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Fig. 1. We introduce a pipeline for (a) generating and draping garments with various
topology plausibly and (b) recovering garments from image observations (e.g. segmen-
tation masks). Unlike prior works, our method allows for joint optimization of garment
and body meshes, resulting in more faithful reconstruction.

Abstract. Existing data-driven methods for draping garments over hu-
man bodies, despite being effective, cannot handle garments of arbitrary
topology and are typically not end-to-end differentiable. To address these
limitations, we propose an end-to-end differentiable pipeline that repre-
sents garments using implicit surfaces and learns a skinning field con-
ditioned on shape and pose parameters of an articulated body model.
To limit body-garment interpenetrations and artifacts, we propose an
interpenetration-aware pre-processing strategy of training data and a
novel training loss that penalizes self-intersections while draping gar-
ments. We demonstrate that our method yields more accurate results
for garment reconstruction and deformation with respect to state of the
art methods. Furthermore, we show that our method, thanks to its end-
to-end differentiability, allows to recover body and garments parameters
jointly from image observations, something that previous work could not
do. Our code is available at https://github.com/liren2515/DIG.

⋆ This work was supported in part by the Swiss National Science Foundation.
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2 R. Li et al.

1 Introduction

Fig. 2. The pipeline of our approach. The garment in the canonical space is first re-
constructed from SDF. Given the shape β and pose θ of the target body, we add the
shape and pose displacements (∆xβ and ∆xθ) to the reconstructed garment and drape
it to the target body by the skinning function.

Modeling clothed humans has applications in industries such as fashion de-
sign, moviemaking, and video gaming. Many professional tools that rely on
Physics-Based Simulation (PBS) [24,35,25,10] can be used to model cloth de-
formations realistically. However, they are computationally expensive, which
precludes real-time use. Some of these can operate in near real-time using an
incremental approach in motion sequences. However, these methods remain too
slow for static cloth draping over a body in an arbitrary pose.

In recent years, there has therefore been considerable interest in using data-
driven techniques to overcome these difficulties. They fall into two main cate-
gories. First there are those that use a single model to jointly represent the person
and their clothes [21,32,7,37,6]. They produce visually appealing results but, be-
cause the body and garment are bound together, they do not make it easy to
mix and match different bodies and clothing articles. Second, there are methods
that represent the body and clothes separately. For example, in [14,27,33,36,2],
deep learning is used to define skinning functions that can be used to deform the
garments according to body motion. In [9], the explicit representation of clothes
is replaced by an implicit one that relies on an inflated SDF surrounding the
garment surface. It makes it possible to represent garments with many different
topologies using a single model. To this end, it relies on the fact that garments
follow the underlying body pose predictably. Hence, for each garment vertex, it
uses the blending weights of the closest body vertex in the SMPL model [20].
Unfortunately, this step involves a search, which makes it both computationally
expensive and non-differentiable.

In this paper, we propose the novel data-driven approach to skinning depicted
by Fig. 2. As in [9], we represent the garments in terms of an inflated SDF but,
instead of using the SMPL skinning model, we learn a garment-specific one. This
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makes our approach both more expressive and fully-differentiable. To address the
interpenetration issues caused by SDF inflation, we devised an interpenetration-
aware data preprocessing for our training data. And to properly regularize the
learned skinning field and to prevent self-intersections, we introduce a new loss
term whose minimization prevents the creation of garment artifacts when the
body deforms.

As a result, our method yields state-of-the-art results for both garment re-
construction and deformation. Its full differentiability makes it possible to fit
both body and garments to partial observations. In other words, our pipeline
can be used to simultaneously optimize the body and garment meshes, whereas
earlier work [9] can only be used to optimize the garment.

2 Related Work

Most garment deformation approaches are either physics-based or data-driven.
The physics-based algorithms [1,23,22,19,18] yield highly-realistic deformations
but tend to be computationally demanding. The data-driven approaches are
much less expensive at inference-time, sometimes at the cost of realism. Here we
focus on those that are designed to drape a garment on a posed body.
Templates. In [27,33,36,5,15,4,34], individual garments are represented by sep-
arate triangulated 3D meshes. The topology of each one is fixed and a specific
deformation function has to be learned. As a result, given the raw scan of a
new garment with a different geometry from those already modeled—for exam-
ple, a skirt as opposed to pants and shorts—expert knowledge is required to
create the new template. Furthermore, the deformation model being garment-
dependent makes these approaches impractical on large arrays of garments and,
hence, ill-suited to real-world applications.
Point-Clouds. In [14] and DeePSD [2], the meshes are replaced by clouds of 3D
points. The deformation is estimated for each point separately, making it possible
to animate outfits of arbitrary topology and geometric complexity. However, the
garment topology of these work is still non-differentiable because they rely on
vertex connections from the template, which are fixed and pre-designed. This is
addressed in [39] by using a point-cloud template with a fixed number of points
densely sampled from the body mesh. This yields differentiability but the lack
of point connections makes the reconstructed garments a group of unordered
points instead of a surface with concrete physical properties.
Implicit Functions. Deep implicit functions [26,8] are good at representing
surfaces whose topology can change while preserving differentiability [30,13].
SMPLicit [9] is the only work we know of that takes advantage of this to drape
garments over bodies. As a result, the model can be fitted to real-world images.
However, SMPLicit suffers several limitations. First, it does not handle the inter-
penetration between the body and garment. Second, it directly uses the blending
weights of the closest vertices in the body model [20], which oversimplifies the
dynamics and yields over-smoothed results. Finally, the optimization routines
used to solve the fitting problem include approximations that produce inaccu-
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racies and prevent the fitting result from being optimal. Our approach is in a
similar spirit but overcomes these limitations.

3 Method

We start from an implicit surface model of the garment in a canonical pose,
that is, draped over an average body in a T-pose, which we then deform to fit
different body shapes and poses. This yields a fully differentiable pipeline that
can be used for animation and modeling from images.

3.1 Garment Representation

Watertight surfaces of arbitrary topology can be represented very effectively by
the zero crossings of a signed distance function (SDF)

fΘ(x, z) −→ R , (1)

where f is implemented by a neural network with weights Θ, x ∈ R3 is a point in
space, and z is a latent vector that parameterizes the surface shape [26]. However,
clothes have openings in them and are not watertight. To nevertheless represent
them in this manner, we can first compute unsigned distances to the surfaces,
subtract a small ϵ value and treat the result as a signed distance function. This
amounts to inflating the garments and representing them as watertight thin
surfaces of thickness 2ϵ, as in [9,12]. Note that ϵ cannot be too small and must
be larger than marching cube’s step size, introducing an undesirable dependency
between the field and how it is meshed.

Given a database of garments fitted to a body in a T-pose shape and whose
vertices coordinates have been normalized to be between -1 and 1, we use an auto-
decoding approach to learning the weights Θ and the latent vectors z associated
to specific garments. To this end, for each sample garment and its associated
latent vector z, we minimize a loss function

Loss = LSDF + λgradLgrad + λreg∥z∥2 , (2)

LSDF =
∑
x∈Xv

∥fΘ(x, z)− sgt(x)∥ , (3)

Lgrad =
∑
x∈Xs

∥∇xfΘ(x, z)− ngt(x)∥2 +
∑
x/∈Xs

(∥∇xfΘ(x, z)∥ − 1)2 , (4)

where sgt and ngt are ground-truth values of the signed distance function and
normal, Xv and Xs represent points sampled in the [−1, 1]3 volume and the
garment surface respectively, and λgrad and λreg are scalars that control the in-
fluence of the different terms. Minimizing LSDF ensures that the SDF estimated
by fΘ is close to the ground-truth one in the whole volume while minimizing
Lgrad gives additional emphasis to it producing the right normals close to the
surface and being a true SDF with unit gradients elsewhere, as in [11]. We present
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(a) (b)

Fig. 3. The illustration of inflation processing for the garment surface (blue solid lines).
(a) The inflation strategy of [12,9] will cause interpenetration between the inflated mesh
(blue dashed line) and the body mesh, while (b) our proposed interpenetration-aware
inflation will not.

an ablation study in the results section that shows that both are necessary to
produce smooth and accurate surfaces.

One difficulty with this scheme arises from the fact that the garment is usu-
ally close to the underlying body mesh and inflating it by ϵ results in interpen-
etrations between garment and body, as shown in Fig. 3(a). Intersections be-
tween garments and the human body are problematic because they do not allow
to employ the reconstructed meshes for downstream tasks such as e.g. physics
simulations. Furthermore, in the experiment section, we show that learning a
physically correct representation of garments where there are no interpenetra-
tion results in more accurate clothing deformations. To address this, we perform
the interpenetration-aware pre-processing illustrated by Fig. 3(b) when sampling
the surface points in the Xs set of Eq. 4. Given a garment mesh G, we sample a
256× 256× 256 grid in [−1, 1]3 to produce a set of points X and compute their
signed distance to G. We then run Marching Cubes to recover the watertight
mesh Minitial as the dashed line of Fig. 3(a). For any vertex of Minitial whose
signed distance to the body is negative—meaning that it is inside it—we find
the closest body vertex vc and replace its position by vc + µnvc , where nvc is
the surface normal at vc and µ is a small positive value, which finally gives us
the mesh Mclean without interpenetrations depicted by the blue dashed line of
Fig. 3(b). In this example, Xs consists of points sampled from Mclean located
on that dashed line. Xv comprises the points randomly sampled from [−1, 1]3.
Their position is not affected but their ground-truth signed distance is computed
with respect to Mclean.

3.2 Modeling Garment Deformations

SMPL is a statistical parametric model that uses Linear Blend Skinning to de-
form a rigged body template T ∈ RNB×3 withNB vertices. Given the parameters
of shape β and pose θ, SMPL can generate the body mesh MB(β, θ) by

MB(β, θ) =W (TB(β, θ), J(β), θ,W) , (5)
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TB(β, θ) = T+Bs(β) +Bp(θ) , (6)

where W is the skinning function with weight W ∈ RNB×24 and joint locations
J(β) ∈ R24×3. Bs(β) ∈ RNB×3 and Bp(θ) ∈ RNB×3 are the shape and pose
displacements. The SMPLicit algorithm [9] exploits the fact that the garment
follows the pose of the underlying body in a predictable way by using for each
garment vertex the blending weights of the closest body vertex. This step involves
a search, which makes it both computationally expensive and non-differentiable.

To remedy this, we instead learn a specific blending model for the garment,
which is different from that of the body. More specifically, we write

MG(x, β, θ) =W (x(β,θ), J(β), θ,W(x)) , (7)

x(β,θ) = x+∆xβ(x) +∆xθ(x) ,

whereW (·) is the SMPL skinning function with learned skinning weightsW(x) ∈
R24, ∆xβ(x) and ∆xθ(x) are shape and pose displacements, and x ∈ R3 denotes
a generic 3D point instead of on a template. ∆xβ(x) models the shape offset
conditioned on body shape β, while ∆xθ(x) represents a deformation field con-
ditioned on body pose θ.

More specifically, W(x) and ∆xβ(x) are computed using the skinning weight
W and shape displacement Bs(β) from SMPL as base priors. They are extended
to the whole 3D volume by writing

W(x) = w(x)W, ∆xβ(x) = w(x)Bs(β), (8)

where w(x) ∈ RNB are shared weights. Since w(·) is implemented by a neural
network and W (·) is a differentiable function, MG is fully differentiable, unlike
the SMPLicit model [9]. The approach of [33] does something similar but in a
more complex manner because it needs to learn separate models for blending
weights and shape displacement, whereas we need only one. Furthermore, be-
cause x can be any 3D point, we can deform garments of arbitrary topology,
instead of being restricted to a single garment template as in [27,15,33].

3.3 Training the Model

To train the network that implements the function w of Eq. 8, we use the same
sampling strategy as in [33] to collect target w̄(x) values. For each x ∈ R3, we
sample N points P = {p : p ∼ N (x, d)}, where d is the distance from x to the
body. We take w̄(x) to be

w̄(x) =
1

N

∑
p∈P

wbary(ϕ(p)), (9)

where ϕ(·) denotes the closest point on the body surface and wbary(·) is a NB-
vector that uses the barycentric coordinate of the closest point as the weight for
each body vertex. Since w̄(x) can be regarded as the weight distribution of body
vertices, at training time, we introduce the loss

LKL =
∑
x

KL(w(x)||w̄(x)) , (10)

2785



DIG: Draping Implicit Garment over the Human Body 7

where KL is the KL-divergence. After the training of w(x), we fix its parameter
weights, plug it into our skinning model (Eq. 7), and then minimize the following
loss for the training of ∆xθ

Loss = λdeformLdeform + λinterpLinterp + λorderLorder. (11)

where Linterp and Lorder are regularization terms described below and λdeform,
λinterp, and λorder are scalar weights.

Dynamics. To capture detailed dynamics induced by pose changing, we define
the deformation loss

Ldeform =
∑
x∈Xs

|x̄d − x̂d(x)|+
∑
x/∈Xs

|∆xθ(x)−∆xθ(xc)| , (12)

where Xs denotes vertices of the ground-truth garment that forms an open
surface, x̂d and x̄d are the point deformed according to Eq. 7 and the corre-
sponding ground-truth position, respectively. xc = argmin

x′∈Xs

d(x′,x) denotes the

surface point closest to x. As there are no correspondences in the training data
for x /∈ Xs, the second term in Eq. 12 allows them be learned under the guidance
of the closest surface points in the garment.

Interpenetrations. To prevent them, we utilize the SDF of the body mesh
MB(β, θ) to penalize the presence of deformed points inside the body. We write

Linterp =
∑
x

max(0, ϵSDF − SDFB(x̂d(x))) , (13)

where ϵSDF is a small value chosen to prevent x̂d(x) from overlapping with the
body surface.

Self-Intersections. Minimizing Ldeform and Linterp usually suffices to deform
open surfaces realistically. Unfortunately, when deforming the inflated watertight
meshes we use, self-intersections can appear as shown on the left of Fig. 4(b).
This can be understood as follows. Let us assume there are two points x1 and x2

on the inflated mesh whose closest surface point x0 is the same, as illustrated by
Fig. 4(a). Let us further assume that x2 is initially farther from the body than
x1. After deformation, nothing prevents x1 from ending up farther than x2 and
yielding a self-intersection. To prevent this, we introduce the ordering loss

Lorder =
∑

(x1,x2)∈O

max(0, SDFB(x2 +∆xθ(x2))− SDFB(x1 +∆xθ(x1))) ,

O = {(x1, x2)|ψ(x2) = ψ(x1) and SDFB(x1) > SDFB(x2)} , (14)

where ψ(·) denotes the closest garment vertex. Its minimization maintains the
spatial relationship between points like x1 and x2 because it ensures that points,
close to the body before deformation are still close after deformation.
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(a) (b)

Fig. 4. (a) The illustration of how artifacts are produced by deformation. (b) Shirts
deformed by the models trained w/ and w/o Lorder. Without it, the inner face of the
t-shirt can intersect the outer one. This is shown in dark blue.

3.4 Implementation Details

The SDF fΘ(x, z) of Eq. 1 is implemented by a 9-layer multilayer perceptron
(MLP) with a skip connection from the input layer to the middle. We use Softplus
as the activation function. The Θ weights and the latent code z ∈ R12 for each
garment are optimized jointly during the training using a learning rate of 5e-4.

We use the architecture of [4] to implement the pose displacement network
∆xθ of Eq. 7. It comprises two MLP’s with ReLU activation in-between. One en-
codes the pose θ to an embedding, and the other one predicts the blend matrices
for the input point. The pose displacement is computed as the matrix product
of the embedding and the blend matrices. The weight distribution w(·) of Eq. 8
is implemented by an MLP with an extra Softmax layer at the end to normalize
the output. N = 1000 points are sampled to obtain the ground-truth w̄ used to
train w. We use the ADAM [16] optimizer with a learning rate of 1e-3 for the
training of w and ∆xθ.

4 Experiments and Results

Our models can operate in several different ways. First, they can serve as gen-
erative models. By varying the latent code of our SDF fΘ and using Marching
Cubes, we can generate triangulated surfaces for garments of different topolo-
gies that can then be draped over bodies of changing shapes and poses using
the deformation model MG of Eq. 7, as shown in Fig. 1(a). Second, they can be
used to recover both body and cloth shapes from images by minimizing

L(β, θ, z) = LIoU(NeuR(MG(G, β, θ),MB(β, θ)),S) + Lprior(θ) , (15)

G =MC(fΘ(x, z)) ,

where LIoU is the IoU loss [17] that measures the difference between segmenta-
tion masks, G is the garment surface reconstructed by Marching Cubes MC(·),
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NeuR(·) is a differentiable renderer, and S a semantic segmentation obtained
using off-the-shelf algorithms. MB(·) and MG(·) are the skinning functions for
garment and body as defined in Eq. 5 and 7. We also minimize the prior loss
Lprior of VPoser [28] to ensure plausibility of the pose.

In theory MC(·) is not differentiable, but its gradient at vertex x can be ap-

proximated by ∂x
∂z = −n∂f(x,z)

∂z , where n = ∇f(x) is the normal [12]. In practice,
this makes the minimization of Eq. 15 practical using standard gradient-based
tools and we again rely on ADAM. Pytorch3D [29] serves as the differentiable
renderer. In our experiments, we model shirts and trousers and use separate
SDF and separate skinning models for each. Our pipeline can be used to jointly
optimize the body mesh (β and θ) and the garment mesh (z), while previous
work [9] can only be used to optimize the garment.

In this section, we demonstrate both uses of our model. To this end, we first
introduce the dataset and metrics used for our experiments. We then evaluate our
method and compare its performance with baselines for garment reconstruction
and deformation. Finally, we demonstrate the ability of our method to model
people and their clothes from synthetic and real images.

4.1 Dataset and Evaluation Metrics

We train our models on data from CLOTH3D [3]. It contains over 7k sequences
of different garments draped on animated 3D human SMPL models. Each gar-
ment has a different template and a single motion sequence that is up to 300
frames long. We randomly select 100 shirts and 100 trousers, and transform
them to a body with neutral-shape and T-pose by using displacement of the
closest SMPL body vertex, which yields meshes in the canonical space. For each
garment sequence, we use the first 90% frames as the training data and the rest
as the test data (denoted as TEST EASY). We also randomly select 30 unseen
sequences (denoted as TEST HARD) to test the generalization ability of our
model. Chamfer Distance (CD), Euclidean Distance (ED), Normal Consistency
(NC) and Interpenetration Ratio (IR) are reported as the evaluation metrics.
NC is implemented as in [12]. IR is computed as the area ratio of garment faces
inside the body to the overall garment faces.

4.2 Garment Reconstruction

The insets of Fig. 5(a) contrast our reconstruction results against those of SM-
PLicit [9]. The latter yields large interpenetrations while the former does not.
Fig. 5(b) showcases the role of the Lgrad term of Eq. 4 in producing smooth
surfaces.

In Table 1, we report quantitative results for both the shirt and the trousers.
We outperform SMPLicit (the first row - w/o proc., w/o Lgrad) in all three
metrics. The margin in IR is over 18%, which showcases the ability of the
interpenetration-aware processing of Section 3.1.
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(a) (b)

Fig. 5. Reconstruction results. (a) The inside of the same garment reconstructed
by SMPLicit (upper inset) and our method (bottom inset). The first features interpen-
etrations whereas the second does not. (b) Reconstructed garment by a model trained
without and with Lgrad. The latter is smoother and preserves details better.

Shirt CD (×10−4) NC (%) IR (%)

Ours w/o proc., w/o Lgrad 1.88 92.1 18.1
Ours w/o Lgrad 1.58 90.3 0.0

Ours 1.48 92.3 0.0

Trousers CD (×10−4) NC (%) IR (%)

Ours w/o proc., w/o Lgrad 1.65 92.0 18.6
Ours w/o Lgrad 1.22 91.8 0.0

Ours 1.34 92.3 0.0

Table 1. Comparative reconstruction results. proc. indicates our proposed
interpenetration-aware pre-processing.

Shirt ED (mm) NC (%) IR (%)

DeePSD 26.1 82.3 5.8
SMPLicit 35.9 84.0 13.3

Ours 19.0 85.3 1.6

Trousers ED (mm) NC (%) IR (%)

DeePSD 17.5 85.4 1.5
SMPLicit 27.0 85.6 6.3

Ours 14.8 86.7 0.2

Table 2. Deforming unposed ground truth garments with DeePSD, SMPLicit and our
method on TEST EASY.

Shirt ED (mm) NC (%) IR (%)

DeePSD 95.6 72.6 46.4
SMPLicit 35.4 83.9 12.9

Ours 26.5 85.1 3.0

Trousers ED (mm) NC (%) IR (%)

DeePSD 37.8 79.5 27.8
SMPLicit 31.9 84.9 8.8

Ours 24.8 85.8 0.7

Table 3. Deforming unposed ground truth garments with DeePSD, SMPLicit and our
method on TEST HARD.

4.3 Garment Deformation

In this section, we compare our deformation results against those of SMPLicit [9]
and DeePSD [2]. The input to DeePSD is the point cloud formed by the vertices
of ground-truth mesh so that, like our algorithm, it can deform garments of
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Shirt CD (×10−4) NC (%) IR (%)

SMPLicit 7.91 83.7 16.2

Ours - w/o proc. 3.86 84.4 1.6
Ours - w/ proc. 3.78 84.7 1.5

Trousers CD (×10−4) NC (%) IR (%)

SMPLicit 3.66 84.1 6.6

Ours - w/o proc. 2.71 85.3 0.2
Ours - w/ proc. 2.67 85.4 0.2

Table 4. Deforming SDF reconstructed garments with SMPLicit and our method on
TEST EASY. w/o and w/ proc. means the mesh is reconstructed without and with
interpenetration-aware processing respectively.

arbitrary topology by estimating the deformation for each point separately. To
skin the garment, it learns functions to predict the blending weight and pose
displacement. It also includes a self-consistency module to handle body-garment
interpenetration. Hence, for a fair comparison, we retrain DeePSD using the
same training data as before.

To test the deformation behavior of our model, we use the SMPL parameters
β and θ provided by the test data as the input of our skinning model. As to
the garment mesh to be deformed, we either use the ground-truth unposed mesh
from the data, which is an open surface, or the corresponding watertight mesh
reconstructed by our SDF model.

In Fig. 4(b), we presented a qualitative result that shows the importance of
the ordering term of Lorder in Eq. 14. We report quantitative results with the
ground-truth mesh in Table 2 on TEST EASY. Our model performs substantially
better than both baselines with the lowest ED and IR and the highest NC.
For example, comparing to SMPLicit, the ED and IR of our model drop by
more than 15mm and 10% for the deformation of shirt. In Table 3, we report
similar results on TEST HARD, which is more challenging since it resembles
less the training set, and we can draw the same conclusions. Since the learning
of blending weights in DeePSD does not exploit the prior of the body model
as us (Eq. 8), it suffers a huge performance deterioration in this case where its
ED even goes up to 95.6mm and 37.8mm for the shirt and trousers respectively.
Table 4 reports the results with SDF reconstructed mesh. Again, our method
performs consistently better than SMPLicit in all metrics (row 2 vs row 4). It is
also noteworthy that our interpenetration-aware pre-processing can help reduce
deformation error and interpenetration ratio as indicated by the results of row 3
and 4. This demonstrates that learning a physically accurate model of garment
interpenetrations results in more accurate clothing deformations.

In the qualitative results of Fig. 6, we can observe that SMPLicit cannot
generate realistic dynamics and its results tend to be over-smoothed due to its
simple skinning strategy. DeePSD can produce results that are better but too
noisy. Besides, neither of them is able to address the body-garment interpene-
tration. Fig. 7 visualizes the level of interpenetrations happening different body
region. We can notice that interpenetrations occur on almost everywhere in the
body for SMPLicit. DeePSD shows less but still not as good as ours.
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Fig. 6. The skinning results for the ground-truth shirt (left) and the SDF reconstructed
shirt (right). Since the input of DeePSD should be the point cloud of the mesh template,
we only evaluate it with the unposed ground-truth mesh. Compared to DeePSD and
SMPLicit, our method can produce more realistic details and have less body-garment
interpenetration.

(a) DeePSD (b) SMPLicit (c) Ours

Fig. 7. The visualization of the body region having interpenetrations (marked in red).

Shirt CD (×10−4) NC (%) IR (%)

SMPLicit-raw 17.77 82.1 41.5
SMPLicit 18.73 82.8 37.3

Ours 4.69 87.3 3.9

Trousers CD (×10−4) NC (%) IR (%)

SMPLicit-raw 4.22 81.2 35.7
SMPLicit 4.50 82.2 29.2

Ours 2.23 89.2 0.7

Table 5. The evaluation results of SMPLicit-raw (w/o smoothing), SMPLicit (w/
smoothing) and our method for garment fitting on the synthetic data.

4.4 From Images to Clothed People

Our model can be used to recover the body and garment shapes of clothed
people from images by minimizing L of Eq. 15 with respect to β, θ, and z. To
demonstrate this, we use both synthetic and real images and compare our results
to those of SMPLicit. Our optimizer directly uses the posed garment to compute
the loss terms. In contrast, SMPLicit performs the optimization on the unposed
garment. It first samples 3D points p in the canonical space. i.e. on the unposed
body, and uses the weights of the closest body vertices to project these points
into posed space and into 2D image space to determine if semantic label, 1 if
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inside the garment, 0 otherwise. The loss

L(zG) =

{
|C(p, zG)− dmax|, if sp = 0

mini|C(pi, zG)|, if sp = 1
, (16)

is then minimized with respect to the latent code zG, where dmax is the maxi-
mum cut-off distance and mini is used to consider only the point closest to the
current garment surface estimate. This fairly complex processing chain tends to
introduce inaccuracies.

Fig. 8. Fitting results on a synthetic image. Left to right: the ground-truth seg-
mentation and garment meshes, SMPLicit w/o smoothing (SMPLicit-raw), SMPLicit
w/ smoothing (SMPLicit) and ours. Note that SMPLicit requires post-processing to
remove artifacts, while our method does not.

Synthetic Images. We use the body and garment meshes from CLOTH3D as
the synthetic data. Since the ground-truth SMPL parameters are available, we
only optimize the latent code z for the garment and drop the pose prior term
Lprior from Eq. 15. Image segmentation such as the one of Fig. 8 are obtained by
using Pytorch3D to render meshes under specific camera configurations. Given
the ground-truth β, θ and segmentation, we initialize z as the mean of learned
codes and then minimize the loss. Fig 8 shows qualitative results in one specific
case. The quantitative results reported in Table 5 confirm the greater accuracy
and lesser propensity to produce interpenetrations of our approach.

Real Images. In real-world scenarios such as those depicted by Fig. 9, there are
no ground-truth annotations but we can get the required information from single

2792



14 R. Li et al.

Fig. 9. Fitting results on images in-the-wild. Left to right: the input images and
their segmentation, SMPLicit and ours. Note that SMPLicit recovers garments based
on body meshes estimated from [31], while we can optimize the body and garment
parameters jointly for more accurate results.

images from off-the-shelf algorithms. As in SMPLicit, we use [31] to estimate the

SMPL parameters β̂ and θ̂ and the algorithm of [38] to produce a segmentation.

In SMPLicit, β̂ and θ̂ are fixed and only the garment model is updated. In
contrast, in our approach, β̂, θ̂, and the latent vector z are all optimized. As can
be seen in Fig. 9, this means that inaccuracies in the β̂ and θ̂ initial values can
be corrected, resulting in an overall better fit of both body and garments.

5 Conclusion

We have presented a fully differentiable approach to draping a garment on a
body so that both body and garment parameters can be jointly optimized. At
its heart is a skinning model that learns to prevent self-penetration. We have
demonstrated its effectiveness both for animation purposes and to recover body
and cloth shapes from real images. In future work, we will incorporate additional
physics-based constraints to increase realism and to reduce the required amount
of training data.
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