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Abstract. In this paper, we propose a learnable subspace orthogonal
projection (LSOP) network for semi-supervised image classification. Al-
though projection theory is widely used in various machine learning
methods, solving projection matrix is a highly complex process. We
employ an auto-encoder to construct a scalable and learnable subspace
orthogonal projection network, thus enjoying lower computational con-
sumption of subspace acquisition and smooth cooperation with deep neu-
ral networks. With these techniques, a promising end-to-end classifica-
tion network is formulated. Extensive experimental results on real-world
datasets demonstrate that the proposed classification algorithm achieves
comparable performance with fewer training data than other projection
methods.

1 Introduction

Classification is widely used in various tasks [3,7,21] to associate data with one
or more semantic labels. To boost predictive performance, many of them require
to train classifier on a large-scale labeled data. Nevertheless, obtaining sufficient
annotated data is time-consuming and laborious. With the impressive success
in image classification using Convolutional Neural Networks (CNN), some deep
semi-supervised learning methods [9,10,12,14,16,20] are developed. Among these
methods, the pseudo label and the consistency regularization are two commonly
used techniques. For example, [24] proposed an unsupervised data augmenta-
tion for semi-supervised learning by training with consistency regularization. In-
spired by curriculum learning, [2] gradually increases the proportion of unmarked
samples until all samples are used for model training. SimMatch [29] considers
both semantic and instance similarities and enables semi-supervised learning
through self-supervised technique. Some advanced menthods are combinations
of approaches involving pseudo label, self-supervision and data augmentation,
such as MixMatch [1], FixMatch [19], Flexmatch [27], and SimMatch [29]. These
methods focus on learning discriminative feature representations and decision
boundaries to improve the quality of downstream tasks, creating potential room
for improvement of classification network.
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Fig. 1. Comparison of fitting data using a point and a latent subspace. The data are
feature vectors in the vector space R3×3.

Embedding projection theory into deep networks is one of the promising
methods for performance improvement. Existing methods normally use a one-
dimensional subpace as a center to infer category labels. However, it is possible
that features of the same category are distributed in a latent multi-dimensional
subspace rather than a point. Fig. 1 shows possible label prediction results in
two ways. The point-centered approach may ignore other potential associations
among features. It makes more reasonable to assign the test data to the first
category. The calculation of the distance to a subspace usually requires solving
a projection matrix. However, in these methods the inverse process involved in
solution of projection matrix leads to the high computational consumption of
subspace acquisition. In addition, deep neural networks usually require multiple
iterations, and the small batch processing of data will lead to repeated solution of
the projection matrix of each subspace, resulting in further increase in overhead.

In this paper, we propose a learnable subspace orthogonal projection (LSOP)
module to reduce the high computational consumption of subspace acquisition.
Embedding the module into deep neural network, an effective end-to-end im-
age semi-supervised classification model is subsequently formulated. The whole
framework is outlined in Fig. 2. We assume that the similar samples can be dis-
tributed around the same latent high-dimensional subspace. This requires each
latent subspace to preserve critical features and to be orthogonal to irrelevant
features. To this end, a LSOP network is established to learn the corresponding
orthogonal projection matrices for these latent subspaces. Followed by defining
a classification loss, a deep network architecture for semi-supervised classifica-
tion is constructed. With these techniques, we make projection theory benefiting
from deep learning. Meanwhile, training on high-dimensional subspace reduces
the need for label data, which alleviates the scarcity of labeled samples for semi-
supervised classification. The main contributions of this paper are summarized
as follows:
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– The learnable subspace orthogonal projection (LSOP) network. We propose
to learn orthogonal projections for high-dimensional subspaces, thus reducing
the computational consumption of subspace acquisition and smooth cooper-
ation with deep neural network.

– The extensibility of LSOP network. The proposed LSOP network is general-
izable and could be a feasible solution to other orthogonal projection related
deep learning, that is beyond the scope of this work.

– The end-to-end semi-supervised classification network. We employ the pro-
posed LSOP network to construct an effective semi-supervised classifier. This
facilitates training the classifier on high-dimensional subspaces to alleviate
the scarcity of labeled samples.
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Fig. 2. An overview of the proposed classification method of learnable orthogonal pro-
jection. In the figure, we only use an input vector as an example. The parameters of
each fully connected layer network are treated as a learnable orthogonal projection
matrix of various subspaces. The orthogonal projection matrix is trained for each class
of data subspaces by reconstruction loss. Then classification loss is used to keep these
subspaces as far away from the other classes of data as possible.

2 Related work

Projection theory has been widely used in many deep network models [4–6, 13,
15,17,18,22,25]. For example, [5] uses the orthogonal projection space spanned
by a principal component analysis projection matrix to alleviate the discrimina-
tion difficulty. [25] proposes an auto-encoder framework based on an orthogonal
projection constraint for anomaly detection. [4] employs orthogonal projection
to design a subspace attention module for denoising. The orthogonal projec-
tion is more of an effective method with explicit interpretation for many tasks.

1830



4 L. Li et al.

Especially, it is a very practical approach to classification. [28] proposed a Cap-
sule Projection Network (CapProNet) to classify deep features by one type of
orthogonal projections. This article uses the closed-form solution of a projec-
tion matrix to obtain a projection. The parameters learned in the network is a
weight matrixWl ∈ Rk×d. The columns of the matrix form a basis of a subspace,
i.e., Sl = span(Wl) is spanned by the columns vectors of Wl. The orthogonal
projection vl of a vector x onto subspace Sl has following solution:

vl = Plx, and Pl =Wl(W
T
l Wl)

−1WT
l . (1)

Then the length of projection ||vl||2 is used to measure the affinity of a class. The
operations of this procedure are differentiable, so the weight matrix Wl of each
subspace can be updated. This paper computes matrix inverse with a hyper-
power sequence to alleviate the computational consumption of matrix inverse.
However, the consumption also increases significantly with the dimension d of
subspace increases. To this end, [23] proposed a Matrix Capsule Convolution
Projection (MCCP) module by replacing deep features with a feature matrices.
This article reduces the dimensionality of vectors, making it easy to compute
projections.

3 Proposed Method

In this section, we aim to construct a LSOP network and then formulate an
end-to-end semi-supervised model for image classification.

3.1 Orthogonal Projection

A deep neural network N can be generally factorized into two phases: feature
representation Nfea and data classification Ncla. Given a set of data points X =
{xi,yi}ni=1 where xi ∈ Rm and its label vector yi ∈ {0, 1}c, with m being the in-
put dimension and c the number of classes. fi = Nfea(xi) ∈ Rk is a k-dimensional
deep feature vector, and ŷi = Ncla(fi) ∈ Rc is an estimator of yi. For brevity, we
assume that Ncla is a linear classifier, i.e., ŷi = WT fi + b for all i = 1, · · · , n,
where W ∈ Rk×c is a weight matrix and b is a bias of the last layer in N . In this
phase, we try to minimize

∑n
i=1 loss(yi, ŷi) =

∑n
i=1 loss(yi,W

T fi + b), where
loss(·, ·) is a metric to evaluate the difference between two elements. Letting
W = [w1, · · · ,wc] with wi ∈ Rk, the classification module Ncla(fi) can be in-
terpreted as computing a modified distance of fi to c spaces spanned by wi. The
above description is the simplest linear classifier used in various deep networks.
We would like to construct a multi-dimensional subspace to obtain effectiveness.
Intuitively, each class is represented using a k-dimensional feature vector wi,
which motivates us to characterize a class more accurately by a spanned space
of several vectors, instead of only one vector.

Letting F = {fi}ni=1. For any j ∈ {1, · · · , c}, we denote Sj = {fi ∈ F :
xi belongs to the j-th class}, and S ∈ Rk×dj is a matrix containing all elements
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of Sj as columns with dj = |Sj |. For any test data point x, its low-dimensional
feature vector f ∈ Rk can be obtained by a feature representation Nfea with
f = Nfea(x). Naturally, for any test sample x, we try to project its feature
vector f onto the spanned subspaces by {Sj}cj=1, i.e.,

span(Sj) =

{
t∑
i=1

λivi : t ∈ N,v ∈ Sj , λi ∈ R

}
. (2)

Accordingly, the probability of the data point x belonging to the j-th class is
defined as the distance of f to span(Sj). Actually, this distance is equal to the dis-
tance between f and its projection point onto span(Sj), denoted as Pspan(Sj)(f).
By specifying Euclidean distance, it is expressed as ||f − Pspan(Sj)(f)||2.

The projection point Pspan(Sj)(f) can be regarded as the minimum distance
of f onto the space span(Sj), i.e.,

Pspan(Sj)(f) = arg min
g∈span(Sj)

||f − g||2. (3)

Correspondingly, the projection point can be given by

Pspan(Sj)(f) = Sj(S
T
j Sj)

−1
STj f = SjS

†
jf , (4)

where S†j is the Moore-Penrose pseudo inverse, and Pspan(Sj)
.
= Sj(S

T
j Sj)

−1
STj

.
=

SjS
†
j is the orthogonal projection matrix. It is observed that the sampled data

points in the j-th class form a basis, though not necessarily orthonormal. Accord-
ingly, this formulation comes with the following two merits. On the one hand,
each class is approximated by a spanned subspace of some basis vectors, rather
than a vector. On the other hand, the spanned subspace may exhibit a powerful
representation ability, even if several data points are used, which is tailored for
semi-supervised learning.

Nevertheless, the closed-form solution mentioned above requires the compu-
tational complexity of O(

∑c
j=1 d

3
j + kd2j ), which is evidently unaffordable when

dealing with large-scale datasets. That motivates us to develop a learnable or-
thogonal projection method to optimize the projection computation in a deep
learning network.

3.2 Learnable Orthogonal Projection

In this subsection, we attempt to solve an orthogonal projection matrix in a
differentiable manner so that the proposed method serves as a module in deep
neural networks. According to Eq. (3), when fi belongs to Sj , its projection onto
subspace span(Sj) is exactly equal to itself. Accordingly, for each class, we can
find the projection matrix of subspace span(Sj) by minimizing

J(Pspan(Sj)) =
n∑
i=1

∥∥fi − Pspan(Sj)fi∥∥22 , (5)
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where Pspan(Sj) is a projection square matrix. We use a neural network to ap-
proximate this problem, and the whole network can be considered as a surrogate
of the projection matrix. A single-layered neural network is insufficient, because
it can be observed from this objective function that the optimal solution may
fall into a trivial case, i.e., Pspan(Sj) = I. This is to say that the weights of the
neural network tend to converge to the projection matrix of the original vec-
tor space. Actually, data points belonging to the same class are not necessarily
distributed in only a low-dimensional vector space, thus Sj tends to expand to
a large vector space. We expect to acquire a latent subspace that can contain
data points of their associated class and is orthogonal to other subspaces pro-
duced by other points. Therefore, a multi-layered network is employed to learn
hierarchical subspace structures.

We can use a network structure similar to the matrix structure Sj(STj Sj)
−1

STj .
We denote a subspace basis as S ∈ Rk×d, where d is the subspace dimension and
k is the full space dimension (d < k). Then we set the hiddle layer dimension to
d and the input dimension to k. The network structure is like an undercomplete
auto-encoder, which overcomes trivial solution. Consequently, it is formulated
as the architecture for the projection matrix using m layers:

Pspan(Sj)←H1H2 · · ·Hm, (6)

whereH represents the weights of layers. For the j-th class, we denote the output
of the network as fθj (·), and then train the network with the following loss:

min
θ

n∑
i=1

loss(fθ(fi), fi), (7)

where loss(·, ·) is an alternative loss function, not limited to the mean square
error. In this way, we construct a learnable orthogonal projection for each class,
which maps all data points onto a subspace so that discriminative components
are preserved. It is worth noting that the learnable orthogonal projection can be
flexible to be embedded into multiple network structures. After the network is
trained, any test data point is projected onto each subspace, and its projection
residual represents the probability in the corresponding class.

The time complexity of the feedforward calculation of the network relies
on matrix multiplication, and the process of network training avoids the matrix
inverse operation of solving the projection matrix directly. Accordingly, the com-
putational complexity of neural networks with back prorogation is O(

∑c
j=1 d

2
j +

kd2j ). Therefore, this approach is more competitive in term of running time as the
size of input data increases. In addition, this network can be solved by a mini-
batch approach instead of putting all samples into the memory, which reduces
the memory requirement.

3.3 Optimization Method

In this subsection, we elaborate how to build an end-to-end model for learnable
orthogonal projection. Following Eq. (7), we construct projection matrices for
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each latent subspace. For simplicity, a projection reconstruction loss with ridge
regression is given by:

λLrecon + µLreg
.
=

n∑
i=1

∥∥∥fi − fθ(j=yi)
(fi)
∥∥∥2
2
+ λ ‖θ‖22 . (8)

Except the two losses above, we can add additional objective functions to
exploit rich hierarchical semantic information from a given data. As an example,
cross-entropy can be used to maximize intra-class information and minimize
inter-class information in the subspace to be optimized. The predicted class ŷi
of the sample xi is regarded as the probability distribution of the residual of the
projection onto each class subspace. Simultaneously, we define the normalized
predicted class probability as

pi = softmax(ŷi). (9)

Accordingly, the classification loss specified as cross-entropy is given by

Lc = −
1

n

n∑
i=1

yi log(pi). (10)

Minimizing the cross-entropy loss makes the subspaces as orthogonal as possible.
Otherwise, the probability matrix will be smoothed, then it can not close to the
true label matrix (δ distribution). As mentioned above, the overall loss function
is defined as

L = Lc + λLrecon + µLreg. (11)

Gathering all above analyses, the procedures for solving the learnable orthog-
onal projection are summarized in Algorithm 1.
Unlabeled data training: For unlabeled data training in clustering method,
we replace the clustering centers with our subspaces. The subspaces are first
constructed with labeled samples. Then we compute the closest subspaces Sj of
unlabeled samples, giving the unlabeled samples a pseudo-label j to update the
network. The closest subspace is recalculated in next iteration. The subspace
clustering is similar to k-meams. The method enables the subspace classification
boundaries to span a low-density region by minimizing the conditional entropy
of the class probability of unlabeled data. These unlabeled samples can improve
the ability of backbone network to extract features. It also allows the learnable
parameters to fix better subspaces. We update the pseudo-labels for unlabeled
samples at each iteration and then train at a smaller weight with labeled samples.

4 Experiment

In this section, we conduct comprehensive experiments on classification datasets
compared with several state-of-the-art deep neural networks to validate the ef-
fectiveness of the proposed method.
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Algorithm 1 Learnable Subspace Orthogonal Projection (LSOP)
Require: Mimi-batches of the input data X = {xi,yi}ni=1, the number of classes c,

regularization coefficient λ, balancing parameter µ and learning rate α, maximum
epoch of training max_epoch.

Ensure: Neural network parameters θ.
1: Initialize neural network parameters θj of c subspaces;
2: for t = 1 to max_epoch do
3: for each minbatch do
4: Calculate projections onto each subspace by forward propagation;
5: Calculate reconstructed loss by Eq. (8);
6: Compute label matrix {ŷi} by Eq. (9);
7: Calculate classification loss by Eq. (10);
8: Accumulate overall loss L by Eq. (11);
9: Update network parameters θ by back propagation;
10: end for
11: end for
12: return Neural network parameters θ.

4.1 Experiment Setting

Datasets.We use two benchmark datasets in experiments to evaluate the classi-
fication performance. The CIFAR dataset contains 60,000 colored natural images
of 32 × 32 pixels. CIFAR10 and CIFAR 100 are divided into 10 and 100 classes,
respectively. There are 50,000 images in training set, and 10,000 images in test
set. For preprocessing, we normalize the data using the channel means and stan-
dard deviations. We use all 50,000 training images for the final run and report
the final test error at the end of training. Following [8], we give rise to aug-
mentations of CIFAR10 and CIFAR100, and denote augmentation datasets as
CIFAR10+ and CIFAR100+, respectively. In semi-supervised classification, we
randomly extract labeled images from each class, and the test error is reported.

Compared methods. We test different classifiers in the network architec-
tures such as ResNet [8], WideResNet [26] and DenseNet [11]. We use ResNet
with 110 layers and WideResNet (k = 8) with 16 layers, as well as DenseNet-BC
(k = 12) with 100 layers for CIFAR. The last layer of these networks generally
serves as a function of classifying deep features. Our classifier can be trained in
an end-to-end manner with the backbone network instead of trained indepen-
dently. The CapProNet [28] and MCCP [23] can also serve as a classifier, and
we apply it to these networks with their default setting. CapProNet [28] and
MCCP [23] take advantage of an iterative algorithm to update the projection
matrix. In contrast, we update weights using a neural network approach without
additional matrix operations. We compare the effectiveness of different classifiers
to evaluate the performance of the proposed method. In addition, Meta Pseudo
Label [16] is an effective regularization strategy. We also apply LSOP to this
approach to verify the effectiveness of our method.

Model implementation and training. We implement our code using Py-
Torch, and all experiments are run on a computer with a Tesla P100 GPU in
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Linux systems. We create c-way fully connected layers to replace the last layer of
the original network. The 32×32 size images from CIFAR dataset are extracted
by backbone networks, and the dimensions of the deep features are tuned as
64, 512 and 342, respectively. We initialize the input and output sizes of our
fully connected layer with these values, and the hidden layer dimension is fixed
as 8. The parameters of CapProNet are often d times larger than the original
single-layered neural network, where d is a dimension of subspace. All parame-
ters in compared deep neural networks are adopted as their default settings in
their original papers, and the additional parameters of the final classifier are uni-
formly set to c×k×d. In order to provide a fair comparison with CapProNet, we
also use a three-layered fully connected layer neural network to fit the projection
matrix. Sometimes STj Sj may be irreversible. Therefore, we use a tiny bias on
S>j Sj during the experiment to ensure its reversibility. A deep feature matrix
n× k is fed to c-way fully connected layers, then we obtain a projection tensor
of the size n × c × k. We use the defined projection probability distribution to
generate a n× c label prediction matrix.

The Mini-batch stochastic gradient descent is used to train all the networks.
On CIFAR datasets, the networks are trained with 64 batches of 300 epochs.
The initial learning rate is set to 0.1, and then it is divided by 10 at 150 and
250 training epochs. We use a weight decay (λ) of 10−4 and a momentum of
0.9 without dampening. The hyperparameter µ in loss is set to be 0.1. In semi-
supervised learning experiments, the loss weight of unlabeled data is gradually
incremented to 1.0 from epoch 30 to epoch 120. In a comparison of Meta Pseudo
Label [16], we follow its original setup on WideResNet-28-8, training 50,000
iterations in the PyTorch version.

4.2 Experimental Result

Table 1. A comparison of error rates of backbone networks with CapProNet [28],
MCCP [23] and LSOP on CIFAR10 and CIFAR100. Results of MCCP are reported
by [23]. The datasets with “+" indicate standard data augmentation (e.g. horizontal
flip or random crop).

Backbone network Classifier CIFAR10 CIFAR10+ CIFAR100 CIFAR100+
Baseline 13.63 6.41 44.74 27.22

CapProNet 13.25 5.19 42.76 22.78
MCCP - 5.24 - 22.86ResNet [8]

LSOP 13.41 5.12 42.22 21.73
Baseline 11.33 4.81 34.83 22.07

CapProNet 10.52 4.04 33.10 20.12WideResNet
k = 8 [26] LSOP 10.35 4.77 35.42 21.41

Baseline 7.86 4.51 26.40 22.27
CapProNet 7.93 4.25 28.58 21.19DenseNet-BC

k = 12 [11] LSOP 7.72 4.86 27.34 21.45
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Table 2. A comparison of error rates of backbone networks with CapProNet [28] and
LSOP on CIFAR10 of training with 4,000 and 10,000 labels. The numbers with“+ PL"
indicate training with pseudo labels and data augmentations.

Backbone network Classifier 4,000 4,000 + PL 10,000 10,000 + PL

ResNet [8]
Baseline 49.20 23.60 38.03 15.21

CapProNet 47.48 23.26 34.48 14.32
LSOP 48.40 22.84 32.83 14.15

WideResNet
k = 8 [26]

Baseline 36.85 19.88 25.04 12.85
CapProNet 35.21 19.42 25.25 12.53

LSOP 36.95 19.65 25.29 12.29

DenseNet-BC
k = 12 [11]

Baseline 32.88 19.70 21.06 13.20
CapProNet 32.01 18.96 21.82 12.69

LSOP 31.96 19.33 21.24 12.88

In Table 1, we compare classification performance of different classifiers trained
in an end-to-end manner at the same backbone network. In fully supervised ex-
periments, our approach achieves encouraging performance on ResNet. On other
backbone networks, the proposed method also comes with competitive perfor-
mance. The hidden layer dimension of LSOP is uniformly set as 8 to facilitate
comparison. The hidden layer dimension can be considered as a subspace dimen-
sion and then a single-layer linear classifier is considered as a linear subspace of
D = 1. The proposed method achieves promising results on classifying deep
features extracted from ResNet with D = 64, and comes with comparable per-
formance on WideResnet with D = 512 and DenseNet with D = 342. Our
method aims to design an efficient classifier that can be embedded in advanced
methods.

To validate the performance of the proposed method in semi-supervised learn-
ing, we report the performance with a part of labeled data in CIFAR10. We use
unlabeled data to train networks by pseudo labels and update the networks with
lower weights. Table 2 shows that LSOP achieves better performance in semi-
supervised learning. In addition, the proposed model is an efficient classifier that
can be embedded in advanced methods. We replace the classifier of Meta Pseudo
Labels [16] with our designed module and test the performance on CIFAR10 and
CIFAR100 in Table 3. We can observe that LSOP achieves better classification
accuracy. This shows that our method is a valid module that improves perfor-
mance with limited labeled data.

Table 3. A comparison of ACC of Meta Pseudo Labels [16] using a linear classifier and
LSOP on CIFAR10 with 4,000 training labels and CIFAR100 of training with 10,000
training labels.

ACC Meta Pseudo Labels Meta Pseudo Labels with LSOP

CIFAR10/4k label 95.44 95.68
CIFAR100/10k label 77.86 78.03
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4.3 Convergence and time complexity analysis

Fig. 3 shows the convergence curves of our method on CIFAR10 and CIFAR100.
When the learning rate is set to 0.1, the loss converges about 60 epochs. At the
150-th epoch, the loss is further decreased due to the learning rate change.
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Fig. 3. Convergence curves of LSOP applied to ResNet110. Left is CIFAR10, and right
is CIFAR100

We use a single-layer linear classifier as a baseline and consider the linear
classifier as a single-dimensional subspace. CapProNet applies multi-dimensional
subspace to classify, which brings additional cost. To address the problem, we
propose a LSOP network. As shown in Section 3, the computational complexity
of the closed-form solution in CapProNet is O(

∑c
j=1 d

3
j + kd2j ), while the com-

putational complexity of LSOP is O(
∑c
j=1 d

2
j + kd2j ). Here, k is a deep feature

dimension, dj is the dimension of each latent subspace and c is the number of
categories. Compared with the closed-form solution based approach CapProNet,
LSOP reduces the computational consumption of subspace acquisition, which
facilitates faster optimization for large-scale data.

We also present the time consumption comparison of CapProNet and LSOP
to further demonstrate the efficiency of LSOP. Figs. 4&5 show the evolution
curves of time consumption with 50,000 samples and 10 categories. The exper-
iments are performed on an AMD Ryzen 9 5900X 12-Core Processor without
GPU. In addition, deep features are randomly generated and trained in mini-
batch to simulate the training of CIFAR dataset. From the figures, the time
consumption of closed-form solution increases significantly with the increase of
feature dimension k and subspace dimension d. In contrast, the LSOP method
keeps the same level of time consumption as a baseline. This indicates that the
proposed method can obtain performance gain by increasing subspace dimen-
sions without computational cost.
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Fig. 4. Run-time comparison as the subspace dimension increases.
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Fig. 5. Run-time comparison as the deep feature dimension increases.

5 Conclusion and Discussion

In this work, we propose a learnable orthogonal projection for deep neural net-
works that can be trained in an end-to-end fashion. We learn a high-dimensional
subspace instead of a vector, bringing acceptable computational consumption.
In the proposed method, a latent subspace is used to fit high-dimensional fea-
tures to train a deep neural network with fewer samples. Although our method
is effective in semi-supervised learning, several issues still need to be further
explored. For example, the projection reconstruction loss can be constructed in
other advanced ways to obtain better subspace projection matrices. Because this
network structure is a transformed module, we can use more ways to construct
this structure to adapt to various projection subspaces. We hope to propose
adaptive network structures to find better projections from more discriminative
latent subspaces in future work.
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