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Abstract. The success of attention modules in CNN has attracted in-
creasing and widespread attention over the past years. However, most
existing attention modules fail to consider two important factors: (1) For
images, different semantic entities are located in different areas, thus they
should be associated with different spatial attention masks; (2) most ex-
isting framework exploits individual local or global information to guide
the generation of attention masks, which ignores the joint information of
local-global similarities that can be more effective. To explore these two
ingredients, we propose the Spatial Group-wise Enhance (SGE) mod-
ule. SGE explicitly distributes different but accurate spatial attention
masks for various semantics, through the guidance of local-global simi-
larities inside each individual semantic feature group. Furthermore, SGE
is lightweight with almost no extra parameters and calculations. Despite
being trained with only category supervisions, SGE is effective in high-
lighting multiple active areas with various high-level semantics (such as
the dog’s eyes, nose, etc.). When integrated with popular CNN back-
bones, SGE can significantly boost their performance on image recogni-
tion tasks. Specifically, based on ResNet101 backbones, SGE improves
the baseline by 0.7% Top-1 accuracy on ImageNet classification and
1.6∼1.8% AP on COCO detection tasks. The code and pretrained models
are available at https://github.com/implus/PytorchInsight.
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1 Introduction

Recently, attention mechanisms have become extremely popular in convolutional
neural networks. SENet [1] first proposes feature recalibration using the global
information in a channel-wise manner. Subsequently, more works [2, 3] extend
the recalibration to the spatial dimension, enabling the attention factors to be
spatially redistributed. Despite their great success, there are at least two as-
pects have been ignored by most existing work, which limits the rationality and
effectiveness of attention modules:

For Spatial Attention Modeling: The natural image usually contains
multiple semantic objects distributed in different image regions. However, almost
all the existing spatial attention modules [2–4] only use one single global spatial
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attention mask, which obviously has no way to reasonably reflect the spatial
distribution of different semantic features.

For Attention Mask Generation: Existing attention modules strive to
guide the generation of the attention mask by utilizing global [1, 5, 6, 2, 3, 7, 4],
or local [7, 8], or local-local pair [9, 10] information, but unfortunately lose the
chances of gaining benefits from the joint information of the local-global pairs.

In this paper, we aim to propose a novel attention mechanism by taking into
account the two factors:

For the first factor, inspired by the CapsuleNet [11] where the grouped
sub-features can represent the instantiation parameters of a specific type of en-
tity, we propose a group-wise attention mechanism. To be specific, the feature
vector is first divided into groups, which are supposed to be learnt with multiple
semantics (similarly as Capsules do). Then different spatial attention masks are
designed and generated between different semantic feature groups, in the purpose
of achieving a more reasonable and explainable spatial attention modeling.

For the second factor, in order to fully utilize both global and local in-
formation, and to lighten the complexity of the designed module as much as
possible, we propose to use the similarity between the global feature descriptor
and the local feature vector to guide the generation of the attention mask, which
introduces rich information from local-global pairs.

To combine both factors above, the two solutions are merged naturally and
completely into a unified framework by requiring almost no additional parameters
and calculations, which is termed Spatial Group-wise Enhance (SGE) module.

We show on the ImageNet [12]benchmark that the SGE module performs
better or comparable to a series of recently proposed state-of-the-art attention
modules, despite its superiority in both model capacity and complexity. Similar
trend is also observed on smaller dataset like CIFAR-100 [13]. Meanwhile, based
on ResNet101 [14] backbones, SGE improves the baseline by 0.7% Top-1 accuracy
on ImageNet classification and 1.6∼1.8% AP on COCO detection tasks, which
demonstrates its remarkable advantages in accurate spatial modeling.

In the ablation study, we show that both solutions of the two factors play
an important role for improving the final performance. We also examine the
changes in the distribution of the semantic feature activations for each group
after the SGE module. The results show that SGE significanty improves the
spatial distribution of different semantic sub-features within its group, which
strengthens the feature learning in semantic regions and compresses the possible
noise and interference. The visualization of activation maps by Grad-CAM [15]
also shows that SGE is able to make better use of accurate spatial features.

2 Related Work

Spatial Attention Modeling: In this part, we mainly focus on spatial atten-
tion mechanism, where the exsiting work mainly generates a single spatial mask
for the entire tensor. BAM [2] and CBAM [3] utilize the convolutional layers or

688



SGE: Spatial Group-wise Enhance 3

Table 1. Summary of major differences among popular lightweight attention modules.
The additional costs comprehensively consider the situation of multiple backbones.

Features SGE (ours) SE SK SRM GE BAM CBAM GC GCT

Multiple Spatial Attention Mask ✓ ✓(local version)
Spatial Attention on Feature Vectors ✓
Global Feature for Attention Generation ✓ ✓ ✓ ✓ ✓(global version) ✓ ✓ ✓ ✓
Local Feature for Attention Generation ✓ ✓(local version)

Additional Parameter Cost < ∼1‰ ✓ ✓(GE-θ−)
Additional FLOPs Cost < ∼1‰ ✓ ✓ ✓ ✓(GE-θ−) ✓ ✓ ✓

channel-based max/avg pooling layer to produce a unified attention map for spa-
tial refinement. GCNet [4] proposes a context modeling, where a convolutional
layer is also utilized to produce one spatial mask. The variants of GENet [7] with
local extent ratio can be regarded as that each channel has its own attention
spatial mask obtained by local information. However, [11] shows that a single
scalar is difficult to characterize a semantic entity well, and local attention is also
very limited in terms of semantic enhancement. Conversely, the proposed SGE
explicitly assign different spatial attention masks in different semantic feature
groups, leading to accurate feature enhancement.

Attention Mask Generation: The existing methods can be mainly attributed
into the following three groups:

• global only: A series of work like SENet[1], SKNet[5], SRM[6], GCT[16],
BAM [2], CBAM[3] and ECANet[17] performs feature recalibration via the guid-
ance of global averaged statistics. The gather operator in GENet[7] aggregates
neuron responses over a given spatial extent to guide the production of the re-
fined tensor. Among the different parameter-free versions of GENet (GE-θ−),
the one with global extent ratio achieves the best performance. Different from
the global average operator, GCNet[4] utilizes the context modeling block to
weighted average the global statistics. FcaNet[18] decomposes channel features
in the frequency domain and utilizes multi-frequency components with the se-
lected DCT bases to replace global average pooling. Instead of squeezing a 3D
feature tensor into a single feature vector, Coordinate Attention Network[19]
and Triplet Attention Network[20] utilize global pooling along height and width
dimensions separately to capture fine-grained global spatial attention.

• local only: Residual Attention Network[8] constructs a light encoder-
decoder architecture between stages to utilize the local spatial information for
generating attention masks. The variants of GENet[7] with local extent ratio ag-
gregate the local spatial neuron responses to produce the refined feature tensors.
SCNet[21] utilizes a self-calibration branch to allow local spatial information
adaptively interact with its surrounding context.

• local-local pair only: [9] gives a thorough study of spatial attention
mechanisms designed for broad application, where four types of attention terms
are investigated in different combinations of context/position encodings of dense
key-query pairs[22]. Such a key-query pair essentially reflects the property of
local-local pairs. Another representative structure based on local-local pairs is
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Non-Local[10] Network, which aims at strengthening the features of the query
position via aggregating information from all other positions. However, the time
and space complexity of the Non-Local blocks are both quadratic to the number
of positions, which are considerably heavy for lightweight modules.

In contrast, our proposed SGE module explores a novel and rich guidance
which is generally ignored by the related work: the local-global similarity. Such
operator can not only make good use of both global and local information, but
also utilize the advantage of the joint statistics between them. Compared to
other attention modules, SGE also has fewer parameters, less computational
complexity (Table 2), and a clear interpretable mechanism (Figure 3). Table 1
summarizes the essential differences between SGE and other existing lightweight
attention modules for better reference.
Grouped Features: Learning and distributing features into groups in convolu-
tional networks has been widely studied recently. AlexNet[23] initially presents
the group convolution and divides features into two groups on different GPUs
to save computing budgets. ResNeXt[24] examines the importance of group-
ing in feature transfer and suggests that the number of groups should be in-
creased to obtain higher accuracy under similar model complexity. The Mo-
bileNet series[25–27] and Xception[28] treat each channel as a group and model
only spatial relationships inside these groups. The ShuffleNet[29, 30] family rear-
ranges the grouped features to produce efficient feature representation. Res2Net[31]
uses a hierarchical mode to transfer grouped sub-features, enabling the network
to incorporate multi-scale features in a single bottleneck. CapsuleNet[11] models
each of the grouped neurons as a capsule, where the activities of the neurons
within an active capsule represent the various properties of a particular entity
that is present in the image. The overall length of the vector of instantiation
parameters is used to represent the existence of the entity and the orientation of
the vector is forced to represent the properties of the entity. In SGE, all enhance-
ments are operated inside groups, which saves computational overhead similarly
as in group convolution. Conceptually, the SGE module adopts the basic mod-
eling assumptions of CapsuleNet, and believes that the features of each group
are able to actively learn various semantic entity representations. At the same
time, in the process of visualization of this paper, we also use the length of the
sub-feature to measure as its activation value, analogous to the probability of
the existence of entities in CapsuleNet.

3 Method

Here we describe the detailed implementation of SGE module, which unifies the
above aforementioned two solutions: various semantic spatial attention mask and
local-global similarity guidance. We consider a C channel, H ×W convolutional
feature map and divide it into G groups along the channel dimension. Without
loss of generality, we first examine a certain group separately (see the bottom
black box in Figure 1). Then the group has a vector representation at every

position in space, namely X = {x1...m} ,xi ∈ RC
G ,m = H×W . Conceptually in-
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SGE: Spatial Group-wise Enhance 5

Fig. 1. Illustration of the proposed lightweight SGE module. It processes the sub-
features of each group in parallel, and uses the similarity between global statistical
feature and local positional features in each group as the attention guidance to enhance
the features, thus obtaining well-distributed semantic feature representations in space.

spired by the capsules [11], we further assume that this group gradually captures
a specific semantic response (such as the dog’s eyes) during the course of network
learning. In this group space, ideally we can get features with strong responses
at the eye positions (i.e., features with a larger vector length and similar vector
directions among multiple eye regions), whilst other positions almost have no
activation and become zero vectors. However, due to the unavoidable noise and
the existence of similar patterns, it is usually difficult for CNNs to obtain the
well-distributed feature responses. We propose to utilize the overall information
of the entire group space to further enhance the learning of semantic features
in critical regions, given the fact that the features of the entire space are not
dominated by noise (otherwise the model learns nothing from this group). There-
fore we can use the global statistical feature through spatial averaging function
Fgp(·) to approximate the semantic vector that this group learns to represent:

g = Fgp(X ) =
1

m

m∑
i=1

xi. (1)

Next, using this global feature, we can generate the corresponding importance
coefficient for each feature, which is obtained by simple dot product that mea-
sures the similarity between the global semantic feature g and local feature xi

to some extent. Thereby for each position, we have the following expression:

ci = g · xi. (2)

Note that ci can also be expanded as ∥g∥∥xi∥ cos(θi), where θi is the angle
between g and xi. It indicates that features that have a larger vector length
(i.e., ∥xi∥) and a direction (i.e., θi) closer to g are more likely to obtain a larger
initial coefficient, which is in line with our assumptions. In order to prevent the
biased magnitude of coefficients between various samples, we normalize c over

691



6 Y. Li et al.

the space, as is widely practiced in [32–34]:

ĉi =
ci − µc√
σ2
c + ϵ

, µc =
1

m

m∑
j

cj , σ2
c =

1

m

m∑
j

(cj − µc)
2, (3)

where ϵ (e.g., 1e-5) is a constant added for numerical stability. To make sure that
the normalization inserted in the network can represent the identity transform,
we introduce a pair of parameters γ, β for each coefficient ĉi, which scale and
shift the normalized value:

ai = γĉi + β. (4)

Note that γ, β here are the only parameters introduced in our module. In a single
SGE unit, the number of γ, β is the same as the number of groups G, and the
order of their magnitude is about tens (typically, 32 or 64), which is basically
negligible compared to the millions of parameters of the entire network. Finally,
to obtain the enhanced feature vector x̂i, the original xi is scaled by the generated
importance coefficients ai via a sigmoid function gate σ(·) over the space:

x̂i = xi · σ(ai), (5)

and all the enhanced features form the resulted feature group as

X̂ = {x̂1...m} , x̂i ∈ R
C
G ,m = H ×W. (6)

4 Experiments

4.1 Image Classification

We first compare SGE with a set of SOTA attention modules on ImageNet bench-
mark. The ImageNet 2012 dataset[12] comprises 1.28 million training images and
50k validation images from 1k classes. We train networks on the training set and
report the Top-1 and Top-5 accuracies on the validation set with single 224×224
central crop. For data augmentation, we follow the standard practice[35] and per-
form the random-size cropping to 224 × 224 and random horizontal flipping. The
practical mean channel subtraction is adopted to normalize the input images. All
networks are trained with naive softmax cross entropy without label-smoothing
regularization[36]. We train all the architectures from scratch by synchronous
SGD with weight decay 0.0001 and momentum 0.9 for 100 epochs, starting from
learning rate 0.1 and decreasing it by a factor of 10 every 30 epochs. The total
batch size is set as 256 and 8 GPUs (32 images per GPU) are utilized for train-
ing, using the weight initialization strategy in[37]. Our codes are implemented
in the pytorch[38] framework in which all results are reproduced. Note that in
the following tables, Param. denotes the number of parameter and the definition
of FLOPs follows[29], i.e., the number of multiply-adds.
Comparisons with state-of-the-art Attention Modules. We select a se-
ries of state-of-the-art attention modules, which is considered to be relatively
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Table 2. Comparisons between various guidance for spatial attention mask generation
on ImageNet validation set, based on ResNet50. The best and the second best records
are marked as red and blue, respectively.

Backbone Param. GFLOPs Top-1 (%) Top-5 (%)

ResNet50 [14] 25.56M 4.122 76.38 92.91

SE-ResNet50 [1] 28.09M 4.130 77.18 93.67
SK-ResNet50∗ [5] 26.15M 4.185 77.54 93.70
BAM-ResNet50 [2] 25.92M 4.205 76.90 93.40
CBAM-ResNet50 [3] 28.09M 4.139 77.63 93.66
SRM-ResNet50 [6] 25.62M 4.139 77.13 93.51
GCT-ResNet50 [16] 25.68M 4.134 77.30 93.70
GE-ResNet50 [7] 25.56M 4.127 76.78 93.22
SGE-ResNet50 (ours) 25.56M 4.127 77.58 93.66

ResNet101 [14] 44.55M 7.849 78.20 93.91

SE-ResNet101 [1] 49.33M 7.863 78.47 94.10
SK-ResNet101∗ [5] 45.68M 7.978 78.79 94.27
BAM-ResNet101 [2] 44.91M 7.933 78.22 94.02
CBAM-ResNet101 [3] 49.33M 7.879 78.35 94.06
SRM-ResNet101 [6] 44.68M 7.879 78.47 94.20
GCT-ResNet101 [16] 44.76M 7.869 78.60 94.10
GE-ResNet101 [7] 44.55M 7.858 78.42 94.14
SGE-ResNet101 (ours) 44.55M 7.858 78.90 94.37

ResNeXt50 [24] 25.03M 4.273 77.15 93.52

SE-ResNeXt50 [1] 27.56M 4.281 78.09 93.96
SK-ResNeXt50 [5] 27.42M 4.505 78.21 94.07
BAM-ResNeXt50 [2] 25.39M 4.356 77.44 93.60
CBAM-ResNeXt50 [3] 27.56M 4.290 78.08 94.05
GCT-ResNeXt50 [16] 25.19M 4.285 78.20 94.00
GE-ResNeXt50 [7] 25.03M 4.279 77.48 93.69
SGE-ResNeXt50 (ours) 25.03M 4.279 78.25 94.09

DenseNet121 [39] 7.98M 2.883 75.36 92.60

SE-DenseNet121 [1] 7.99M 2.884 76.21 93.00
SK-DenseNet121∗ [5] 8.10M 2.930 75.83 92.88
BAM-DenseNet121 [2] 8.07M 2.904 76.20 93.01
CBAM-DenseNet121 [3] 7.99M 2.886 76.10 92.78
GE-DenseNet121 [7] 7.98M 2.884 76.18 92.88
SGE-DenseNet121 (ours) 7.98M 2.884 76.45 93.06
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lightweight, and demonstrate their performance based on ResNet50, ResNet101
[14, 40], ResNeXt50 [24] and DenseNet121 [39]. For a fair comparison, we imple-
ment all the attention modules (partially refer to the official codes1) with their
respective best settings using a unified pytorch framework. Following [1, 3], these
attention modules are placed after the last BatchNorm [32] layer inside each bot-
tleneck except for BAM and SK. BAM [2] is naturally designed between stages.
SK [5] is originally designed on ResNeXt-like bottlenecks with multiple large-
kernel group convolutions. To transfer it to the ResNet/DenseNet backbones, we
make a slight modification and only append one additional 3 × 3 group (G = 32)
convolution upon each original 3 × 3 convolutions, to prevent the parameters
and calculations of the corresponding SKNets from being too large or too small.
For GE, we select the best performed parameter-free settings with global extent
ratio, namely GE-θ−, for comparisons (the other variants increase the number
of parameters too much). From the results of Table 2, we observe that based on
ResNet50, SGE is on par with the best entries from CBAM (Top-1) and SK/SE
(Top-5) but has much fewer parameters and slightly less calculations. As for
ResNet101, it outperforms most other competing modules. The similar trend is
also hold for ResNeXt50 [24] and DenseNet121 [39].

The Effectiveness of Local-Global Similarities. To validate the effective-
ness of local-global similarities, we conduct extensive experiments by comparing
SGE with global-only and local-only variants of the state-of-the-art SE and GE
modules. Specifically in Table 3, to keep the comparisons more fair under the set-
tings of multiple spatial semantics in global-only type, we extend SE with group
settings (denoted as SE∗), where the fc layers are replaced by group conv1x1
layers with group number G. We also extend GE-θ− as GE-θ−∗ with groups.
Considering the parameter-free settings of GE-θ−, we simply average the ele-
ments in each group of the global pooled vector to reweight the activations. For
the modified group versions of SE∗ and GE-θ−∗, we choose the two settingsG=32
and G=64 for experiments. In local-only type, we select the GE modules with
spatial extent ratio e=8. Furthermore, we validate the importance of local-global
similarities by deleting the similarity part but only using the length of each local
sub-feature itself to guide the attention generation in SGE, which is denoted as
SGE (- similarity). For the comparisons with local-local pairs, four variants of
Non-Local [10] blocks are applied. As the module adds a lot of extra complexity,
it is forced to place only one instance on the last stage of ResNet50. From the
above results, we notice that the joint information of local-global similarities is
considerably efficient and beneficial for achieving the best performance.

Group number G. In the SGE module, the number of groups G controls the
number of semantic sub-features. Too many groups will result in a reduction in
the sub-feature dimension within each group, leading to weaker feature represen-
tation for each semantic response; On the contrary, too few groups will make the
diversity of semantics limited. It is natural to speculate that there is a moderate
hyperparameter G that balances semantic diversity and the ability of represent-
ing each semantic to optimize network performance. From Figure 2, we can see

1 https://github.com/Jongchan/attention-module

694



SGE: Spatial Group-wise Enhance 9

Table 3. Comparisons between various guidance for spatial attention mask generation
on ImageNet validation set, based on ResNet50. The best records are marked as bold.

Type Backbone Param. GFLOPs Top-1/5 (%)

+ SE [1] 28.09M 4.130 77.2/93.7
+ SE∗ (G=32) 26.20M 4.128 77.2/93.6

global-only + SE∗ (G=64) 25.89M 4.128 77.0/93.5
+ GE-θ− [7] 25.56M 4.127 76.8/93.2
+ GE-θ−∗ (G=32) 25.56M 4.127 76.6/93.2
+ GE-θ−∗ (G=64) 25.56M 4.127 76.7/93.4

+ GE-θ− (e=8) 25.56M 4.127 76.5/93.1
local-only + GE-θ−∗ (G=64, e=8) 25.56M 4.127 76.5/93.2

+ SGE (- similarity) 25.56M 4.125 77.0/93.5

+ Non-Local [10] (Gaussian) 29.76M 4.328 75.8/92.7
local-local pair + Non-Local [10] (Embedded Gaussian) 33.95M 4.534 75.6/92.6

+ Non-Local [10] (Dot Product) 33.95M 4.534 76.2/92.8
+ Non-Local [10] (Concatenation) 33.96M 4.534 76.2/92.9

local-global pair + SGE (ours) 25.56M 4.127 77.6/93.7

8 16 32 64 128
group number G

77
78

93
94

Top-1 Acc (%)
Top-5 Acc (%)

Fig. 2. Performance of SGE-ResNet50 w.r.t. group number G.

that with the increase of G, the performance of the network shows a trend of in-
creasing first and then decreasing (especially in terms of Top-1 accuracy), which
is highly consistent with our deduction. Through the experimental results, we
recommend the group number G to be 32 or 64. In subsequent experiments, we
use G = 64 by default.

Initialization of the γ and β. During the experiment, we find that the initial-
ization of the parameter γ and β has a not negligible effect on the result. We use
values 0, 1 for grid search to see the effects of the initialization. From Table 4 we
find that initializing γ to 0 tends to get better results. We speculate that when
the ordinary patterns of semantic learning has not yet been completely formu-
lated in convolutional feature maps during the initial stage of network training,
it may be appropriate to temporarily discard the attention mechanism, but let
the network learn a basic semantic representation first. After the initial train-
ing period, the attention modules then need to be gradually turned in effect.

695
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Table 4. Performance of SGE-ResNet50 as a function of initializations of γ and β.

γ β Top-1 (%) Top-5 (%)

0 0 77.38 93.71

0 1 77.58 93.66

1 0 77.22 93.58

1 1 77.08 93.70

Table 5. Performance of SGE-ResNet50 with/without the normalization part.

Type Top-1 (%) Top-5 (%)

w/ Normalization 77.58 93.66

w/o Normalization 76.50 93.16

Table 6. Comparisons to the state-of-the-art attention modules on CIFAR-100 test
set. The best and the second best records are marked as red and blue, respectively.

Backbone Param. GFLOPs Top-1 (%)

ResNet50 [14] 23.71M 1.306 78.06

SE [1] 26.24M 1.310 78.96
SK∗ [5] 24.30M 1.329 79.42
BAM [2] 24.06M 1.335 79.35
CBAM [3] 26.24M 1.317 78.44
SRM [6] 23.77M 1.316 78.62
GCT [16] 23.75M 1.312 79.10
GE [7] 23.71M 1.310 78.83
SGE (ours) 23.71M 1.310 79.47

Therefore, in the early moments of network learning, the attention mechanism
of SGE is not suggested to participate heavily in training by setting γ to 0. Such
an operation is almost equivalent to simulate the learning process of a network
without attention modules during the very early training stage, since each sub-
feature of each location is linearly multiplied by the same constant (i.e., σ(β)),
whose effect can be cancelled by the following BatchNorm layer.

Normalization. To investigate the importance of normalization in SGE mod-
ules, we conduct experiments by eliminating the normalization part from SGE
(as shown in Table 5) and find that performance is considerably reduced. The
central reason is that the variance of the activation values of different samples in
the same group can be statistically very different, indicating that normalization
is essential for SGE to work.

Image Classification on CIFAR-100. We also compare SGE with a set
of SOTA modules on the 32x32 image dataset CIFAR-100 [13] benchmark. We
perform random cropping on images with 4-pixel padding, random horizontal
flipping and random rotation with 15 degrees. We train networks on the train
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set and report the Top-1 accuracy on the test set. We adopt a standard training
strategy as stated in [41]. Total batch size is set as 128. From the results in Ta-
ble 6, we observe that based on the ResNet50 backbones, the SGE outperforms
all other competing modules in Top-1 classification accuracy, with minimal pa-
rameters and relatively lowest computations. SGE’s good performance on small
image dataset demonstrates its robustness to the scale of the input images.

4.2 Object Detection

We further evaluate the SGE module on object detection on COCO 2017 [42],
whose train set is comprised of 118k images, validation set of 5k images. We
follow the standard setting [43] of evaluating object detection via the standard
mean Average-Precision (AP) scores at different box IoUs or object scales, re-
spectively. The input images are resized with their shorter side being 800 pixels
[44]. We train on 8 GPUs with 2 images per each. The backbones of all models
are pretrained on ImageNet [12] (directly borrowed from the models listed in
Table 2), then all layers except for the first two stages are jointly finetuned with
FPN [44] neck and a set of detector heads. Following the conventional finetuning
setting [43], the BatchNorm layers are frozen during finetuning. All models are
trained for 24 epochs using synchronized SGD with a weight decay of 0.0001 and
momentum of 0.9. The learning rate is initialized to 0.02, and decays by a factor
of 10 at the 18th and 22nd epochs. The choice of hyper-parameters follows the
latest release of the detection benchmark [45].

Table 7. AP50:95 (%) scores via embedding SGE on the backbones of state-of-the-art
detectors on COCO [42] dataset. The best records are marked as bold.

Backbone Param. GFLOPs Retina [46] Faster [47] Mask [43] Cascade [48]

ResNet50 23.51M 88.0 36.4 37.5 38.6 41.1
+ SGE 23.51M 88.1 37.5 38.7 39.6 42.6

ResNet101 42.50M 167.9 38.1 39.4 40.4 42.6
+ SGE 42.50M 168.1 38.9 41.0 42.1 44.4

Experiments on state-of-the-art Detectors. We embed the SGE modules
into the popular detector framework separately to check if the enhanced fea-
ture map helps to detect objects. We select four popular detection frameworks,
including RetinaNet [46], Faster RCNN [47], Mask RCNN [43], and Cascade
RCNN [48], and choose the widely used FPN [44] as the detection neck. For a
fair comparison, we only replace the pretrained backbone model on ImageNet
while keeping the other components in the entire detector intact. Table 7 shows
the performance of embedding the backbone with the SGE module on these
state-of-the-art detectors. We find that although SGE introduces almost no ad-
ditional parameters and calculations, the gain of detection performance is still
very noticeable with basically more than 1% AP point. It is worth noting that
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Table 8. Various AP (%) comparisons based on the state-of-the-art detectors (Faster
[47]/Mask [43]/Cascade [48] RCNN) and backbone ResNet101 [14] on COCO [42]
dataset. The Parm. and GFLOPs are only with the backbone parts, given that all
the remaining structures are kept the same. The numbers in brackets denote the im-
provements over the baseline backbones. The best records are marked as bold.

Backbone Param. GFLOPs Detector AP50:95 AP50 AP75 APsmall APmedia APlarge

ResNet101 [14] 42.5M 167.9 Faster 39.4 60.7 43.0 22.1 43.6 52.1

+ SE [1] 47.3M 168.3 Faster 40.4(+1.0) 61.9 44.2 23.7(+1.6) 44.5 51.9
+ CBAM [3] 47.3M 168.5 Faster 40.1(+0.7) 61.9 43.6 23.3(+1.2) 44.5 51.2
+ GC(r16) [4] 47.3M 168.3 Faster 40.3(+0.9) 62.1 43.8 23.4(+1.3) 44.8 51.8
+ GE(-θ−) [7] 42.5M 168.1 Faster 39.5(+0.1) 61.2 43.4 23.2(+1.1) 44.4 50.5
+ SGE 42.5M 168.1 Faster 41.0(+1.6) 63.0 44.3 24.5(+2.4) 45.1 52.9

ResNet101 [14] 42.5M 167.9 Mask 40.4 61.6 44.2 22.3 44.8 52.9

+ SE [1] 47.3M 168.3 Mask 41.5(+1.1) 63.0 45.3 23.8(+1.5) 45.5 54.7
+ CBAM [3] 47.3M 168.5 Mask 41.2(+0.8) 62.9 44.8 24.6(+2.3) 45.5 53.1
+ GC(r16) [4] 47.3M 168.3 Mask 41.6(+1.2) 63.2 45.6 24.7(+2.4) 45.8 53.8
+ GE(-θ−) [7] 42.5M 168.1 Mask 40.6(+0.2) 62.5 44.0 24.0(+1.7) 45.2 52.8
+ SGE 42.5M 168.1 Mask 42.1(+1.7) 63.7 46.1 24.8(+2.5) 46.6 55.1

ResNet101 [14] 42.5M 167.9 Cascade 42.6 60.9 46.4 23.7 46.1 56.9

+ SE [1] 47.3M 168.3 Cascade 43.4(+0.8) 62.2 47.2 24.1(+0.4) 47.5 57.9
+ CBAM [3] 47.3M 168.5 Cascade 43.3(+0.7) 62.1 47.1 24.5(+0.8) 47.4 57.7
+ GC(r16) [4] 47.3M 168.3 Cascade 43.4(+0.8) 62.2 47.4 24.8(+1.1) 47.4 57.9
+ GE(-θ−) [7] 42.5M 168.1 Cascade 42.8(+0.2) 61.8 46.5 24.1(+0.4) 47.0 57.2
+ SGE 42.5M 168.1 Cascade 44.4(+1.8) 63.2 48.4 25.7(+2.0) 48.3 58.7

SGE can be more prominently advanced on stronger detectors (+1.5% AP on
ResNet50 and +1.8% on ResNet101 in Cascade RCNN).
Comparisons with state-of-the-art Attention Modules. Next, based on
backbone ResNet101, we compare SGE with several representative strong atten-
tion modules on various competitive state-of-the-art detectors, and report the
detailed AP scores including the metrics over three different scales. The origi-
nal backbones are replaced with the corresponding attention embedded ResNets,
which are pretrained on ImageNet. In Table8, thanks to the enhancement of crit-
ical regions, SGE greatly improves the accuracy of detection for small objects
(> 2% absolute AP gain) while its performance of the media and large objects
still significantly competitive. This is consistent with our visualization in Figure
3, which demonstrates that the SGE module is able to retain the feature repre-
sentation of the spatial region well. Conversely for the others, in each channel,
they give the same importance coefficient for every single location, resulting in a
loss of the expression of the micro-region to some extent. In the case of general
metric AP50:95, SGE outperforms the popular SE by a considerably nonnegligi-
ble margin, including 0.6% absolute improvement on Faster/Mask RCNN and
1% on Cascade RCNN.

4.3 Visualization and Interpretation

In order to verify that our approach achieves the goal of improving the semantic
feature representation, we first demonstrate several examples with specific se-
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Fig. 3. We select several feature groups with representative semantics to display before
and after using SGE on ResNet50. We sample images of different shapes, categories,
and angles to verify the robustness of the SGE module.

mantic visual clues (in Figure 3) and show how SGE helps to improve detection
accuracy especially in small objects (in Figure 4).

SGE-ResNet101 (ours)ResNet101 SE-ResNet101
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Fig. 4. Grad-CAM [15] visualization results for detection backbone. We compare the
visualization results of SE-ResNet101 and SGE-ResNet101 with the ResNet101 base-
line. It is clear that our SGE module shows good coverage of target semantic spatial
features than other counterparts.

Visualization of Different Semantic Enhancement. We train a network
based on ResNet50 on ImageNet [12] and place the SGE module after the last
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BatchNorm [32] layer of each bottleneck with reference to SENet [1], by setting G
= 64. To better reflect the semantic information while preserving the large spatial
resolution as much as possible, we choose to examine the feature maps of the 4th
stage with output size of 14 × 14. For each feature vector of each group, we use
its length (i.e., ∥xi∥) to indicate their activation value and linearly normalize it to
the interval [0, 1] for a better view. Figure 3 shows three representative groups
with semantic responses. As listed in three large columns, they are the 18th,
22nd, and 41st group, which are empirically found to correspond to the concept
of the nose, tongue, and eyes. Each large column contains three small columns,
where the first small column is the original image, the second small column is
the feature map response from the original ResNet50, and the third one is the
feature map response enhanced by the SGE module. We select images of dogs of
different angles and types to test the robustness of SGE for feature enhancement.
Despite its simplicity, the SGE module is very effective in improving the feature
representation of specific semantics at corresponding locations while suppressing
a large amount of noise. It is worth noting that in the 4th and 7th rows, SGE
can strongly emphasize the activation of the eye areas, although their eyes are
almost closed. In contrast, the original ResNet fails to capture such patterns.
Activation Map for Detecting Objects. We apply Grad-CAM [15] to sev-
eral backbones using the images from COCO test set. Grad-CAM can explicitly
emphasize the critical regions for semantic feature representations through the
gradient guidance. As the regions are considered as important clues for the net-
work to predict correctly, we attempt to judge how the model is making good
use of image features. From Figure 4, thanks to the explicit spatial enhancement
mechanism, SGE module is able to cover more critical and accurate locations
for semantic expressions, which clearly explains why the detection performance
of small or middle objects could be boosted significantly as show in Table 8.

5 Conclusion

To explore the two missing ingredients for attention mechanism in CNN: multiple
spatial semantics and local-global similarites, we propose a Spatial Group-wise
Enhance (SGE) module that enables each of its feature groups to enhance the
learnt semantic representation, guided by its respective local-global similarities.
SGE is designed nearly without introducing additional parameters and compu-
tational complexity. We visually show that the feature groups have the ability
to express different semantics, while the SGE module can significantly enhance
this ability. Despite its simplicity, SGE has achieved a steady improvement in
both image classification and detection tasks, which demonstrates its compelling
effectiveness in practice.
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