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Abstract. Video transformers have become a promising tool for video
classification due to its great success in modeling long-range interac-
tions through the self-attention operation. However, existing transformer
models only exploit the patch dependencies within a video when doing
self-attention, while ignoring the patch dependencies across the differ-
ent videos. This paper argues that external patch prior information is
beneficial to the performance of video transformer models for video clas-
sification. Motivated by this assumption, this paper proposes a novel
Hybrid-attention based Vision Transformer (HaViT) model for video
classification, which explicitly exploits both internal patch dependencies
within a video and external patch dependencies across videos. Differ-
ent from existing self-attention, the hybrid-attention is computed based
on internal patch tokens and an external patch token dictionary which
encodes external patch prior information across the different videos. Ex-
periments on Kinetics-400, Kinetics-600, and Something-Something v2
show that our HaViT model achieves state-of-the-art performance in the
video classification task against existing methods. Moreover, experiments
show that our proposed hybrid-attention scheme can be integrated into
existing video transformer models to improve the performance.

1 Introduction

The task of video classification is to understand the visual and audio features to
assign one or more relevant tags to the video. With the rapid increase of video
content, this task is critical for many applications such as video retrieval [1] and
video surveillance [2]. Compared with image classification, video classification
is more challenging due to the temporal dimension, which increases the overall
size of the input and variations in sequence. Though many methods have been
proposed to model spatial relationships for image classification, it is still an open
problem to jointly model spatial and temporal features in a video.

The remarkable progress of the transformer [3] in natural language process-
ing (NLP) has inspired researchers to investigate its adaptation to image clas-
sification. The transformer is notable for its use of multi-head self-attention to
model long-range dependencies, which are often modeled by the large receptive
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fields formed by deep stacks of convolutional operations. However, convolutional
operations can only capture local neighborhood in images, and the deep stack
strategies are inherently limited in capturing long-range dependencies by means
of aggregation of shorter-range information [4]. Conversely, the self-attention op-
eration attends to all elements in the input sequence, and thus can capture both
local as well as global spatial relationships on non-overlapping image patches in
images. Recently, a pure transformer-based architecture with the Vision Trans-
former (ViT) [5] has been proposed to replace convolutions completely, and out-
performed its convolution counterparts in image classification [5]. Inspired by the
fact that attention-based architecture is an intuitive choice for modelling long-
range contextual relationships in video, several transformer-based models have
been proposed for video classification [6–11]. Some models apply self-attention
on top of convolutional layers [6], while others use self-attention as the exclusive
building block in the video classification models [8, 7].

The natural extension of Vision Transformers to 3-dimensional video signal
is challenging. Specially, each encoder of a transformer contains heavy computa-
tions such as pair-wise self-attention. Meanwhile, a video has a longer sequential
representation than an image due to the additional temporal axis. Consequently,
it is not economical or easy to optimize if directly applying the joint space-time
attention to flattened video sequences. To reduce the computation costs, some
efforts [8, 7] have factorized the spatial and temporal domains via a factorized
encoder or factorized self-attention, and have achieved a good speed-accuracy
trade-off. Though achieving promising results in video classification, all these
transformer models only exploit internal patch dependencies across the spatial
and temporal dimensions within a video, while ignoring external patch depen-
dencies across the different videos. In fact, external patch dependencies across
the different images or videos which capture the external patch prior information
plays an important role in many low-level vision tasks such as image restore [12]
and video super-resolution [13]. This paper argues that external patch prior in-
formation is beneficial to transformer-based models for video classification.

Motivated by the above assumptions, this paper introduces a novel Hybrid-
attention based Vision Transformer (HaViT) for video classification, which ex-
plicitly exploits both internal patch dependencies within a video and external
patch dependencies across videos. The main operation performed in this archi-
tecture is hybrid-attention, which is computed on a sequence of spatio-temporal
tokens extracted from a video and an external token dictionary extracted from
extra videos. The spatio-temporal tokens encode internal patch information
within a video, while the external token dictionary encodes external patch in-
formation across the different videos. HaViT uses the hybrid-attention instead
of self-attention to model both internal patch dependencies within a video and
external patch dependencies across the different videos. To improve the model
performance, HaViT inserts the class token later in the transformer. This choice
eliminates the discrepancy on the first layer of the transformer, which ithus
used to perform hybrid-attention between patches and an external token dic-
tionary only. Extensive experiments on three public datasets (Kinetics-400 [14],
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Kinetics-600 [15] and Something-Something v2 [16]) show that HaViT achieves
competitive results on video classification against existing state-of-the-art mod-
els.

In summary, our main contributions are as follows:

– A new Hybrid-attention based Vision Transformer (HaViT) is proposed for
video classification, which is mainly built on the hybrid-attention module.
To our best knowledge, this is the first work on transformer architecture
for video classification which explicitly exploits external patch dependencies
across videos.

– A new hybrid-attention mechanism is introduced to model both long-range
patch dependencies within a video and external patch dependencies across
the different videos, which is easily integrated into existing transformer mod-
els to improve their performance.

– Extensive experiments on public datasets demonstrate that our proposed
HaViT model outperforms most existing video transformer models in most
cases. When combined with existing video transformer models, the hybrid-
attention does improve their model performance on video classification.

2 Related Work

Early works on video classification use hand-crafted features to encode appear-
ance and motion information [17, 18]. With the success of AlexNet in image clas-
sification [19], deep learning increasingly dominates visual modeling for video
classification. Previously for convolutional models, backbone architectures for
the video were adapted from those for images simply by extending the model-
ing through the temporal axis. Consequently, 3D convolution neural networks
(3D-CNNs) have become a de-facto standard for video classification [20–24].
Compared with their image counterparts, 3D-CNNs have significantly more pa-
rameters and thus require more computation. To alleviate this, a large body
of works (such as P3D [25], R(2+1)D [26], and S3D [27]) factorize convolu-
tions across spatial and temporal dimensions to achieve a better speed-accuracy
trade-off. However, the potential of convolution based approaches is limited by
the small receptive field of the convolution operator. With a self-attention mech-
anism, the receptive field can be broadened with fewer parameters and lower
computation costs, which leads to better performance. In [4], non-local network
introduces self-attention on top of CNNs. Further, CBA-QSA CNN [28] extends
self-attention with compact bilinear mapping for fine-grained action classifica-
tion.

With the success of Vision Transformer (ViT) in image classification [5], a
shift in backbone architectures is currently underway for video classification,
from Convlutional Neural Networks (CNNs) to attention-based transformers [7–
11]. Attention-based transformers use self-attention blocks at each layer to under-
stand a frame’s role with respect to other frames in the video. Since performing
full spatio-temporal attention is computationally prohibitive, many efforts have
been devoted to reducing computation costs via factorizing temporal and spatial
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domains. In TimeSformer [8], the authors propose applying spatial and tempo-
ral attention in an alternating manner reducing the complexity of calculating
attention weights. Similarly, ViViT [7] explores several methods of space-time
factorization. In addition, they also proposed to adapt the patch embedding pro-
cess from [5] to 3D data. However, all existing works only exploit internal patch
dependencies information within a video via self-attention, while ignoring exter-
nal patch dependencies information across the different video. In fact, external
patch dependencies have been proven to be important for many vision tasks.
This paper will try to exploit the external information in transformer model for
video classification.

Hybrid-attention Vision Transformer
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Fig. 1. Diagram of HaViT. The patches extracted from the frames are linearly pro-
jected into the token embedding, and position embedding is added. The patches and
the class token are fed into the transformer with L hybrid-attention layers.

3 Our Method

3.1 The Overall Architecture

The core idea of our proposed method is to introduce an external patch token
dictionary to represent the texture feature space of all image patches. It uses the
similarity of image patches in videos to calculate the internal attention and uses
the similarity of image patches in current videos and the external token dictio-
nary to calculate the external attention. In the calculation of hybrid-attention,
the external token dictionary is used to expand the elements involved in the
attention for the encoding of prior information. Specifically, when using the at-
tention mechanism for feature embedding, the embedding of one image patch is
not only linearly combined by the image patch features of the current video, but
also by the elements of the external patch token dictionary. As shown in Fig.
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1, the overall architecture includes a patch token embedding module, a video
transformer module with hybrid-attention, and a class-attention layer. In the
following, we elaborate on the processing flow: Firstly, F frame images are sam-
pled from the video sequence to form a multidimensional tensor x ∈ RH×W×C×F

as the model input, where H, W and C denote the height, the width and the
number of channels of each frame, respectively. Then, each frame in the video
is divided into a fixed number of non-overlapping image patches and the image
patches are reshaped into a flatten vector xp,t, with p = 1, ..., N denoting the
spatial locations and t = 1, ..., F denoting the index of frames. Then, we get
the image patch feature sequence z0p,t through the patch token embedding mod-
ule. Next, we input the image patch feature sequence to the video transformer
with hybrid-attention. The module uses the image patch feature sequence and
the external token dictionary to calculate the feature representation of image
patches through the multi-head hybrid-attention mechanism. Finally, the fea-
ture for classification is calculated using the class-attention layer, combining the
feature representation of image patches with the class token.

3.2 Hybrid-attention Vision Transformer

The hybrid-attention module is designed to model the relationship between im-
age patches in a video and the relationship across the different videos. It consists
of the internal attention based on patch tokens within a video and the external
attention based on an external token dictionary Dtoken. In the following, we
describe the hybrid-attention module and its several variants.

Internal attention. The internal attention is designed to model the internal
patch dependencies in a video. Each patch representation is projected into the
query, key, and value vector. The vectors are computed from z

(l−1)
p,t encoded by

the preceding block:

q
(l,a)
p,t = W

(l,a)
Q fLN

(
z
(l−1)
p,t

)
∈ Rdh ,

k
(l,a)
p,t = W

(l,a)
K fLN

(
z
(l−1)
p,t

)
∈ Rdh ,

v
(l,a)
p,t = W

(l,a)
V fLN

(
z
(l−1)
p,t

)
∈ Rdh ,

p,t ∈ {p′, t′|p
′ = 1, ..., N

t′ = 1, ..., F
} ∪ {0, 0}

(1)

where a = 1, 2, ..., A is the index over the multiple attention heads, and dh = d/A
is the hidden dim of each head. WQ,WK ,WV ∈ Rdh×d are learnable parameter
matrices for projecting the queries, keys and values. Next, the attention weights
α
(l,a)
p,t ∈ RNF+1 are computed via the dot products of the query q

(l,a)
p,t with all

keys:

α
(l,a)
p,t = σ

q
(l,a)T

p,t√
dh

·

k(l,a)0,0 {k(l,a)p′,t′ }p′ = 1, ..., N
t′ = 1, ..., F


 , (2)

4247



6 L. Li et al.

where σ denotes the activation function. Above attention weights are used as
coefficients in a weighted summation over value vectors to obtain the result of
each attention head s

(l,a)
p,t . Then, these outputs from each attention head are

concatenated and passed through embedding matrix WO and the feed-forward
network (FFN) which contains two MLP layers with GeLU activation:

z̃
(l)
p,t = WO


s
(l,1)
p,t
...

s
(l,A)
p,t

+ z
(l−1)
p,t (3)

In (2), the attention coefficient is calculated by using the query vector of the
image patch and the key vector of all image patches in the video. The internal
attention is jointly computed by the spatial and the temporal dimension. A
reduction in computation can be achieved by disentangling the spatial and the
temporal dimension. For the spatial dimension, only N+1 query-key comparisons
are made, using keys from the same frame as the query patch token exclusively:

α
(l,a)space
p,t = σ

q
(l,a)T

p,t√
dh

·
[
k
(l,a)
0,0 {k (l,a)

p′,t }p′=1 ,...,N

] . (4)

If we only consider the space-attention, the model becomes the ViT which en-
codes the feature from each frame, and the classifier vector is the global average
of the features of all the frames. The baseline of time dimensional dependencies
are proposed by TimeSformer [8], only making F +1 query-key comparisons and
using the patches from the other frames in the same location as the query patch:

α
(l,a)time
p,t = σ

q
(l,a)T

p,t√
dh

·
[
k
(l,a)
0,0 {k(l,a)p,t′ }t′=1,...,F

] (5)

The internal attention with divided space-time dimension can effectively re-
duce the computation costs, but it will increase the number of parameters of the
model. In (4) and (5), the query vector and key vector are used twice, which are
calculated with two different parameters. Compared with joint space-time atten-
tion mechanism, this method increases the number of parameters but reduces
the costs of computation.

External attention. The external attention is to model the external patch
dependencies across the different videos. Since the number of external patches
is huge, this paper proposes to use an external patch token dictionary to encode
the external patch information. In this way, each patch is represented by the
combination of the element of the dictionary. Corresponding attention coeffi-
cients encode the dependencies between internal patches and external patches
in different videos. The external token dictionary includes two trainable parts,
the value set {ve1, ve2, ..., ven} and its corresponding key set {ke1, ke2, ..., ken}. Given
a patch embedding z

(l−1)
p,t from the layer, the attention coefficient is calculated
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via the dot products with the key set of the external token dictionary. Then
the value set of the external token dictionary is linearly weighted to obtain the
external feature ẑ

(l)
p,t:

αi = σ

q
(l)T

p,t√
d

· {kei }i=1,...,n

 ,

ẑ =

n∑
i=1

αiv
e
i ,

ẑ
(l)
p,t = fFFN (fLN (ẑ)) + ẑ.

(6)

where q(l)p,t is the query vector of z(l−1)
p,t . Note that the external token dictionary in

the external attention aims to learn general visual features from the dictionary.
For the sake of simplicity, we only give the formula of the attention. We can also
use the multi-head attention to calculate values of the external attention.
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Fig. 2. Diagram of the combined-correlation hybrid-attention mechanism. The green
block represents the image patches in the video and the yellow block represents the
external patch token dictionary.

Hybrid schemes for hybrid-attention. First of all, it is necessary to
explain how to model the external prior information of videos using the external
token dictionary. This paper assumes that the features of image patches are
composed of two parts. The one is a linear combination of features of image
patches in the video, utilizing the self-attention mechanism (i.e., the internal
attention mechanism introduced earlier); The other is constructed from shared
visual features instead of the current video. We use a learnable dictionary to
construct shared visual features, which are related to all videos.

The keys and values calculated from the external dictionary and internal
patches can be spliced together for subsequent calculation. In internal attention,
the feature information of all image patches in the video is aggregated by cal-
culating attention. It should be noted that not only the key vectors of all image
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patches but also all key sets from the external token dictionary are used to cal-
culate the attention coefficient. In this way, an expanded attention coefficient is
calculated as follows:

αl,a
p,t = σ

(
q l,a

T

p,t√
dh

· {k l,a
i }

)
, (7)

where i is the index of the image patch feature sequence and the external token
dictionary. In this scheme, the model splices the attention coefficient matrix
between the internal and external attention of a query patch to form an extended
correlation matrix (called the combined-correlation type). With the attention
coefficients calculated by (7), the final output of hybrid-attention is obtained by
using the weighted summation over corresponding value vectors.

3.3 Class-attention

As we all know, the class token has two functions: guiding the learning of atten-
tion weights between patches and aggregating overall information to the linear
classifier for classification [29]. Recent work has shown that separating two func-
tions is beneficial to the classification. In this paper, we will explore whether
this method influences the performance of video classification. Our implemen-
tation includes two stages: the hybrid-attention stage and the class-attention
stage. In the hybrid-attention attention stage, we get the space-temporal feature
of patches without the class token. In the class-attention stage, we only update
the class token embedding while keeping patch features frozen.

Specifically, we first calculate the query, key, and value vectors:

q
(l,a)
0,0 = W

(l,a)
Q fLN

(
z
(l−1)
0,0

)
,

k
(l,a)
p,t = W

(l,a)
K fLN

(
z
(l−1)
p,t

)
,

v
(l,a)
p,t = W

(l,a)
V fLN

(
z
(l−1)
p,t

)
.

(8)

Next, the attention weights are given by

α
(l,a)
0,0 = σ

q
(l,a)T

0,0√
dh

·
[
k
(l,a)
p′,t′

]
p′ = 1, ..., N
t′ = 1, ..., F

 (9)

Then, we use the (3) to calculate the z
(l)
0,0 as the output of class-attention block.

Finally, HaViT has a hybrid-attention module (which combines the internal at-
tention and the external attention) and several class-attention layers (at which
only the values of class tokens are updated).
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4 Experiment

4.1 Setup

Datasets. All the experiments in this paper were conducted on the following
datasets. The Kinetics dataset contains short clips sampled from YouTube. Since
some videos on YouTube have been deleted or privatized, the dataset versions
used in this paper include about 260k clips of Kinetics-400 and 397k clips of
Kinetics-600. Note that, these numbers are lower than the original dataset and
thus might induce a negative performance bias when compared with previous
works. The Something-Something v2 (SSv2) consists of about 220k short videos
with a length of 2 to 6 seconds, depicting human beings performing predefined
basic actions on daily objects. Since the objects and backgrounds in the videos
are consistent across the different action classes, this dataset tends to require
stronger temporal modeling.

Network architecture. The backbone modules closely follow the ViT archi-
tecture. Most of the experiments were performed using the HaViT-B/16(L=12,
A=12, d=768, P=16)and HaViT-S/16(L=12, A=6, d=384, P=16), where L,
A, d, P denotes the number of transformer layers, the number of heads, the
embedding dimension, and the patch size.

Training and Inference. Unless otherwise stated, we sample frames uni-
formly across the video. For the training stage, we resize the smaller dimension
of each frame to a value ∈ [256, 320] and take a random crop of size 224 × 224
from the same location for all frames of the same video. In the inference, we give
the accuracy results for 4× 3 views (4 temporal clips and 3 spatial crops). The
models are implemented by python and pytorch, and were trained on a DGX-v1
server.

Table 1. Training hyperparamters for experiments.

Config Value

optimizer AdamW[30]
momentum β1, β2 = 0.9, 0.999
batch size 64

learning rate 2.5e−4

weight decay 0.05
learning rate schedule cosine with linear warmup
linear warmup epochs 3

epochs 30
dropout 0.1
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Table 2. Comparison with state-of-the-art methods on the Kinetics-400 dataset. T ×
frames are used in our experiments.

Method Top-1 Top-5 Views TFLOPs

blVNet [31] 73.5 91.2 3× 3 0.84
STM [32] 73.7 91.6 10× 3 2.01
TEA [33] 76.1 92.5 10× 3 2.10

CorrNet-101 [35] 79.2 - 10× 3 6.70
ip-CSB-152 [23] 79.3 93.8 10× 3 3.27
LGD-R101 [36] 79.4 94.4 10× 3 -
SlowFast [24] 79.8 93.9 10× 3 7.02
X3D-XXL [22] 80.4 94.6 10× 3 5.82

TimeSformer-L [8] 80.7 94.7 1× 3 7.14
ViViT-L/16× 2 [7] 80.6 94.7 4× 3 17.35

Swin-B [9] 80.6 94.6 4× 3 3.38

Our model(8×) 80.6 94.3 4× 3 6.96
Our model(16×) 81.7 95.2 4× 3 13.12

4.2 Comparison with state-of-the-art

In this subsection, we compare our HaViT model with state-of-the-art models on
three mentioned datasets. The results are shown in the Table 2-Table 4. Unless
otherwise stated, we report the results on all the datasets using the 4× 3 views.

Table 2 gives a comparison with the state-of-the-art on Kinetics-400, in-
cluding convolution based networks and transformer-based networks. Compared
with transformer-based model TimeSformer-L, the performance of our proposed
structure is largely improved, and the classification accuracy is improved by
1.1%. Compared with the most advanced convolution network X3d, our model
also improves the classification accuracy by 1.3% and uses fewer temporal views.

Table 3. Comparison with state-of-the-art on the Kinetics-600.

Method Top-1 Top-5 TFLOPs

AttentionNAS [6] 79.8 94.4 1.03
LGD-R101 [36] 81.5 95.6 -
SlowFast [24] 81.8 95.1 7.02
X3D-XL [22] 81.9 95.5 1.05

TimeSformer [8] 82.4 95.3 5.11
ViViT-L/16× 2 [7] 82.5 - 17.35

Swin-B [9] 84.0 96.5 3.38

Our model(16×) 84.5 96.1 13.12
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Table 3 shows the comparison between our model and the state-of-the-art
on Kinetics-600. The classification accuracy is much higher than the previous
convolution network based method (+ 2.6%) and transformer-based method (+
0.5%). Compared with the Kinetics-400, the size of the Kinetics-600 dataset is
0.6 times larger, which also shows that the performance of the transformer model
will be improved when the dataset is large.

Table 4. Comparison with state-of-the-art on the SSv2.

Method Top-1 Top-5 TFLOPs

TRN [37] 48.8 77.6 -
SlowFast [24] 61.7 - 7.02

TSM [34] 63.4 88.5 0.95
STM [32] 64.2 89.7 2.01
TEA [33] 65.1 - 2.10

blVNet [31] 65.2 90.3 0.84

TimeSformer-L [8] 62.5 - 7.14
ViViT-L/16× 2 [7] 65.4 89.8 17.35

Our model(16×) 67.3 90.5 13.12

Table 4 compares our model with the state-of-the-art on the Something-
Something v2 dataset. In terms of classification accuracy, our model is 2.1%
higher than the previous convolution network blvnet, However, it is 1.9% higher
than the previous transformer model ViViT-L/16.

4.3 Ablation studies

This subsection studies the impact of different components on the HaViT per-
formance. For all experiments in this subsection, we use a lightweight model
HaViT-S/16 with the model dim of 384 and adopt the Kinetics-400 dataset.

Table 5. Effect of different hybrid schemes for hybrid-attention.

Hybrid scheme Top-1 Top-5

simplified 77.1 92.5
multi-view 77.5 92.7

combined-correlation 78.2 93.1

Hybrid schemes for hybrid-attention. First, we consider the effect of
different hybrid schemes for hybrid-attention on the final performance. Three

4253



12 L. Li et al.

schemes of hybrid-attention are discussed, including simplified scheme, multi-
view scheme, and combined-correlation scheme. The baseline is the simplified
scheme, which directly adds the internal attention result and the external atten-
tion results. As shown in Table 5, compared to the simplified scheme, the multi-
view scheme is more flexible and achieves better performance. For combined-
correlation scheme, each head of attention is influenced by internal attention
and external attention weights, and each query patch’s feature is decided by
the attention which influences it most. There’s a trade-off between the internal
attention and the external attention in the combined-correlation scheme. So,
it’s not surprising that the combined-correlation scheme has the best perfor-
mance. Our model also adopts the combined-correlation scheme. Here, we give
the visualization results of HaViT model. It can be seen from the Fig.3 that
compared with the existing divided space-time self-attention scheme, the pro-
posed hybrid-attention scheme can better reflect the attention mechanism to the
related objects in the video.

drinking eating hot dog

Fig. 3. Here are the results of attention visualization of the two models. "drinking" and
"eating hot dog" represent two categories of data respectively; three of them represent
the visualization results of the original video image, divided space-time self-attention
and hybrid-attention respectively

Effect of attention realization. Previously, we introduced different ways
to achieve attention, and here we will give the experimental results of differ-
ent ways to achieve attention. The models using joint space-time self-attention
and divided space-time self-attention are pre-trained on the image classification
dataset Imagenet. From the table 6, it is not difficult to find that the parameters
of the model using the divided self-attention mechanism are more than those of
the implementation of joint space-time self-attention. There are three modeling
methods of joint space-time self-attention : the original attention method and
two linear computational complexity methods (linear activation and cosine re-
weighting)[38]. The accuracy of the proposed linear activation method is lower
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than that of the original joint space-time method (-2.7%), but the inference
speed is about 5 times faster. After using cosine re-weighting technology, the
performance of the model is improved (+2.2%), but the classification accuracy
is still not as good as the original joint space-time attention method. Cosine
re-weighting technology attaches a larger weight of the attention coefficient to
the query value vector, so that the query image patches pay more attention to
the surrounding image patches, so the classification effect of this linear com-
putational complexity method is better. Although the space-time joint method
of linear computational complexity introduced above is fast, there are also un-
stable problems in the training process. Compared with the joint space-time
self-attention method, the accuracy of divided space-time self-attention method
is improved by about 1%, and the calculation speed of the model is about 3
times faster. Therefore, divided space-time attention is used in internal atten-
tion modeling.

Table 6. Effect of internal attention realization.

Internal attention Top-1(%) Parameters(M)

joint space-time 77.3 26.4
linear activation 74.6 26.4

cosine re-weighting 76.8 26.4
divided space-time 78.1 34.5

4.4 With different vision transformers

To verify that the hybrid-attention scheme proposed in this chapter can be com-
bined with different transformer models, different vision transformers are used
for experiments. Firstly, different vision transformer models are extended to
3-dimensional space to get the corresponding video transformer model. Then
different models are used to experiment on the Kinetics-400 dataset and test
the classification accuracy. Finally, the models obtained by combining different
video transformers with hybrid-attention schemes are trained and tested. The
classification accuracy results are shown in Table 7. It is not difficult to find that
in the three different transformer models, the hybrid-attention scheme obtained
by using the external token dictionary can achieve better results. The proposed
hybrid-attention scheme can be combined with other vision transformer models
and improve the performance of its models.
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Table 7. Effect of hybrid schemes combined with different vision transformers

Transformer model External token
dictionary Top-1(%)

ViT-S [5] without 77.6
with 78.2↑

CvT [39] without 76.6
with 77.4↑

Swin-T [9] without 78.4
with 78.9↑

5 Conclusion

In this paper, we propose a new hybrid-attention based vision transformer model
for video classification, which explicitly exploits external patch dependencies
across videos. Instead of using self-attention, it uses hybrid-attention to model
both long-range patch dependencies within a video as well as external patch de-
pendencies across videos. Compared to existing vision transformers, our model
achieves competitive or better performance on public datasets including Kinetics-
400/600 and SSv2. Experiments also show that hybrid-attention can be inte-
grated into existing transformer models and improve their performance.
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