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Abstract. Panorama image has a large 360° field of view, providing rich
contextual information for object detection, widely used in virtual real-
ity, augmented reality, scene understanding, etc. However, existing meth-
ods for object detection on panorama image still have some problems.
When 360° content is converted to the projection plane, the geometric
distortion brought by the projection model makes the neural network
can not extract features efficiently, the objects at the boundary of the
projection image are also incomplete. To solve these problems, in this
paper, we propose a novel two-stage detection network, RepF-Net, com-
prehensively utilizing multiple distortion-aware convolution modules to
deal with geometric distortion while performing effective features extrac-
tion, and using the non-maximum fusion algorithm to fuse the content
of the detected object in the post-processing stage. Our proposed unified
distortion-aware convolution modules can be used to deal with distor-
tions from geometric transforms and projection models, and be used to
solve the geometric distortion caused by equirectangular projection and
stereographic projection in our network. Our proposed non-maximum
fusion algorithm fuses the content of detected objects to deal with in-
complete object content separated by the projection boundary. Exper-
imental results show that our RepF-Net outperforms previous state-of-
the-art methods by 6% on mAP. Based on RepF-Net, we present an
implementation of 3D object detection and scene layout reconstruction
application.

1 Introduction

In recent years, panorama image has been widely used, and their 360° large
field of view(FOV) provides rich contextual information for computer vision
processing. As a fundamental task in computer vision, accurate object detection
results enable subsequent applications such as virtual reality, augmented reality,
and scene understanding to achieve better performance.

Before deep learning, in order to handle the object detection task, traditional
object detection methods are usually subdivided into three steps: information re-
gion selection, feature extraction, and classification[32]. In the information region
⋆ Corresponding Author: mengming@buaa.edu.cn
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selection stage, a multi-scale sliding window is used to scan the entire image. And
then feature extraction algorithms such as histogram of oriented gradients[7] and
haar-like[17] are used to generate semantic and robust image representations. Fi-
nally, classification algorithms such as support vector machine[10] are chosen as
the classifier.

With the development of the convolutional neural network in computer vi-
sion, there are two types of network architectures for object detection. In the
first type, the network has two stages: a regional proposal generation network
to replace both information region selection and feature extraction stage and
a classification network. On the other hand, the second network has only one
stage, which integrates feature extraction and classification, and uses anchors
for informative region selection.

Although the convolutional neural networks have better performance than
traditional object detection methods, object detection in panorama image re-
mains challenging due to the sphere-to-plane projections. First, the geometric
deformation brought by sphere-to-plane projections makes it difficult to extract
features effectively. Second, sphere-to-plane projections also divide the original
complete context information and make the object information incomplete on
the projection boundary.

In this paper, we propose a re-projection fusion object detection network
architecture RepF-Net, and perform better accuracy on panorama image than
previous state-of-the-art methods. We propose a unified distortion-aware con-
volution module in the convolutional layer of our network architecture, which
can both deal with equirectangular projection deformation in the information
region selection stage and stereographic projection deformation in the feature
extraction stage. Moreover, we propose a non-maximum fusion algorithm in the
post-processing stage of our network architecture, which can fuse the incomplete
information caused by the sphere-to-plane projection boundary.

Our contributions can be summarized as follows:

• We propose a re-projection fusion object detection network architecture
RepF-Net for panorama image, utilizing multiple distortion-aware modules
to perform effective feature extraction, while using re-projection and non-
maximum fusion in the post-processing stage to obtain better performance.

• We propose a unified distortion-aware convolution module to handle various
geometric distortions caused by geometric transforms and projection models.
It makes our network focus on the information areas to extract features
more efficiently, resulting in faster convergence and better performance. We
propose a non-maximum fusion algorithm to handle the object incomplete
problem caused by the projection boundary to obtain better detection.

• We conduct numerous ablation experiments and comparison experiments to
verify the effectiveness of our proposed methods. Meanwhile, our proposed
RepF-Net outperforms the state-of-the-art by 6% on mAP. Furthermore, we
present an implementation of 3D object detection and scene layout recon-
struction application based on our methods.
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2 Related Work

CNN and Object Detection: With the application of convolutional networks,
there are two main network architectures for object detection: one-stage detec-
tion and two-stage detection. The two-stage detector adopts the R-CNN ar-
chitecture, and followed by its variants FastR-CNN[13], FasterR-CNN[24] and
MaskR-CNN[15]. The two-stage detector first gets candidate proposals through
a region proposal network(RPN), and then refines the proposals through a clas-
sification network to obtain the final detection results. On the other hand, the
one-stage detector based on global regression and classification, uses pre-defined
anchors instead of RPN-generated region proposals, allowing bounding boxes
with relevant classes to be extracted directly from the input image. Mainstream
object detection methods based on this architecture include You Only Look
Once(YOLO)[21–23, 2] and Single Shot Detection(SSD)[18]. There are also some
object detection network architectures that do not rely on proposals or anchors,
such as CornerNet[16] which directly detects the corners of the object, while
CenterNet[9] directly detects the center of the object. These detectors are less
accurate due to the lack of prior information on proposals and anchors.

CNN on Panorama Image: To make the convolution module extract fea-
tures more efficiently on panorama image, deformable convolution(DeformConv)
is proposed[6]. And Zhu et al.[34] further improved the deformable convolution
to solve the problem of useless context regions interfering with feature extrac-
tion. While CNNs are able to learn invariance to common object transformations
and intra-class variations, they require significantly more parameters, training
samples, and training time to learn invariance to these distortions from the data.
Meanwhile, Cohen et al.[5] proposed to use spherical CNN for classification and
to encode rotational invariance into the network. However, overfitting combined
with full rotation invariance reduces the discriminative power. In contrast, Ben-
jamin et al.[4] encoded geometric distortions into convolutional neural networks,
which are more compatible with existing CNN architectures and achieve better
performance. And Clara et al.[12] directly improved deformable convolution and
proposed equirectangular convolution(EquiConv), which is specially designed to
eliminate geometric distortion under equirectangular projection. Similarly, or-
thographic convolution(OrthConv)[20] is designed to remove geometric distor-
tions in orthographic projection.

Object Detection on Panorama Image: Deng et al.[8] first attempted to
use existing object detection methods for object detection on panorama image.
Due to the simplicity of converting a sphere into a Cartesian grid, equirectangu-
lar projection has been used as the primary sphere-to-plane projection method
for projecting 360° content. However, the equirectangular projection applied to
panorama image produces distortions leading to geometric deformation, which
leads to different approaches to maintain performance. There are mainly two dif-
ferent approaches. The first approach proposes a multi-projection variant of the
YOLO detector[28], which attempts to handle the geometric deformation prob-
lem with multiple stereographic projections. On this basis, Pengyu et al.[31]
further optimized the parameters of multi-view projection and obtained better
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performance. On the other hand, the second approach optimizes the convolu-
tion layers by applying distortion-aware convolution modules, which handles the
geometric deformation in the feature extraction stage[14].

Our method integrates these two main approaches, through a combination
of multi-projection and distortion-aware convolution modules to deal with ge-
ometric distortions. In the stage of generating the candidate proposals of the
projection area, we comprehensively use EquiConv and DeformConv for efficient
feature extraction, and in the detection stage, we use a convolution module
that can efficiently handle stereographic projection distortions. Moreover, in the
post-processing stage, we fuse the re-projection detection results to handle the
influence of the projection boundary to get the final results.

3 Method

Our goal is to design a network architecture for object detection from panorama
image. Based on the trade-off of distortion reduction and efficiency improvement,
we use the re-projection two-stage detector as our base network architecture. Be-
fore introducing our network, we first introduce our proposed unified distortion-
aware convolution operator for general geometric distortions in Sec.3.1. Then
in Sec.3.2, we introduce our proposed non-maximum fusion algorithm to fuse
incomplete object content caused by the projection boundary. Subsequently, in
Sec.3.3, we describe the architecture of our proposed network, which combines
multiple distortion-aware convolution modules in the feature extraction stage
and the non-maximum fusion algorithm in the post-processing stage.

3.1 Unified Distortion-Aware Convolution

Zhu and Dai et al.[6, 34] implement the convolution modules by adding addi-
tional parameters on the kernel offset, which can also be learned by the network.
Therefore, the ability to learn object shape and deformation enables deformation
convolution to extract features more efficiently. Although the offset parameters
can be learned by training the network, they can also be calculated in advance
for known geometric distortions[5, 12, 20]. Inspired by these works, we propose
a unified distortion-aware convolution module, which can deal with all kinds of
known geometric distortions.

The standard convolution sample a set of positions on the regular grid R =
{(−1,−1), (−1, 0)..., (0, 1), (1, 1)} as the convolution kernel, for each position p0,
the operation result of the regular grid structure is assigned to the corresponding
element of the output feature map fl+1 of the l+1th layer, where p0+pn indicates
that the sampling position pn enumerates the relative position of the pixels in
the convolution region R, while the deformable convolution improves the feature
extraction capability by adding an offset △pn in the convolution region:

fl+1 =
∑
pn∈R

w(pn) · fl(p0 + pn +△pn). (1)
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Because (θ, ϕ) is the coordinate in the spherical domain without distortion,
and (x, y) is the projection plane coordinate with geometric distortion, so once we
have the conversion formula between the two coordinates, which is the projection
formula, we can get a deformable convolution module for the certain geometric
distortion.

First, we need to calculate (△θ,△ϕ) according to the size of the current
convolutional feature layer s, and the conversion formula are represented as
xy2θϕ and θϕ2xy:

△θ,△ϕ =
xy2θϕ(s, s)− xy2θϕ(0, 0)

s
. (2)

After that, we can calculate the offset of the current convolution kernel ac-
cording to the position (x, y) of the convolution kernel in the feature layer:

θ, ϕ = xy2θϕ(x, y),△x,△y = θϕ2xy(θ +△θ, ϕ+△ϕ). (3)

Finally, we can calculate the offset applied to deformable convolution, which
is an offset relative to the original convolution kernel, not relative to the image
domain itself, while sf represents the size of the feature map:

Roffset = ({(△x,△y)...} − {(x, y)...}) ∗ (sf , sf )− {(−1,−1), ..., (1, 1)}. (4)

As shown in Fig. 1 (a), we show the projection of a panorama image of the
sphere onto the tangent plane. We assume that the radius of the sphere is r = 1,
the viewpoint V is at (1, 0, 0), the projection direction is towards the negative X-
axis, and the center of the tangent plane is at x = (−1, 0, 0). Now, the values of
the point PP (X,Y ) on the projection tangent plane are projected from P (θ, ϕ)
on the sphere as:

d+ 1

d+ cosϕ
=

−X + s/2

sinϕ
,

d+ 1

d+ cos θ
=

−Y + s/2

sin θ
. (5)

While s represents the size of the projection plane, the original coordinates
of the point PP (X,Y ) are (−1, y, z). And Equ. 5 is the stereographic conversion
formula.

We adopt the stereographic projection model which means d is constantly
equal to 1. By substituting into the stereographic projection model, we can ob-
tain stereographic convolution(SteConv), which removes the stereographic pro-
jection distortion. The comparison between the kernel sample region of SteConv
and standard convolution(StdConv) is shown in Fig. 1, (b) shows the sampling ef-
fect of the two convolution kernels, and (c) shows the comparison of the effects of
the two kernels with different dilation and kernel size. Moreover, we substituted
the equirectangular projection formula and implement a unified equirectangular
convolution.
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(a) (b) (c)

Fig. 1. Visualization of the stereographic projection model and stereographic convolu-
tion. Green - StdConv, red - SteConv.

3.2 Non-maximum Fusion

In the state-of-the-art object detection pipelines, region proposals generated by
convolutional neural networks replace traditional sliding windows, but multiple
proposals often regress to the same region of interest. Hence, it is necessary to
use non-maximum suppression(NMS) as a post-processing step to obtain the
final detection as it significantly reduces the number of false positives. As an im-
portant part of the object detection pipeline, NMS first sorts all detection boxes
according to their scores, and selects the detection box with the maximum score,
while suppressing all other detection boxes whose overlapping score exceeds the
predefined threshold. This process is recursively applied to all detection boxes.

Object NMS

NMF

Object

ObjectObject

Fig. 2. Schematic illustration of NMS vs. NMF. Red - origin detect boxes, light green
- NMS result, dark green - NMF result, black dotted line - boxes which be suppressed.

The main problem of NMS is that it directly suppresses adjacent detection
boxes. For the re-projection two-stage detection algorithm, there is no detection
box located at the maximum value in re-projection detection boxes, while each
detection box is a part of the detected object. Therefore, according to the de-
sign of the algorithm, after applying NMS to the re-projection detection box,
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the original complete object is detected as multiple continuous detection boxes
or multiple incomplete components, which will lead to a decrease in average
precision. This is because the NMS algorithm is designed to process the output
value of the neural network, and only takes the local maximum value as the final
detection output, and when processing the re-projection detection boxes, what
we need is to associate a detection box cluster with an object. The multiple
detection boxes in one cluster are fused, so as to fuse multiple incomplete parts
of the object into the final detection box. While this problem can not be solved
by NMS, even with some improvements to it[3, 25]. We show an illustration of
the problem in Fig. 2.

To this end, we propose a non-maximum fusion(NMF) algorithm, which im-
proves the original NMS algorithm and fuses all detection boxes that have over-
lapping relationships with the maxima instead of direct suppression. The steps
of the NNF algorithm are described as follows:

program non_max_fusion (B={b1, ... b_n}, S={S1, ... Sn}, Nt)
{

B is the list of initial detection boxes.
S contains corresponding detection scores.
Nt is the NMF threshold.

};
begin:

F ← {};
while B is not empty do:

m ← argmax S;
C ← {bm};
B ← B - C;
for bi in B do:

if iou(C, bi) > Nt then:
B ← B - {bi}; S ← S - {si};
C ← C U {bi};

end
end
F ← F U fusion(C);

end
return F, S;

end.

The NNF algorithm leads to improvements in average precision measured
over multiple overlap thresholds for re-projection two-stage object detectors.
Since the NMF algorithm does not require any additional training and is simple
to implement, it can be easily integrated into the object detection pipeline.

3.3 Re-projection Fusion Network Architecture

In the detection step, it is a common consensus that two-stage detectors can
achieve higher accuracy. The first stage is the multi-view projection region pro-
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posal network(MVP-RPN), which can efficiently generate proposals on equirect-
angular projection images, and the second stage is the stereographic convolu-
tional detector(SteNet), which can accurately refine proposals based on stere-
ographic projection images. Projection region of interest align(PRoI-Align) is
additionally introduced to bridge the multi-view projection region proposal net-
work and the stereographic convolutional detector, by transforming proposals
into projection field of view to obtain fixed-size stereographic projection images
as input to SteNet. In the post-processing step. The detection boxes are first pre-
processed using re-projection, and then non-maximum fusion is used to obtain
the final detection. The overall architecture of RepF-Net is shown in Fig. 3.

Two-stage Detecter

Input Output

Post-processing

Backbone Head

NMF

{d=1, s=2, θ=5.414}

...... ...... ............ ............

StdConv Re-projectionDeformConv EquiConv SteoConv Non-maximum Fusion 

{d=1, s=2, θ=2.457}

Rep

Backbone Head

Rep NMF

Rep

Backbone Head

{d=1, s=2, θ=3.350}

Rep

Backbone Head

Fig. 3. This figure visualizes the two-stage network and post-processing architecture
of RepF-Net.

MVP-RPN: Given a panorama image, MVP-RPN generates the objectness
score for each candidate region proposal from its equirectangular projection rep-
resentation. Different from ordinary RPN[24], in order to handle the geometric
distortion brought by equirectangular projection, MVP-RPN comprehensively
applies deformable convolution and equirectangular convolution in the backbone
network to efficiently extract a distortion-aware feature map. Finally, MVP-RPN
generates the position of the selected region proposal as the input for the next
stage.

PRoI-Align: Given the region proposals generated by MVP-RPN, PRoI-
Align converts the location information of region proposals into three-dimensional
FOV parameters (d, s, θ), where d represents the distance of the projection plane
from the sphere center, which is inversely proportional to region proposal size, s
represents the size of the projection plane, which is directly proportional to re-
gion proposal size, θ represents the rotation angle of the projection plane relative
to the sphere plane, which constitutes a one-to-one mapping relationship from
the horizontal position of the region proposals. The three-dimensional FOV pa-
rameters can be substituted into the stereographic projection formula to obtain
fixed-size stereographic projection images as the input of the next stage.
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SteNet: Given the fixed-size stereographic projection images generated by
PRoI-Align, SteNet applies another detection network to further localize re-
gion proposals. The same as MVP-RPN, SteNet comprehensively applies de-
formable convolution and stereographic convolution in the backbone network
to efficiently extract a distortion-aware feature map, and offset the geometric
distortion brought by stereographic projection. In the end, SteNet refines the
detection box of the selected region proposal as the input for the next stage.

Post-processing: In the first step, the post-processing stage re-projects the
detection box onto the equirectangular image as the input for the next stage.
Non-maximum fusion is then applied to reduce the number of false positives.
Since the incomplete object content has been fused in the post-processing stage,
the final detection results of the network architecture are obtained.

4 Experiments

In this section, we conduct numerous of experiments aimed at evaluating the
effectiveness of our proposed method for object detection in panorama image.
We first describe our collection and extension of the datasets. Then explain
the implementation details of the experiment, including training and develop-
ment strategy. Next, our proposed unified distortion-aware convolution module
achieves better performance through qualitative and quantitative comparative
evaluation. After that, we verified our proposed non-maximum fusion algorithm
through ablation experiments, which can achieve better performance in the post-
processing stage. Finally, we compare our method with other state-of-the-art
methods of object detection in panorama image and find that our method can
outperform them.

4.1 Dataset

Collecting high-quality datasets with a sufficient number of images and the cor-
responding object detection groundtruth is critical for training complex models.
However existing equirectangular projection image datasets, including Sun360[27],
PanoContext[30], SunCG[26], Stanford2D3D[1], and Structured3D[33], all lack
standard object detection annotations. We define a dataset annotation protocol
for object detection through protobuf, and according to the protocol convert-
ing equirectangular projection image annotation from the above datasets[27,
30, 26, 1, 33]. Simultaneously, we use the projection parameters {d = 1; s =
2, 3;△θ = 0, π

24 ,
π
12 , . . . , 2π} in the stereographic conversion formula to con-

vert stereographic projection image annotation. We also made corrections for
low-quality images in the original dataset, as well as wrong object annotations.
Finally, the dataset we constructed contains 3423 equirectangular category an-
notations and 69760 stereographic category annotations. With the definition of
the protocol, our dataset can be conveniently applied to various experiments
and tasks. The split strategy of train/validation/test for the dataset is similar
to [14], the dataset is divided into 85% for train and validation and 15% for test.
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4.2 Implementation Details

Training Strategy: We implement our method using PyTorch and CUDA 11.6,
and test it on two NVIDIA Titan X GPUs. All input RGB images are 640×640.
Based on Yolov5 pre-training, we employ AdamW optimizer[19] to train the
network for 500 epochs with a batch size of 8. Moreover, we use clustering of
dataset annotation to generate anchors, while using Mosaic as data augmentation
strategy[2].

Development Strategy: In order to reduce the time and memory require-
ment for the calculation of projection matrix and convolution offset matrix, we
use the serialized MD5 value of the parameter as the cache key, and store the
serialized calculated value in memory and file system. Moreover, we define pro-
tobuf for major APIs such as dataset processing, projection and detection, and
communication between network architecture via gRPC.

4.3 Results of Unified Distortion-Aware Convolution

Performance Analysis of SteConv: A quantitative comparison of the object
detection effect between our proposed SteConv, which is implemented through
our proposed unified distortion-aware convolution module, and other convolu-
tions modules is summarized in Table 1. DeformConv achieves better perfor-
mance than StdConv because the added offset parameter can extract features
more efficiently. On the other hand, the pre-defined offset parameters for geo-
metric deformation in SteConv are more efficient than the parameters learned
by the network, thus obtaining better performance than DeformConv.

Table 1. Comparison experiments of different kinds of convolution modules. The bold-
face denotes the best performance in this experiment.

model mAP bed painting tv sofa curtain table bedside

StdConv 78.7 88.1 87.5 86.8 79.3 77.6 71.0 74.7
DeformConv 78.9 86.0 87.0 89.0 81.2 78.4 70.4 74.7
SteConv 79.8 90.0 88.8 87.2 80.6 77.5 72.0 76.8

Ablation Study of SteConv: We experiment with the effect of the posi-
tion and number of applying SteConv and DeformConv on detection accuracy.
As shown in Fig. 4, layer1∼5 represents the position of SteConv in backbone, and
layer1∼5+ represents the number of SteConv layers. Through the comparison
experiment in (a), we can get that the main factors affecting the performance
of SteConv are the size of the convolution layer and the richness of features.
With the movement of the position, applying SteConv or DeformConv to the
backbone layer closest to the detection head, accuracy reaches the best perfor-
mance. We conclude that this is because more abstract convolution features can
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handle distortion better than larger feature layers, thus the final optimal effect
is located in the last layer of the backbone. From the comparison experiments
in (b), we can see that the accuracy continues to improve as we continue to
replace layers with DeformConv. However, replacing more SteConv layers did
not improve accuracy. We conclude this is because the SteConv pre-calculated
from the geometric deformation formula is theoretically the upper limit of de-
formation that DeformConv can handle, while more SteConv stacking will bring
anti-stereographic distortion.

(a) (b)

79.8

Fig. 4. The figure shows line charts of the position and number of SteConv and De-
formConv layers and mAPs. In (a) layer1-5 means the layer position, in (b) layer1-5+
means the number of layers.

4.4 Results of Non-maximum Fusion

Quantitative results: We conduct comparison experiments for the applica-
tion of the non-maximum fusion algorithm in the post-processing stage of our
proposed RepF-Net. From the analysis of our experimental results in Table 2,
the non-maximum fusion algorithm fuse the detection boxes from multiple pro-
jection images, thus the addition of the non-maximum fusion algorithm further
improves the detection accuracy especially when detecting large objects. Based
on its effectiveness in handling detection box for both small and large objects,
the non-maximum fusion algorithm achieves better performance than the non-
maximum suppression algorithm.

Table 2. Quantitative results of RepF-Net, with or without NMF in post-processing
stage. The boldface denotes the best performance in this experiment.

model mAP tv painting bed curtain window bedside mirror

w/o. NMF 80.5 93.3 93.1 80.6 62.4 80.9 80.4 73.3
w. NMF 84.2 95.5 87.6 87.0 79.2 81.0 79.9 79.2
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Qualitative Results: We show the qualitative results of the comparison
between our proposed NMF and NMS in Fig. 5. NMS can achieve good results
when detecting objects that can be completely detected in a single projection
image, such as (a) in Fig. 5. However, when detecting objects that require the
fusion of multiple projection images, it is inevitable that objects will be detected
as multiple continuous detection boxes, such as (b) in Fig. 5, or only detect
certain components of the object, such as (c) in Fig. 5. In contrast, our proposed
NMF outperforms NMS in the above cases.

(a) (b) (c)

Input

NMS

NMF

Fig. 5. Qualitative results of the comparison between the non-maximum suppression
algorithm and the non-maximum fusion algorithm.

4.5 Comparison with the State-of-the-Art Methods

Comparison Experiment: We compare RepF-Net with baseline methods of
object detection in panorama image and the results are given in Table 3. Rep-
CNN as a two-stage detector achieves the best performance among the base-
line methods due to the projection greatly reduced geometric distortion, and
PanoBlitzNet as a one-stage detector also achieves good detection accuracy due
to the introduction of the EquiConv. Finally, our RepF-Net combines the advan-
tages of both methods and achieves better performance than the SoTA. More-
over, in RepF-Net+ we apply DeformConv in the backbone of our proposed
RepF-Net to replace the convolution layout except for the SteConv layer. And it
can be concluded that, on the basis of handling the geometric distortion by Ste-
Conv, DeformConv can more efficiently extract features, therefore better gener-
alize the geometric shape of the object and finally achieve the best performance.
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Table 3. Performance comparison between baseline methods and RepF-Net. RepF-
Net+ represents applying DeformConv on the basis of RepF-Net. The boldface denotes
the best performance in this experiment.

model mAP tv painting bed curtain window bedside

DPM[11] 29.4 31.0 56.0 35.2 29.5 21.8 -
Deng et al.[8] 68.7 70.0 68.0 76.3 69.5 62.6 -
Multi-Project Yolo[28] 69.4 87.5 80.7 17.2 73.4 76.9 78.2
PanoBlitzNet[14] 77.8 93.3 83.9 95.3 75.9 70.9 91.4
Rep-RCNN[31] 79.6 92.4 92.2 70.3 69.5 75.0 83.2

RepF-Net(w. NMF) 84.2 95.5 87.6 87.0 79.2 81.0 79.9
RepF-Net+ 86.0 95.5 89.4 90.5 79.4 81.0 79.9

Qualitative Comparison: We show the qualitative results of the compar-
ison between our proposed RepF-Net and other state-of-the-art methods. As
shown in Fig. 6, the one-stage detector PanoBlitzNet can detect large objects
and handle incomplete objects well, while has difficult detecting all small objects
and has lower accuracy. And the two-stage detector Rep-CNN can improve the
detection accuracy of small objects, while it is difficult to detect large objects,
and there is a problem of incomplete detection of objects. In contrast, our pro-
posed RepF-Net solves the problem of incomplete detection objects, and achieves
better performance in both small and large object detection accuracy.

Ground Truth PanoBlitzNet Req-RCNN ReqF-Net

Fig. 6. Qualitative comparison of different object detection methods on panorama
image.
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5 Applications

On indoor scene understanding tasks, because of the richer contextual infor-
mation encoded by the larger field of view, using panorama image can achieve
better performance than using perspective images. In the task of indoor scene
understanding, there are two main steps, object detection and layout recov-
ery[29]. While many methods achieve good performance in layout recovery[35],
there is still space for improvement in object detection. Based on our proposed
RepF-Net, we present an implementation of indoor scene understanding. And
the qualitative results of 3D object detection and scene layout reconstruction on
three datasets are shown in Fig. 7.

Object DetectionInput 3D Object Detection Scene Reconstruction
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Fig. 7. Qualitative results of 3D object detection and scene layout reconstruction.

6 Conclusion

This paper presents a novel two-stage detection network, RepF-Net for object
detection in panorama image, while including a unified distortion-aware convolu-
tion module for geometric distortions, and a non-maximum fusion algorithm for
post-processing. Experiments validate the effectiveness of each module in our
method, and show that our network performs better performance than other
state-of-the-art object detectors. In addition, our network model has also been
applied to tasks of 3D object detection and scene reconstruction.
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