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Abstract. The Plenoptic function describes light rays observed from
any given position in every viewing direction. It is often parameter-
ized as a 5-D function L(x, y, z, θ, ϕ) for a static scene. Capturing all
the plenoptic functions in the space of interest is paramount for Image-
Based Rendering (IBR) and Novel View Synthesis (NVS). It encodes a
complete light-field (i.e., lumigraph) therefore allows one to freely roam
in the space and view the scene from any location in any direction. How-
ever, achieving this goal by conventional light-field capture technique
is expensive, requiring densely sampling the ray space using arrays of
cameras or lenses. This paper proposes a much simpler solution to ad-
dress this challenge by using only a small number of sparsely configured
camera views as input. Specifically, we adopt a simple Multi-Layer Per-
ceptron (MLP) network as a universal function approximator to learn the
plenoptic function at every position in the space of interest. By placing
virtual viewpoints (dubbed ‘imaginary eyes’) at thousands of randomly
sampled locations and leveraging multi-view geometric relationship, we
train the MLP to regress the plenoptic function for the space. Our net-
work is trained on a per-scene basis, and the training time is relatively
short (in the order of tens of minutes). When the model is converged,
we can freely render novel images. Extensive experiments demonstrate
that our method well approximates the complete plenoptic function and
generates high-quality results.

1 Introduction

Image-Based Rendering (IBR) for view synthesis is a long-standing problem in
the field of computer vision and graphics. It has a wide range of important
applications, e.g., robot navigation, film industry, AR/VR applications. The
plenoptic function, introduced by Adelson et al. [1], offers an ultimate solution
to this novel view synthesis problem. The plenoptic function captures the visual
appearances of a scene viewed from any viewing direction (θ, ϕ) and at any
location (x, y, z). Once a complete plenoptic function (i.e. the light-field) for the
entire space is available, one can roam around the space and synthesize free-
viewpoint images simply by sub-sampling the plenoptic light-field.

To model the plenoptic function, the best-known methods in the literature are
the light field rendering and the lumigraph [25, 20]. These approaches interpolate
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rays instead of scene points to synthesize novel views. However, they require
the given camera positions to be densely or regularly sampled or restrict the
target image to be a linear combination of source images. Unstructured light-
field/lumigraph methods [5, 13] were proposed to address this limitation; they
do so by incorporating geometric reconstruction with light ray interpolation.

This paper introduces a novel solution for plenoptic field sampling from a few
and often sparse and unstructured multi-view input images. Since a plenoptic
function is often parameterized by a 5D function map, we use a simple Multi-
Layer Perceptron (MLP) network to learn such functional map: the MLP takes
a 5D vector as input and outputs an RGB color measurement, i.e., R5 → R3.
However, capturing the complete plenoptic function for a scene remains a ma-
jor challenge in practice. It requires densely placing many physical cameras or
moving a camera (or even a commercial light-camera) to scan every point and
in every direction.

To address this challenge, this paper uses an MLP to approximate the plenop-
tic function (i.e., the entire light field), by placing thousands of virtual cameras
(i.e., imaginary eyes) during the network training. We use the available physi-
cal camera views, however a few and sparsely organized, to provide multi-view
geometry constraints as the self-supervision signal to supervise the training of
the MLP networks. We introduce proxy-depth as a bridge to ensure that the
multi-view geometry relationship is well respected during the training process.
Those “imaginary eyes" is sampled randomly throughout the space following a
uniform distribution. We use proxy-depth to describe the estimated depth by
the visual similarity among input images. Once the proxy-depth of a virtual ray
is determined, we can retrieve candidate colors from input images and pass them
to a color blending network to determine the real color.

2 Related Work

Conventional view synthesis. Novel view synthesis is a long-standing problem
in the field of computer vision and graphics [9, 14, 46]. Conventional methods use
image colors or handcrafted features to construct correspondences between the
views [16, 42]. With the advance of deep networks, recent approaches employ
neural networks to learn the transformation between input and target views
implicitly [15, 38, 40, 57, 70]. In order to explicitly encode the geometry guidance,
several specific scene representations are proposed, such as Multi-Plane Images
(MPI) [69, 35, 17, 55, 60], and Layered Depth Images (LDI) [48, 50, 61]. Some
Image-Based Rendering (IBR) techniques [11, 21, 42, 44, 59, 45, 49, 7] warp input
view images to a target viewpoint according to the estimated proxy geometry,
and then blend the warped pixels to synthesize a novel view.

Panorama synthesis. Zheng et al. [68] propose a layered depth panorama
(LDP) to create a layered representation with a full field of view from a sparse
set of images taken by a hand-held camera. Bertel et al. [4] investigate two
blending methods for interpolating novel views from two nearby views, one is
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a linear blending, and the other is a view-dependent flow-based blending. Ser-
rano et al. [47] propose to synthesize new views from a fixed viewpoint 360◦ video.
Huang et al. [23] employ a typical depth-warp-refine procedure in synthesizing
new views. They estimate the depth map for each input image and reconstruct
the 3D point cloud by finding correspondences between input images using hand-
crafted features. They then synthesize new views from the reconstructed point
cloud. With panorama synthesis, scene roaming and lighting estimation [19, 26]
is possible for AR/VR applications.
Plenoptic modeling. Early light-field/lumigraph methods [25, 20] reduce the
5D representation (position (x, y, z) and direction (θ, ϕ)) of the plenoptic func-
tion to 4D ((u, v, s, t), intersection between two image planes). They do not re-
quire scene geometry information, but either require the camera grid is densely
and regularly sampled, or the target viewing ray is a linear combination of the
source views [6, 30]. For unstructured settings, a proxy 3D scene geometry is re-
quired to be combined with light-field/lumigraph methods for view synthesis [5,
13]. Recent methods [65, 24, 56, 64] applied learning methods to improve light
field rendering.
Neural rendering. Deep networks have also demonstrated their capability of
modeling specific scenes as implicit functions [36, 39, 52, 53, 58, 67, 32, 31, 66, 54,
41]. They encapsulate both the geometry and appearance of a scene as net-
work parameters. They take input as sampled points along viewing rays and
output the corresponding color and density values during the inference stage.
The target image is then rendered from the sampled points by volume rendering
techniques [33]. The denser the sampled points, the higher quality of rendered
images. However, densely sampling points along viewing rays would significantly
increase the rendering time, prohibiting interactive applications to real-world
scenarios.
Neural Radiance Fields. Our idea of using MLP to learn light-field is simi-
lar Neural radiance fields [36, 22, 29, 10], which estimate the radiance emitted at
3D location by a network; a recent work, DoNeRF [37] speed up the rendering
process by only querying a few samples around the estimated depth; but they
requires ground-truth depth map for each viewing ray during training; Fast-
NeRF [18] is proposed to accelerate the rendering speed during inference by
caching pre-sampled scene points. IBRNet [63] is another recent NeRF-based
work that utilizes neighboring features and a transformer for image rendering.
MVSNeRF [8] constructed a cost volume from nearby views and use these fea-
tures to help regressing the neural networks. LFNs [51] proposed a neural implicit
representation for 3D light field. However, their method is limited to simple ob-
jects and geometries.

There are key differences between ours and previous works. Previous methods
focused on estimating the lights emitted at every location, in any direction,
within a bounded volumetric region, often enclosing the 3D scene or 3D object of
interest. In contrast, our method focuses on estimating all the light rays observed
at any point in space, coming in any direction. In essence, our formulation is not
only close to, but precisely is, the plenoptic function that Adelson and Bergen had
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Fig. 1: The overall pipeline of the proposed framework. Our framework includes a proxy
depth reconstruction (PDR) model to determine the depth of a virtual viewing ray, a
differentiable ray tracer to retrieve corresponding colors from real input images, and a
color blending network (CBNet) to recover the RGB color information.

contrived. In fact, in principle, our formulation can be extended to the original
7D plenoptic function by adding time and wavelength as new dimensions [28,
3, 27]. Our method also offers a computational advantage over NeRF. Namely,
when the model has been well-approximated, we can directly display the network
output as rendered images without sampling points along viewing rays and then
rendering them in a back-to-front order. Our model will significantly accelerate
the rendering speed and facilitate interactive applications.

3 Neural Plenoptic Sampling

A complete plenoptic function corresponds to the holographic representation of
the visual world. It is originally defined as a 7D function L(x, y, z, θ, ϕ, λ, t) which
allows reconstruction of every possible view (θ, ϕ) from any position (x, y, z),
at any time t and every wavelength λ. McMillan and Bishop [34] reduce its
the dimensionality from 7D to 5D by ignoring the time and wavelength for
the purpose of static scene view synthesis. By restricting the viewpoints or the
object inside a box, light field [25] and lumigraph [20] approaches reduce the
dimensionality to four. Without loss of generality, this paper uses original 5D
representations L(x, y, z, θ, ϕ) for plenoptic function and focuses on the scene
representation at a fixed time.

We model the plenoptic function by an MLP. However, a brute-force training
of a network mapping from viewing position and direction to RGB colors is in-
feasible. The observed images only have a partial coverage of the input space. By
using the above training method, the model may fit well on the observed view-
points, but also generates highly-blurred images on the non-observed regions.
Our experiments in Fig. 5 demonstrate this situation.

To address this problem, we introduce an Imaginary Eye Sampling (IES)
method to fully sample the target domain. We evaluate a proxy depth to pro-
vide self-supervision by leveraging photo-consistency among input images. Our
method firstly outputs a proxy depth for a virtual viewing ray from the imaginary
eye we randomly placed in the scene. Then, we retrieve colors from input views
by a differentiable projector using this depth. Lastly, the colors pass through a
color blending network to generate the real color. Figure. 1 depicts the overall
pipeline of our framework.
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Neural Plenoptic Sampling 5

3.1 Proxy depth reconstruction

We model the Proxy Depth Reconstruction (PDR) network by an MLP network
FΘ. It takes input as a camera position x = [x, y, z]T ∈ R3 and a camera viewing
ray v = [θ, ϕ]T ∈ R2. The network estimates the distance value d ∈ R+ between
the location x of the virtual camera and its observing scene in viewing direction,

d = FΘ(x,v), (1)

where Θ represents the trainable network parameters.
We use a similar MLP structure from NeRF [36] to parameterize the neu-

ral plenoptic modeling. The difference is that NeRF approximates the emitting
colors and transparency on the scene objects location, while our PDR model
estimates the distance between the scene objects and observing cameras along
the viewing direction.

3.2 Imaginary eye sampling

Since our purpose is to move around the scene and synthesize new views con-
tinuously, we need to sample the input space for the network training densely.
However, in general, the camera locations of input images are sparsely sampled.
The observed images only cover partial regions of such an input space.

To address this problem, we propose an Imaginary Eye Sampling (IES) strat-
egy. We place thousands of imaginary eyes (virtual cameras) in the space of in-
terest. Those imaginary eyes are randomly generated in the space to allow dense
sampling of the plenoptic input space. By doing so, we are able to approximate
a whole complete plenoptic function.

Here, note that we do not have ground-truth depths for supervision, even
for real-observed images (viewing rays). In order to provide training signals, we
propose a self-supervision method by leveraging photo-consistency among real
input images.

3.3 Self-supervision via photo-Consistency

Given a virtual camera at a random location x and a viewing direction v, our
network predicts a depth d between the observed scene point and the input
camera location. The world coordinate w of the scene point is then computed
as

w = x+ dv. (2)

When the estimated depth d is at the correct value, the colors of its projected
pixels on real observed images should be consistent with each other. Hence,
we then use a differentiable projector T (·) to find the projected pixel of this
scene point at real camera image planes. Denote Pi as the projection matrix
of real camera i. The projected image coordinate of a 3D point w is computed
as [ui, vi, 1]

T = Piw. Our projector then uses bilinear interpolation to fetch
information (e.g., color) from the corresponding real images.

419
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Fig. 2: For a virtual camera position x and viewing direction v, we estimate a depth d
between the scene point w and the camera location x. By reprojecting the scene point to
real cameras, we retrieve the color ci and high-level feature fi from the observed images.
The cosine distance (angle) si between the virtual viewing direction and real viewing
direction determine the influence of corresponding real cameras when calculating the
photometric consistency.

By computing the photo-consistency (similarity) among the retrieved colors,
we can measure the correctness of the estimated depth. In practice, we argue
that only using the colors of the retrieved pixels is not accurate enough for this
measurement because it cannot handle textureless and reflective regions. To in-
crease the representative and discriminative ability, we propose to retrieve colors
as well as high-level features from real input images for the photo-consistency
measure.

Denote fi and ci as the retrieved features and colors from input camera i,
respectively. The photo-consistency among all input cameras is defined as

Ld =

N∑
i=1

si
(
∥ctopk − ci∥1 + λ∥f topk − fi∥1

)
, (3)

where ∥ · ∥1 denotes the L1 distance, N is the number of real input cameras, λ is
the balance of the influence between color difference and the feature difference,
si is the normalized weight assigned to each real camera i, and it is determined
by the angle difference (cosine distance) between the virtual camera viewing
ray (w − x) and the real camera viewing ray (w − xi). Figure. 2 illustrates the
situation. Mathematically, it is expressed as

si =
cos (w − x,w − xi)∑N
j=1 cos (w − x,w − xj)

, (4)

where cos(·, ·) is the cosine of the angle spanned by the two vectors. The smaller
of the angle between the virtual camera viewing ray and the real camera viewing
ray, the larger si is. Given the weight for each input camera, the reference color
ctopk and feature f topk in Eq. 3 is computed as the average of top k retrieved
colors and features

ctopk =
∑

i∈topk

ci/k, f topk =
∑

i∈topk

fi/k. (5)
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Neural Plenoptic Sampling 7

We use Eq. 3 as the supervision for our PDR model and the network is trained
to minimize this objective function.

3.4 Color blending for view synthesis

Given an estimated depth d for a virtual viewing ray, we can retrieve colors from
real input images for the virtual camera view synthesis. However, a naive aggre-
gation of the retrieved colors would cause severe tearing or ghosting artifacts in
the synthesized images. Hence, we propose a Color Blending Network (CBNet)
to blend the retrieved colors and tolerate the errors caused by inaccurate depths
to synthesize realistic images.

In order to provide sufficient clues, we feed the direction differences between
the reprojected real viewing rays (solid line in Fig. 2) and the virtual (target)
viewing ray (dash line in Fig. 2) along with the retrieved colors to the color
blending network. Formally, our CBNet is expressed as

c = FΦ

(
{ci,di}Ni=1

)
, (6)

where Φ is the trainable parameter of the CBNet, ci is the RGB color retrieved
from the real camera i and di is the projection of the real viewing ray on the
target virtual viewing ray, c is the estimated color of the virtual viewing ray. We
employ a Pointnet network architecture for our CBNet. The supervision of our
CBNet is the colors observed from real cameras, denoted as

Lc = ∥c∗ − c∥1, (7)

where c∗ is the ground truth colors.
Unlike our PDR model, the CBNet is trained only on the observed images

(viewing rays) since it needs the ground-truth color as supervision. Instead of
remembering the color of each training ray, the CBNet is trained to learn a sen-
sible rule for blending retrieved colors from real input views. Thus it is able to
be generalized to unseen viewing rays. The PDR and the CBNet in our frame-
work are trained separately. During the training of CBNet, we fix the model
parameters of PDR to not destroy the learned patterns for the whole plenoptic
space. For inference, a query viewing ray first passes through our PDR model
to compute a depth value; its corresponding colors on real input views are then
retrieved and fed into the CBNet to estimate the color information. Since it is a
single feed-forward pass through the network, the rendering speed is rapid (less
than one second when rendering a 1024× 512 image).

4 Experiments

In this section, we conduct comprehensive experiments to demonstrate the ef-
fectiveness of the proposed algorithm. We use 360◦ panoramas captured by an
omnidirectional camera for the plenoptic modeling, since its representation well
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Fig. 3: (a) An illustration of an omni-directional camera and its captured light-field
and a sample image. (b) An illustration of our camera arrangement for dataset gener-
ation. For each scene, we capture 125 omnidirectional images at different locations for
evaluation. The cameras are positioned in a 50× 50× 50 centimeter volume (roughly)
at the center of each scene.

Table 1: Quantitative comparison of our method and others given eight input views.
Here, bold indicates the best results and underline denotes the second best results.

Diningroom Bar Livingroom Lounge Average
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

FVS [44] 26.09 0.770 24.54 0.800 25.61 0.780 21.23 0.690 24.37 0.760
NeRF [36] 37.54 0.938 33.95 0.941 33.62 0.936 31.96 0.939 34.27 0.939

NeRF++ [67] 36.29 0.931 32.87 0.936 33.72 0.929 34.05 0.947 34.23 0.936
IBRNet [63] 37.83 0.953 34.12 0.959 33.39 0.941 32.35 0.953 34.42 0.952

Ours w/o Imaginary Eye 32.32 0.929 32.93 0.950 32.57 0.948 30.50 0.932 32.08 0.940
Ours w/o Feature 36.03 0.957 33.47 0.954 33.97 0.957 32.17 0.960 33.91 0.957

Ours w/o weighting 32.69 0.931 29.57 0.903 30.81 0.919 29.18 0.925 30.56 0.920
Ours 36.62 0.959 33.86 0.961 34.33 0.965 34.31 0.968 34.78 0.963

aligns with the plenoptic function. We show an omnidirectional camera, its imag-
ing geometry, and an example image in Fig. 3. The pixel coordinates of a 360◦
panorama correspond to the azimuth angle θ and the elevation angle ϕ of the
viewing rays.

4.1 Datasets and evaluations

Synthetic dataset When the plenoptic function has been correctly (approxi-
mately) modeled, we want to freely move across the space to synthesize new
views. For the purpose of performance evaluation, we need to sample evalua-
tion viewpoints densely in the space and their corresponding ground truth data.
Hence, we propose to synthesize a dataset for our evaluation. Following recent
novel view synthesis methods, we use SSIM and PSNR for the performance eval-
uation.

We use Blender [12] to synthesize images with freely moving camera view-
points. Figure. 3 shows the camera setting. Specifically, we randomly sample
125 points in a 50 × 50 × 50 cm3 volume within the space and synthesize cor-
responding omnidirectional images. The images are generated from four scenes,
i.e., “Bar”, “Livingroom”, “Lounge” and “Diningroom”. We refer the readers to
our qualitative comparisons for the visualization of sampled images from the
four scenes. This evaluation set is adopted for all the experiments in this paper,
although the input views and training methods might be changed.
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Neural Plenoptic Sampling 9

Fig. 4: Qualitative comparison with NeRF and NeRF++ on our generated scenes
“Lounge”. Our method generates sharper results than the comparison algorithms.

Real dataset To fully demonstrate the effectiveness of the proposed method,
we also conduct experiments on real-world data. The real-world data we use
are from [62], which sparsely captured two images per scene. We only provide
qualitative results for visual evaluation, and interested readers are suggested to
watch our supplementary video for more results.

4.2 Training details

We train a separate plenoptic function for each scene. To approximate the sharp
edge of real world objects and textures, our plenoptic function model usually
has high frequency output in both the viewing rays and camera position. We
encode the 5D input into Fourier features as the positional encoding [36] before
feeding it into the proxy-depth reconstruction network. The PDR network FΘ

is designed following the structure of NeRF. It consists of 8 fully-connected (fc)
layers with 256 hidden channels, and a ReLU activation layer follows each fc
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Table 2: Quantitative comparison with volume-based method on two input views.

Diningroom Bar Livingroom Lounge
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

360SD-Net [62] 24.76 0.746 23.38 0.781 23.30 0.747 21.10 0.700
Ours (Vertical) 27.54 0.910 27.29 0.918 28.20 0.907 26.13 0.888

MatryODShka [2] 20.43 0.673 27.26 0.864 23.85 0.766 22.19 0.765
Ours (Horizontal) 30.50 0.921 28.20 0.918 29.07 0.907 27.68 0.898

Table 3: Training and testing time comparison with NeRF and NeRF++ given eight
unstructured input views. The testing time is for rendering images with resolution of
512× 1024.

Training (hours) Testing (seconds)

NeRF [36] 10 30
NeRF++ [67] 20 110

Ours 2 0.14

layer. We use the pretrained model from Shi et al. [49] as our feature extractor
to compute photo consistency.

When training the MLP, we randomly sample a virtual camera at location
x and draw an arbitrary viewing direction v. Given this 5D input, the MLP
estimates a proxy-depth d in the output, which is then self-supervised by the
photometric consistency loss Ld. The above network is end-to-end differentiable.
Once we have sampled and trained the virtual camera domain thoroughly, the
MLP for proxy-depth reconstruction is then frozen for the training of the color
blending network later.

The CBNet takes a series color and direction (ci,di) to inference the output
color of the plenoptic function. Its design follows the structure of the Point-
Net [43]. The observations from real cameras are firstly processed separately by
three fc layers. Next, a max-pooling layer is applied to select the most salient
features from them. We then employ a prediction layer to generate the color
values c.

In our experiments, we use 200k rays per iteration for the PDR network train-
ing, and 100k rays for the CBNet training. Our model is trained from scratch
with an Adam optimizer. The learning rate is set to 5 × 10−4. The PDR net-
work takes around 30k iterations to converge, while the CBNet only takes 10k
iterations. The complete model takes around one hour to converge in a NVIDIA
RTX 3090 GPU.

4.3 Comparison with the state-of-the-art

Comparison with NeRF variants. We conduct experiments to compare with
NeRF and its variants NeRF++ [67], IBRNet [63]. In this comparison, all of
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(a) Close to a real camera (b) Far from any real camera
Fig. 5: Qualitative comparisons of our method w or w/o Imaginary Eye Sampling (IES).
Without using IES, the image synthesized at a position far from any real camera (top
right) suffers much lower quality compared to the one closer to a real camera (top left)
(2.74dB drop). When the IES is applied, the quality of both images (bottom left and
bottom right) improves, and the PSNR gap decreases (1.32dB).

the methods take eight views as input. The quantitative evaluation results are
presented in Table 1. Visual comparison is presented in Fig. 4. It can be seen that
our method achieves better performance than NeRF and NeRF++ in most of the
scenarios. Other NeRF variants aim to estimate the radiance emitted by scene
points at any position and direction, while our method is designed to recover the
irradiance perceived by an observer from any point and direction. Since NeRF
and NeRF++ need to sample points along viewing rays and render them in a
back-to-front order, they require hundreds of network calls when synthesizing an
image. Thus their rendering time is very long. In contrast, our method directly
outputs the color information given a viewing ray. Thus, our training and testing
time are relatively shorter, as shown in Table 3.

Comparison with color blending approaches. To demonstrate the effec-
tiveness of our CBNet. We compare our CBNet with another image-based warp-
ing method FVS [44]. FVS is a neural network based color blending approach
for view synthesis. We retrain their network on our datasets. The results are
presented in the first row of Table 1. It is evident that our method achieves
significantly better performance.

Comparison with panorama synthesis approaches. We employ a deep-
based method 360SD-Net [62] to estimate depth maps for input images. We
then build a point cloud from the depth map and input images. The point cloud
are warped and refined for novel view synthesis. Since 360SD-Net only takes two
vertically aligned panoramas as input, we take the same vertical inputs in this
comparison, denoted as “Our (Vertical)” in Tab. 2. We further compare with
a multi-sphere-images-based method MatryODShka [2] on view synthesis. Note
that MatryODShka only takes two horizontally aligned panoramas as input. For
fair comparison, we take the same input and denoted as “Our (Horizontal)” in
Tab. 2. The numerical evaluations in Tab. 2 demonstrate that our method signif-
icantly outperforms the conventional depth-warp-refine and multi-sphere-images
procedure in synthesizing new views. Besides, the competing methods both re-
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Table 4: Quantitative comparison of different imaginary eye sampling (IES) regions
(large or small). Larger imaginary eye sampling space contributes to higher image
quality.

Scene Lounge Livingroom

N 2 4 2 4

IES Range PSNR↑ SSIM↑ PSNR SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Small 24.82 0.8484 27.98 0.8995 26.77 0.8690 29.93 0.9144
Large 26.13 0.8883 29.13 0.9193 28.20 0.9068 31.27 0.9383

quires a structured input (horizontally or vertically aligned). This limitation does
not apply to our method.

4.4 Effectiveness of Imaginary Eye Sampling

We demonstrate the necessity and effectiveness of the imaginary eye sampling
strategy. In doing so, we train our network only using real camera locations and
directions, without any imaginary eye sampling, denoted as “Ours w/o Imag-
inary Eye”. The quantitative results and qualitative evaluations are presented
in Tab. 1 and Fig. 5 respectively. For better comparison, we select two images
for visualization. One is close to a real camera, and the other is far from input
cameras.

As illustrated by the results, the performance of “Ours w/o Imaginary Eye”
is inferior to our whole pipeline. More importantly, the performance gap between
images that are near and far from the real camera is significant. There is 2.75dB
difference in terms of PSNR metric. This demonstrates that the model learns
better for training data while does not have the ability to interpolate similar-
quality test data.

A network is usually good at learning a continuous representation from dis-
crete but uniformly distributed samples in a general case. In our plenoptic mod-
eling, the values of the input parameters (x, y, z, θ, ϕ) are continuous and always
span in a large range, while the input images only cover small and sparsely
sampled regions in the whole space. Hence, it is not surprising that the model
can fit well in training data while interpolating low-quality images at camera
locations far from real cameras. Using our imaginary eye sampling strategy, the
performance gap between the two cases is reduced (1.32dB in terms of PSNR).
Furthermore, the quality of synthesized images on the location that is near to
a real camera is further improved. This is owed to our photometric consistency
self-supervision loss for the virtual eye training. It helps the learned model to
encode the geometry constraints across different viewpoint images.

We also conduct comparison experiments on the imaginary eye sampling area
(large or small). The results are shown in Tab. 4. We found that sampling on a
larger region will allow more freedom on the moving space of rendering cameras,
while the downside is that it requires longer training time.
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Table 5: Quantitative evaluations on different input view numbers.

N 2 4 8 25
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Lounge 26.13 0.8883 29.13 0.9193 34.31 0.9684 37.27 0.9775
Livingroom 28.20 0.9068 31.27 0.9383 34.33 0.9648 36.72 0.9746

4.5 Proxy-depth from colors and features

In what follows, we conduct experiments to demonstrate why the features are
required in our photometric consistency loss. In doing so, we remove the feature
item in Eq. 3 and train our model again, denoted as “Ours w/o Feature”. The
quantitative results are presented in the third last row of Tab. 1.

Compared to pixel-wise RGB colors, features have a larger reception field
that makes textureless regions discriminative, and the encoded higher level in-
formation is more robust to illumination changes and other noises. Thus, the
reconstructed proxy depths from both RGB colors and features are more accu-
rate than those purely from RGB colors. Consequently, the quality of synthesized
images is facilitated. We present the qualitative illustrations in the supplemen-
tary material.

4.6 With or without view-direction weighting

We also ablate the necessity of the view-direction based weighting in Eq. 3. In
this experiment, we set the weighting term si to one, denoted as “Ours w/o
weighting”. The results are presented in the second last row of Tab. 1. Not
surprisingly, the performance drops. This demonstrates the effectiveness of our
weighting strategy.

4.7 Different Number of Input Views

Below, we conduct experiments on a different number of input views. For this
experiment setting, we aim to investigate the performance difference when the
input views are located on a line, a flat plane, and a cube, corresponding to 2,
4, 8, and 25 input views, respectively. Tab. 5 and Fig. 6 provide the quantitative
and qualitative results, respectively. As shown by the results, when the input
view number is reduced to 2, our method still generates acceptable quality novel
view images. As the number of input views increases, the quality of the view
synthesis improves rapidly. For 8 and 25 input views in this experiment, the
input cameras are randomly sampled within the region (cube) of interest. This
demonstrates that our method is not limited to structured settings and can
synthesize free-viewpoint images from unstructured input images.
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Fig. 6: Qualitative visualization of synthesized images by different view number and
camera configurations. The three images are from our generated scenes “Bar”, “Livin-
groom” and “Diningroom” respectively.

5 Conclusion

Capturing a complete and dense plenoptic function from every point and angle
within a space has been the “holy grail" for IBR-based view synthesis appli-
cations. There is always a tension between how densely one samples the space
using many real cameras and the total efforts and cost that one has to bear in
doing this task. This paper proposes a simple yet effective solution to this chal-
lenge. By placing thousands of imaginary eyes (virtual cameras) at randomly
sampled positions in the space of interest, this paper proposes a new neural-
network-based method to learn (or to approximate) the underlying 5D plenoptic
function. Real images captured by physical cameras are used as a teacher to train
our neural network. Although those randomly placed imaginary eyes themselves
do not provide new information, they are critical to the success of our method, as
they provide a bridge to leverage the existing multi-view geometry relationship
among all the views (of both real and virtual). Our experiments also validate
this claim positively and convincingly. Our method produces accurate and high-
quality novel views (on the validation set) and compelling visual results (on
unseen testing images). We will release the code and models in this paper.

Limitations and future works: The training of the PDR network uses photo-
consistency constraint. The proposed method may not work well when such
constraint is violated, such as transparent and large areas of occlusion. While
the followed CBNet can learn how to resolve these challenging scenarios to some
extent, this is not a principled rule. We expect that more sophisticated solutions
can be proposed in the future.
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