When the sparsity degree of the graph is low, the over-
smoothing phenomenon will soon occur. As a result, performance degradation
occurs when more GCN layers are used.

Table 3: The influence of different depths of GCN in external knowledge mapping.

Layers Encoder Cityscapes ADE20K mIoU (%)
2 layers ViT-L ✓ 81.58
2 layers ViT-L ✓ 52.70
3 layers ViT-L ✓ 79.13
3 layers ViT-L ✓ 51.17
4 layers ViT-L ✓ 79.01
4 layers ViT-L ✓ 50.85
5 layers ViT-L ✓ 78.71
5 layers ViT-L ✓ 50.58

The influence of different word embedding methods: Similar to Sec-
tion.4.3, we use different word embedding methods to integrate external knowl-
edge better. Thus, we investigate four different word embedding methods, in-
cluding Word2vec, GoogleNews, GloVe and the FastText word embedding. Fig.5
shows the results using different word embeddings on Cityscapes and ADE20K.
From the figure, we can see that when using different word embeddings as graph’s
nodes, the segmentation mIoU will not be affected significantly. Furthermore,
using GloVe could lead to better performance. The reason is that the word em-
beddings learned from large text corpus maintain some implicit knowledge.

Fig. 5: Influence of word embedding methods
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4.4 Plug and Play

We chose several representative ViT-based encoders and plugged our method
into them to test its extensibility. For each method, we select the backbone en-
coder that performs best on the ADE20K benchmark. This also implies that they
occupy the greatest number of parameters. For more details, we show in table
4. We plug our method in SETR (the baseline) and achieve 54.48 % mIoU.
It is up to 4.20 % higher than SETR. Swin-Large [18], Seg-L-Mask/16 [28]
is the advanced version of ViT. Swin-Large introduces the W-MSA operation,
which reduces computation complexity. They use windows instead of patches,
which makes the computational complexity of W-MSA linear with image size.
Seg-L-Mask/16 adapts image patch join processing and class embedding for re-
modeling the global context. Furthermore, the Mask Transformer can perform
direct segmentation rather than class embedding. By incorporating our method,
the mIoU is increase to 0.68 % and 1.33 %, respectively. SegFormer contains a
novel hierarchical Transformer encoder as well as a lightweight All-MLP decoder.
It generates multi-scale features that do not require position coding, thereby
avoiding position-coding interpolation, which leads to performance degradation
when the test resolution differs from the training resolution. By plugging our
method into Segformer, we achieveWe achieve 53.71 % mIoU (up to 1.46 %
higher than SegFormer). It is worth noting that our method introduces extra
parameters with calculating scale dot-product attention (2 × 512 × 1024), lin-
ear addition (2×N × 1024) and feature embedding (N × 1024). N denotes the
count of categories. In short, we improved on several benchmarks by adjusting
a few parameters. This demonstrates that our method works and that it can be
applied to any other ViT-based segmentation encoder.

Table 4: Plug our method in different ViT-based Methods.
Method Backbone Params (M) Original mIoU (%) mIoU (%)
SETR ViT-large 308 50.30 54.48
Swin-Transformer Swin-large 234 53.53 54.21
SegFormer MiT-B5 84 51.80 53.13
Segmenter Seg-L-Mask/16 307 52.25 53.71

5 Conclusions

We provide a rethinking to semantic segmentation based on vision transformer
model design and contribute a causal intervention attempt. Different from other
tasks, we explained the model based on causal intervention. Using only feature
concatenation, we improve on segmentation task, and then the model is closer to
the human recognition system. Furthermore, causality can not only be explained
by intervention but also many,counterfactual methods deserve further consider-
ation. Therefore, we will further use causality to explore the next generation of
artificial intelligence in the future.
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